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ABSTRACT 

We accept from experirfjrent either a two particle binding energy and 

scattering length (or scattering length and effective range) for each two par- 

ticle s-wave channel in a three particle system. These observables can be 

supplemented, if need be, by phase shifts measured at higher energy. We 

show that our general,on-shell scattering theory (which we here stop calling 

a “zero range theory” because that has led to confusion) makes unique, finite 

and unitary predictions for three particle elastic and rearrangement scatter- 

ing, breakup and coalescence, and three particle bound state energies, using 

only this empirical input. Comparison with experiment of predictions drawn 

frbm this model would delimit the significant “off shell” ‘and/or “three body 

force” effects that more detailed models must explain. 
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I. INTRODUCTION 

If we understood the forces between two hadrons, we should at least be able to 

use this knowledge to calculate the behavior of three hadron systems. Currently we 

lack this much understanding. For example, the nucleon-nucleon scattering ampli- 

tudes are known up to, and in some cases well beyond, pion production threshold; 

yet, from this knowledge we cannot predict the binding energy of the triton or 3He, 

or their electromagnetic form factors. Even the n-p capture cross section at thresh- 

old differs by 10% from the model-independent1 Bethe-Longmire prediction. The 
2 

reason is, as we learned long ago,from -the Wick explanation.. of Yukawa’s meson 

theory: that the coupling of the uncertainty principle to special relativity entails 

the creation of mesonic degrees of freedom at short distance. Nuclear physicists 

usually assume that these hidden degrees of freedom can be approximated by a 

“potential”, but there is no unique way to define such a potential once the short 

range non-locality implied by the Wick-Yukawa mechanism is taken seriously. 

Faced with this ambiguity, it is important to have clear experimental criteria 

for determining what new information is contained in three hadron observables 

that is not already predictable using two hadron observables. Starting from the 

“Fixed Past-Uncertain Future” interpretation of quantum mechanics: it was pro- 

posed that such a reference theory might be provided by calculating three particle 

amplitudes using only two particle on shell scatterings.’ Once a way of doing this 

has been developed, the theoretically ambiguous mixture of mesonic (and quark?) 

effects-designated but not defined by the terms “off shell effects” and “three body 

forces”-could be unambiguously separated by subtracting the prediction based 

solely on two particle observables from experimental results. Three attempts to 

articulate such a theory failed.6-8 
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-: Our first paper which gave a rigorous mathematical answer to the problem 

was entitled “Zero Range Scattering Theory. I. 739 , -a title which has turned out 

. . to be misleading. What most people seem to think of as a ‘zero range theory” 

(see ZRST I, Ref. 9 f or early history) is the zero range limit (often modeled by a 

h-function) of some non-relativistic phenomenological potential used as the interac- 

tion term in the Schroedinger, Lippmann-Schwinger, Alt-Grassberger-Sandhas or 

Faddeev equations. This approach can be used to unify the infinite accumulation 

of three body bound states identified in the Efimov and Thomas effects, lo but does 

not lead to a well defined three body theory based only on two body observables. - e. 

In contrast ZRST I took the ‘zero range limit” in the sense of taking the off-shell 

behavior in the Kowalski-Noyes functions to zero, which was shown to be equiv- 

alent to a boundary condition at zero radius. The same limit in the three body 

system then was shown to define unique and unitary three body equations using as 

input only two body bound state poles and a dispersion-theoretic representation of 

the two body amplitudes in the physical region. To avoid future confusion we will 

from now on refer to our uzero range scattering theory” as an “on-shell scattering 

theory” . 

The difficulty with ZRST I was that- it applied only to models of the two body 

phase shifts which had no singularities when analytically continued to negative 

energies other than the bound state poles, thus apparently excluding the “left hand 

cuts” due to meson exchange or the popular non-relativistic potential models. In 

this paper we will show that this difficulty can be circumvented (at least in systems 

with weakly bound or virtual states close to two-particle threshold such as the two 

nucleon system) by lumping these singularities in a single pole whose parameters 

are calculable from the two particle threshold parameters in each channel; the usual 

3 



i Ueffective range model” provides the starting point from which these models can 

be generalized without going outside the framework of unique connection between 

the model and two particle physical observables. 

The need for a unique reference calculation of the three nucleon system using 

onky two particle observables, which initiated this research over two decades ago, 

still persists. This was made clear at Few Body XI” and the satellite Workshop.12 

For example, both the Sendail and the Iowa-Los Alamos14 triton calculations 

showed that once the triton binding energy was fixed other three nucleon observ- 

ables fell into place. No one explained which of the available ill defined parameters ” *.. 

should be picked to adjust in order to achieve these results, let alone how to give 

empirically testable criteria for distinguishing among them. This led Redish to 

remark 15 that what we badly need is a “shape independent” approximation for 

the three nucleon system capable of identifying observables which are known to be 

sensitive to mesonic degrees of freedom; of course this is could be one application 

of the approach this author asked for at Few Body V a decade and a half ago.’ 

Results presented at the Workshop and at Few Body XI made the problem 

acute. Sasakawa’s result12 that the new Bonn potential almost fits the triton 

withozlt any three-body force has been achieved independently by the Basel-Bonn- 

Los Alamos group.‘” They attribute the discrepancy between their results and 

numbers obtained using older models to the fact that the new model has more 

central and less tensor force; this makes sense. However, it seems unlikely that 

this has been achieved without some on-shell (phase shift) differences between this 

model and earlier ‘fits” to the two nucleon data. Again, whether this new result is 

due to on-shell or off-shell differences between the new potential and earlier models 

cannot be unambiguously determined using currently available techniques. 
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Two papers presented at the Workshop made a new start on the low en- 
.17 

ergy threshold problem, Adhikarr used a l/r2 long range potential, cut off at 

REP; >> h/m,c, to simulate the Efimov effect in the n - d doublet state, and a 

short range (R,,, II tL/m,c) “nuclear” potential to fix the threshold parameters. 

In this way he succeeded in reproducing not only the “Phillips plot” connecting a2 

and ct but the peculiar (from a “local potential” point of view) energy dependence 

of k ctn 6Fd close to threshold. For those who are not experts in this field, I add the 

comment that the “received wisdom” is that no simple “potential model” can repro- 

duce the observed energy dependence of k ctn Qd; accepted explanations require - *s 

explicit three-particle dynamics 18. M ore remarkable is that when Adhikari simply 

added the p-d coulomb potential to this model, he could reproduce the “Phillips 

plot” connecting a2 Pa to the binding energy of 3He in quantitative agreement with 

the Iowa-Los Alamos calculations. The experts present at WORK could not ac- 

cept these detailed quantitative results as relevant because they were not ‘derived” 

from a multi-particle “model” in any sense they were willing to accept. 

Hasegawa lg confined himself to the n - d system, but came closer to recog- 

nizable S-particle dynamics by using three “effective range” formulae (for tan 6/k) 

related to the “direct”, uknockon” and “pickup” components of the standard Fad- 

deev channel decomposition. His energy dependence of 

(Ic ctn @)-l = k .;, 6 

direct 

+ k .in 6 

knockon 

+ k .:, 6 

pickup 

is obtained2’ from variational calculations of the Faddeev components of the wave 

function, and does not relate these to a conventional “shape independent” formu- 

lation. 
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We mention both contributions because they led us to re-examine the reasons 

that caused us to abandon the program proposed5 so long ago, which we have 

revived here. 

In Chapter II we give the basic connection between the on-shell two body 

threshold parameters, the measured phase shifts, and the dispersion-theoretic rep- 

resentation of the two body amplitude needed for our three body theory. In Chap- 

ter III we show that the lumped singularity in the two body amplitudes which 

replaces the “left hand cut” can be prevented from destroying the unitarity of the 

three body theory by making an 3ppropriate subtraction in the integral equations. 

We show that this prescription introduces a short-range repulsive effective interac- 

tion in the three body system due to particle exchange analagous to the long range 

attractive interaction which Barton and Phillips l8 derived from the single nucleon 

exchange mechanism. This has the effect of shielding the short range behavior of 

the system where meson exchange effects [or their simulation by some sort of (nec- 

essarily off shell) “potential”] bring in degrees of freedom our model is designed to 

ignore. Chapter IV sketches how the theory might be applied, with a focus on the 

three nucleon system. 

II. THE TWO BODY EMPIRICAL INPUT 

We have shown9 that in our on-shell limit, the three-body Faddeev ampli- 

tudes it&b driven by two body s-wave scatterings depend only on the spectator 

momenta p’a and that the two particle on-shell amplitudes factor out, allowing the 

representation (which holds9 for any three particle theory on shell): 

M,b(&,Fb; 2) = t,(Z -&)&b~(& -2) + ta(Z -$:)&b(%a,~b&b(Z -ii:) * (2.1) 
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i Here z is the three body energy normalized to zero at the lowest breakup threshold, 

63 = pz/2na with na = rF,(mb+m,)/(m,+mb+m,), and &b satisfies the equation 

. . 

a&,( p’,,p’b; z) - &b( p’,Jk z, 

= Cc=& J d3p’,&c( &,p’,; Z)tc(Z - (fi’,)2)zcb( p’,,$b; z) P-2) 

where 

and pa = mb%/(mb + m& etc. Our problem is to find a well defined model 

for the on-shell two particle amplitudes t,(iz) = t,1(~,2/2po) with & = (mbp’a - 

m&,)/(m, + mb) which satisfies two particle on-shell unitarity in the dispersion- 

theoretic sense, i.e., when analytically continued to negative energies in the manner 

required for the solution of these equations. Given two-body amplitudes which 

satisfy the unitarity condition in the three-body space we have already proved in 

ZRST I that the three-body amplitudes so calculated satisfy three body on-shell 

unitarity. 

Using as our paradigm the familiar nucleon-nucleon s-waves, the usual shape 

independent approximation allows us 
21,22 

to represent the singlet amplitudes by 

(2.5) 
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where (recall that a, < 0) 

my= [$3Y&-l]; P= [JV+11 
, 

rs rs 

and the triplet amplitude by 

ei6tsinSt = Q?‘“(q2) = - 9+-i 

(7 - J--;;“,Cd - l/7, ; !l 

r= 
~JM=74 

rt -- - *s 
[1+4--m= 7 . 

ft -/at - 1 ’ 

with 

d= 

(2.7) 

(2.8) 

where we have used the shape independent “mixed effective range” 

p(0, -6) = 7-t = r $l- $) . (2.9) 

Since 

2 
J 

k2 1 - 
n- dk(k2 + a2>(k2 + P2>(k2 - q2 - iO+) = (o + p)(cr + G)(P + q)lo) 

we can rewrite these amplitudes in the dispersion-theoretic form 

7,“qq2) = 2w - 4 
(/? + cr)(p2 + q2) + a J 

sin2SQ” 
dk(k2 - q2 1 iO+) 

7:qq2) = 2444 + 7) 2Y(4 + 7) 
(4 - r)(42 + q2) - (4 - r)(y2 + q2) ’ i J 

sin2c51y4 
&‘(k2 - q2 - iO+) (2a11) 

Then in the on-shell Faddeev equations we will have, in addition to the poles in 

r(z -F2), the terms 1 Jdke. Cl early these are non-singular for Re z < 0 
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* and give no more difficulty than the terms 3 J k2dk t( if, $; i2)t*( i, 3; k2)/(k2 + 

-2 P - z) in the conventional theory. Above breakup threshold these terms will make 

. . our effective interaction complex, which is of course what would be expected from 

the “optical potential” phenomenology. 

Written in this way, it would appear that we can extend the model to a&trury 

empirical phase shifts simply by replacing the effective range approximation in 

the integral by a numerical integral, or analytic fit to observed phase shifts in 

the physical region. This is indeed the case [at least for models which, like the 

two-nucleon system have bound_pr virtual states (i.e., the deuteron and “singlet 

deuteron”) close to two-body threshold] f or any two body system whose phase shifts 

are elastic up to all relevant energies and have the property 3 Jo” sin26/k2 = A < 

00. Then we can extend our model to arbitrary phase shifts in this class by defining 

sin2tYAs ‘p’(q2) = (B2r+Bq2) + a/ dk(k2 _ 42 L iO+) ’ (2.12) 

$‘(q2) = Q Nr2 
(42 + q2) - (72 + q2) ’ 9 J si?12iTAt 

dk(k2 - q2 ” iO+) ’ 
(2.13) 

As was pointed out by Castillejo 
23 this prescription would be inconsistent if we 

used the earlier definitions for the residues at the deepest lying poles. We define 

cy, ,B, y, 4 as before in terms of the threshold parameters [Eqs. (2.6), (2.8)], which 

in effect makes a linear extrapolation of q ctnb to negative energies, and note that 

T(O) = --a. Then a little algebra suffices to establish that the new pole residues 

are not given by the effective range formulae but by 

P 
rp =p2(-as -A,)= (y(~-a)-p2As > 0, 
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qb = #2(Q + 4 4 --A,)=$#+)+2 +f2 $$-l;) - d2At > 0 , (2.14) 

where the residues must be positive if these poles are not to represent deep lying 

bound states. Here we have used the effective range approximation for the reduced 

width at the physical bound state NY2 = F; an empirical value NY2 would still 

be acceptable if the I’ > 0 constraint is satisfied. 

Although we are not concerned with higher partial waves in this paper, we note 

that the phenomenology can be extended to include them, and in this case requires 

a phenomenological pole at negative energies. This is easy to see, because the ” 4. 

threshold behavior of sin blplq is proportional to q a!; there is no analytic function 

having only the right hand cut with this behavior at threshold which vanishes like 

l/q2 for large q. However a single pole at negative energies suffices to fix this 

up; given the parameters for an effective range approximation for q2e+1ctn &, an 

appropriate model can readily be constructed. 

Were it not for the poles at q2 = -p2 and +j2, this “shape independent” 

model would already have met our requirements in ZRST I and we could have 

gone on to application of the theory long ago. The difficulty is that if we look 

at the implications in configuration space, these poles will generate an asymptotic 

wave function proportional to 

(2.15) 

where w = p or 4, r is the distance of the spectator from the center of mass of 

the interacting pair, and p the relative coordinate of the interacting pair. Here 

J&p;) = g - ql + b2, co is the binding energy of the lowest bound state and $0 
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is the momentum of the spectator in that channel incident on that bound state in 

the zero momentum frame. _. 

The asymptotic form in (2.15) is just what we want for the bound state poles. 

These forms describe the elastic (or anelastic) outgoing scattered wave functions 

multiplied by the on-shell “bound state wave functions”. But if we were forced to 

include asymptotic terms from these “ghost” or “virtual state” poles at w2 = p2, d2 

this would be a disaster. Much of the flux would go into these waves, because they 

are more deeply “bound” than the physical bound states. Even worse, the residue 

for these ghost poles is of oppositesign to that for a bound state poles. These ghosts 

would contribute negative probabilities to the unitarity sum and ruin the critical 

connection between elastic scattering and breakup which the theory is designed to 

maintain at all costs. Simply to say that such terms do not appear asymptotically 

in our three body theory, which was suggested in an earlier draft of this paper, 

looks dangerous. Fortunately, we have found it possible to define the three body 

amplitude in such a way that the ghost pole terms cannot contribute outgoing 

waves. They still make the correct contribution to the two-particle “final state 

scatterings”, where they form a necessary part of the parameterization and are 

needed for on-shell three particle unitarity. 

III. ON-SHELL THREE BODY EQUATIONS 

It is instructive to think of our zero range equations (2.2) as multi-channel 

Lippmann-Schwinger equations with an off-diagonal effective interaction &b(z) 

and a propagator t,(z - 6:). This stares one in the face when one keeps only the 

lowest bound state pole term in t, and puts z on-shell (i.e., z = $ + $ = $, - eo), 
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giving a propagator inversely proportional to p: - (P:)~ - iO+. This was realized 

in the relativistic context of single quantum exchange 24 
and leads directly to the 

confined quantum model.25 Sandhas has often remarked 26 that when the AGS 

technique is used to reduce the number of degrees of freedom and define effective 

interactions between the resulting clusters, what were the driving terms in the 

larger space become the propagators in the smaller space, while what were the 

propagators in the larger space become the effective potentials in the smaller space. 

In our simple environment we see that we can even get free particle propagators if 

we restrict ourselves to one bound state pole term in each channel. 4. 

The form of the effective interaction given by f?,b(p’,,p’a; z) in Eq. (2.4) and 

exhibited kinematically in Fig. 1 is particularly interesting. In configuration space 

it is simply a Yukawa potential between the two constituents of the opening or 

closing vertex with range tL/fi c, i.e., the radius of the appropriate bound state. 

Clearly when the binding energy goes to zero, the range goes to infinity, giving 

us an immediate way to understand the Efimov 27,28 
effect. Further, it immedi- 

ately justifies in terms of three body dynamics the phenomenological long range 

potentials used by Adhikari17 to derive the n - d and p - d Phillips plots. 

Barton and Phillips18 used Fig. 1 as a dispersion theory diagram to derive 

the complicated low energy behavior of doublet n - d scattering and the n - d 

Phillips plot connecting this behavior with the triton binding energy, Our on-shell 

theory will reproduce and refine their results. Figure 1 also shows that our model 

is closely related to Lovelace’s “pole approximation” 
29 

to the Faddeev equations, 

or if we replaced the constant vertex parameters by form factors, to Amado’s 

3o “non-relativistic field theory,, for the n - d system. The advantage we claim 

for our approach is that we have related it directly to the on-shell limit of the 

12 



i Kowalski-Noyes representation in the standard Faddeev theory, and can-up to a 

point-relate the input to standard on-shell dispersion-theoretic amplitudes. 

. . As we have already noted, we cannot simply use our fit to the two body ampli- 

tudes in our on-shell equations because the “ghost” poles will not only contribute 

outgoing waves that look like deep lying bound states, but contribute them in 

such a way that they will introduce negative probabilities into the unitarity sum! 

However, the remedy is ready to hand. All we need do is to require that when the 

argument of .??& hits this value of momentum, the function be zero. Then there 

will be no singularity at the pole, and--no two-particle outgoing wave; the model . 

will yield only elastic scattering and anelastic scattering below breakup threshold, 

and three particle scattering with the usual (asymptotic) kinematic restrictions 

above breakup threshold. To force this constraint, we write the equation 

&b( p:p’a; 2) = 0 = &b( &p’bb; z> 

and subtract it from Eq. (2.2). W e see that in effect this simply replaces the 

effective interaction R,b by 

R;b( p’,,&;p;,z) = &b( i&a,~b;z) -Rab( &p’a;Z) . (3.2) 

At first sight this procedure appears somewhat arbitrary. Granted that the 

change in the equations only effects the value of the solution at energies far removed 

from those which represent physical scattering processes, one can still wonder what 

this prescription means. Fortunately we have already seen from the Barton-Phillips 
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calculation that the first term corresponds to an attractive “potential” and indeed 

provides most of the binding energy of the triton treated as an n - d system, even 

. . in an on-shell dispersion-theoretic treatment that neglects everything else! Conse- 

quently, the correction we prescribe for the interaction corresponds to a short range 

repulsion which sets in at negative (virtual) and positive (physical) energies where 

we would start to excite virtual pionic degrees of freedom in a more fundamental 

theory. At high energy we know that these pionic degrees of freedom look like a 

black (absorbing) g re ion, which is well represented phenomenologically in the elas- 

tic channel by a uhard core” boundary condition at finite radius. We further know -- - +. 
that in a relativistic model, this boundary condition evaluated using data above 

pion production threshold provides an intimate connection between behavior in the 

meson production region and the existence of the deuteron and “singlet deuteron” 

close to nucleon-nucleon threshold? Our apparently arbitrary prescription in fact 

has some good physical reasoning behind it. 

Since the input parameters for our model can be unambiguously computed 

from two particle observables measured (or measurable) in the laboratory we have 

met our original objective.5 

IV. THE THREE-NUCLEON SYSTEM 

Consider the n-d system driven by s-wave interactions described by the n - n 

singlet, n - p singlet and n - p triplet s-wave shape independent effective range 

parameters. We have shown above how the departure of the phase shifts from this 

threshold behavior at higher energy, and in higher partial waves, can be included 

without going beyond experimentally accessible information about the two-nucleon 

system. We start by treating the two neutrons as formally distinguishable, although 
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identical in mass and interactions. We assume that there is no n-n triplet inter- 

_. action, as this would take us beyond srwave input, but otherwise only impose the 
‘_ 
. . Pauli principle at the end of the analysis. Thanks to the identity of the masses and 

interactions in each of the two formally distinguishable n -p systems, the equations 
32 

reduce to three Faddeev channels, as we have demonstrated elsewhere. Supple- 

mented by the easily calculable32 spin coefficients, the theory developed above can 

be applied directly. To make predictions, we must of course clothe the on-shell 

amplitudes z,b with the appropriate poles, two-particle scattering amplitudes and 

spin functions, add the Born ter+ms, and compute the appropriate cross sections. 

We would then have a predictive theory for the n - d system using only six on-shell 

(shape independent) parameters. 

We outline a specific program for future research. First make a rough calcu- 

lation of the triton binding energy predicted by the six input parameters. Since 

Barton and Phillips obtain most of the binding energy for the triton using only the 

deuteron pole and triplet scattering length (with at invoked only to get the correct 

pole residue) in a dispersion-theoretic calculation equivalent to keeping only the 

driving term &, in our equations, we anticipate that solving our on-shell equations 

would improve on their result. Next normalize these equations to fit aa and Et and 

use them to predict S-nucleon observables at higher energy. This would define a 

minimal “shape independent,, approximation for the three-nucleon system. When 

extended to include higher nucleon-nucleon partial waves our on-shell model could 

provide a unique reference theory that will tell us what experiments contain “off 

shell” , “meson exchange” and “three body force,, effects by separating them from 

those effects which can already be predicted within experimental error using known 

two-nucleon scattering data. 
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* CONCLUSIONS 

. . 
In this paper we have developed’ a general three particle theory using only 

two particle observables, which could be readily extended to a system of three dis- 

tinguishable spin-$ particles and applied to the low energy behavior of the three 

nucleon system. Our first approximation here uses only the six threshold two nu- 

cleon parameters as input. We claim that when this numerical work is extended 

to include higher partial waves and make predictions of three nucleon observables, 

any theory of the three nucleon system will then have the following tasks: (a) It 

must first fit the two nucleon d&a within experimental error (no extant models 

do even this) or (failing that) show that its departure from experiment in this 

respect has no significant qualitative or quantitative effect on the predictions it 

- makes about three-nucleon observables-we believe our approach will assist oth- 

ers in this task. We predict that no a priori three-nucleon theory based solely 

on two-nucleon data will fit both a2 and ct within experimental error. (b) Hence 

any theory will have the task of explaining why it fails (other than through inad- 

equacy of the on-shell 2-nucleon data) and where one or more intrinsic S-nucleon 

parameters have to be taken from experiment in order to resolve the discrepancy. 

(c) IIaving established these inherent limits of accuracy any theory must then find 

where its predictions (after normalization to a2 and et) differ significantly from 

those provided by our “shape independent,, approach. All of us can then get on 

with the real job of trying to understand what the three nucleon system tells us 

that we do not already know, or can predict, from available two-nucleon data. 
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FIGURE CAPTION 

- FIG. 1. The kinematics of-the three particle propagator R,&7~(Ea),p’b(E~); E), and 
. . 

hence the (2,2) effective potentials, in the minimal on-shell model. 
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