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ABSTRACT 

The emission of light, noninteracting particles, such as axions and majorons, 

modifies the structure and evolution of stars. We show that the main effects of 

such an energy loss are to raise the central temperature and luminosity of stars 
-i 

and to reduce their main sequence lifetimes. The concordance of the standard 

model of the sun with observations yields a self-consistent bound on the coupling 

of light pseudoscalars to electrons, gBe < 1.6 x lo-‘l. This corresponds to a lower 

limit on the Peccei-Quinn scale, F 2 3.2 x 107GeV, a factor of 3 better than the 

usually quoted solar bound. We briefly discuss the consequences of axion emission 

for the solar neutrino problem and for the ages of globular clusters. Since the 

axion luminosity scales as a lower power of temperature than the nuclear energy 

generation rate, axion emission has a stronger influence on cool stars. We discuss 

the resultant changes in the mass.-luminosity relation for low mass stars and the 

effects on the low-mass cut-off for main-sequence stars. 



I. INTRODUCTION 

In recent years, a number of particle physics models have been proposed 

in which an approximate global symmetry is spontaneously broken at a high 

energy scale.’ These models predict the existence of light, very weakly interacting 

Nambu-Goldstone bosons.2 The paradigm case is that of the axion, while other 

candidates include the majoron and the familon. (Throughout this paper, we 

will use axion as a synonym for Nambu-Goldstone boson.) Although inaccessible 

to conventional terrestrial experiments, axions may have significant astrophysical 

signatures. If their mass ‘is, much less than stellar core temperatures (mazion < 

kT, - IkeV), axions can be copiously produced in stars by atomic processes.3-5 

Since they interact so weakly, axions have mean free paths much larger than 

stellar radii; once created in stars, they escape unscathed. 

Axion emission drains energy from stars and thereby perturbs stellar struc- 

ture and evolution. Since the structure of main sequence stars, and of the sun in 

particular, is well understood, the agreement of stellar models with observations 

can constrain such emissions. Thus stars play the dual roles of axion factories 

and axion laboratories. 

In this paper, we consider in detail the perturbative effects on main sequence 

stars of the emission of light noninteracting particles, such as axions. (In fact, 

our approach is more general than this and applies to arbitrary perturbations in 

the stellar energy generation rate.) Our analytic approach, based on methods 

developed by Stromgren and Chandrasekhar,’ is developed in Sect.11. (Our work 

is complementary to that of Dearborn, Schramm and Steigman,7 who recently 

incorporated axions directly into a stellar evolution code. Although less accurate, 

the analytic approach makes the physics of the problem transparent.) The usually 
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i quoted solar axion bound,3 obtained by setting the axion luminosity equal to 

the photon luminosity of the sun, is arbitrary and, it turns out, inconsistent. In 

Sect.111, we derive a stronger, self-consistent, yet conservative bound by directly 

taking into account the effects of axion emission on the sun. In Sect.IV, we extend 

the discussion to low mass stars. For these stars, the effects of axion emission 

are more dramatic, but the prospects for observational constraints appear to be 

more remote, as the theoretical uncertainties are greater and the observational 

data more sparse. 

-i 

II. HOMOLOGOUS STARS 

We first briefly review the basic ideas of stellar structure and evolution.8 

Stars spend most of their lifetime in the main sequence phase, during which they 

burn hydrogen to helium. We focus here on lower main sequence stars, with mass 

O.lM~ 5 M 5 1.2&, which burn predominantly by the proton-proton chain. 

These stars spend of order 10" years on the main sequence; the long evolution 

time implies that their structure can be taken to be static to good approximation. 

In lower main sequence stars, the stellar core is in radiative equilibrium (i.e., 

energy transport is predominantly by photon diffusion), surrounded by an outer 

convective envelope. For stars with mass A4 2 0.3M0, the convective envelope 

is thought to extend to the stellar center: these stars are fully convective. We 

will see that the structure of stars which are convective throughout the interior is 

qualitatively different from stars in which radiative diffusion carries a significant 

portion of the energy flux. 

The basic equations of stellar structure are the conservation of mass, 
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dM - = 
dr 

4&p 

the condition for hydrostatic equilibrium, 

dp G&P 
TX- r2 

and the condition for thermal equilibrium, 

dLr -= 
_ dr 

47rr2E: 
-i 

(1) 

(2) 

(3) 

Here, Mr is the mass interior to radius r, L, is the net flux of radiation through 

a shell of radius r, and e is the energy generation rate (erg gm-l set-l). For 

the rest of this section, we shall consider stars which, like the sun, are in radia- 

tive equilibrium throughout most of the interior. In this case, energy transport 

through the star is governed by the equation of radiative transfer, 

dT 3KPL 
dr=- 167rr2acTs (4 

where rc is the opacity ((~cp)- ’ is the photon mean free path), and a is the Stefan- 

Boltzmann constant. 

The condition of hydrostatic equilibrium implies that large central pressures 

are required to support stars against gravitational collapse. From the equation 

of state for matter and radiation, this implies high central temperatures, Tc 5: 

lo6 - 107K, and thus large temperature gradients to the relatively cool stellar 

surface. By Eqn.(4), this gradient drives a net flux of radiation through the star 

and from its surface, regardless of whether the energy loss is compensated by 
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nuclear energy generation. However, the condition of thermal equilibrium (3) 

can only be violated for of order,the Kelvin-Helmholtz time (P 107yrs for a solar 

mass star), the timescale for the star to radiate its thermal reserves. Note that 

the free fall time (II 50 min) is much shorter, so hydrostatic equilibrium cannot 

be violated for an appreciable time. 

This simple picture allows us to understand the qualitative effects of incor- 

porating axions into stars. Axion energy production at a rate &az acts as a local 

heat sink, reducing the effective value of the stellar energy generation rate to 

E = Enuc - Em, where E,~~~s the-energy generation rate from nuclear reactions. 

Consider a star, initially in thermal equilibrium, in which axion production is 

adiabatically switched on. As the axion rate builds up, the star suffers a net 

energy loss and goes out of thermal equilibrium. To restore equilibrium, the 

star gains gravitational energy by slowly contracting on the Kelvin-Helmholtz 

timescale. By the virial theorem, however, half of the energy gained in contrac- 

tion must go into thermal energy, so the temperature rises. Since cnuc scales as a 

positive power of T, hydrogen is burned at a faster rate, and the stellar lifetime 

is reduced. (The fact that heat loss leads to an increase in temperature reflects 

the negative specific heat of gravitationally bound systems.) 

Clearly, this gravitational contraction will eventually cease only if caz has 

a weaker temperature dependence than &nuc; otherwise, contraction reduces the 

net energy generation rate, and the star moves further oui of equilibrium. For 

the proton-proton chain in lower main sequence stars, the nuclear rate is approxi- 

mately’ 

Enuc cv copT” ; u = 4 - 6 (5) 
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with fixed u in a narrow range of temperature, while for the dominant axion 

processes, eaz scales as pT2e5 (bremsstrahlung)’ or pT1a5 (axiorecombination).5 

The Compton and Primakoff processes, while important, never dominate the 

axion emission rate. Thus a main sequence star with axions can relax to a new 

stable configuration, 

To study the effects of axions in detail, we need an additional simplifying 

assumption. To compare a star with axions to a hypothetical uncontaminated 

star, we again imagine that the system is allowed to relax quasi-statically to a new 

configuration as the axions are ‘turned on’. ” In addition, we assume that the -i 
resulting contraction of the star is approximately uniform, or homologous, that 

is, “the distance between any two points is altered in the same way as the radius 

of the configuration “.’ In fact, chemically homogeneous stars are believed to 

contract in roughly homologous fashion when they go out of thermal equilibrium 

(e.g., when hydrogen is exhausted at the end of the main sequence phase). 

It is straightforward to work out how physical quantities scale under a ho- 

mologous contraction.g Suppose a star contracts from its initial radius R, to a 

final radius RI, with y = RI/R,. Then a volume element initially at radius r, is 

moved to a new position rr = yr,;. the points to and rr are said to be homologous. 

It is convenient to define the homology invariant 

= = (ro/Ro) = (r&h) (6) 

From Eqn.(l), if the initial density at rO is pO, then the final density at the 

fll Of course, axions will be generated a6 in&o, so the star will not, in fact, relax in this 
way. However, by the Vogt-Russell theorem, the structure of a static main sequence star is 
uniquely determined by the input parameters, i.e., it is ‘path independent’, so this picture 
should give an accurate representation of the effects of axions even if they are nonlinear. 
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i homologous point tr is 

p1(=) = Y-3Po(=) (7) 

Since Mo(ro) = Ml(q), f rom Eqn.(2) the pressure increases to 

Plb) = Y-4Po(=) (8) 

Also, since the equation of state for lower main sequence stellar interiors is to 

good approximation given by the ideal gas law, p - pT, the temperature scales 

as *i 

G(x) = y-o(=) (9) 

and the temperature gradient as 

Thus, under homologous contraction, the density, pressure and temperature pro- 

files are unchanged aside from a global resealing. 

To proceed further, we recognize that the assumption of homologous con- 

traction imposes restrictions on the constitutive relations for the stellar energy 

generation rate and the opacity. In particular, for chemically homogeneous stars 

one can show that lo these quantities must be homogeneous functions of the den- 

sity and temperature, 

E = .sopnTu ; K = K~~‘TP (11) 

For chemically homogeneous stars in radiative equilibrium, Eqn.(ll) turns out 

to be a good fit to the detailed calculations of the nuclear energy generation 
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rate and opacity. Following Eqn.(5), we will take n = 1; for the opacity, we will 

use the Kramers law, with s = ,l, p = -3.5, which is found to be an accurate 

interpolation formula throughout most lower main sequence interiors.8 

From the discussion following Eqn.(5), the axion rate eaZ does not scale in 

the same way as cnue; strictly speaking, this implies a breakdown of homol- 

ogy. However, the temperature dependencies of the two rates are neither very 

steep nor very different from each other; since the temperature is fairly uniform 

over the energy producing core of the star, we can to good approximation re- 

place the position-dependent ratio &az/cnuc by its average over the stellar core, 

hm = (Eaz/&nuc)core. If the axion effects are small, &i,, < 1, the departure from 

homology neglected here should only lead to small higher order corrections to the 

results below. (Note that in this approximation, the star has neutral stability 

with respect to axion perturbations.) 

From Eqns.(4-11), we find the luminosity scales as 

Ll(X) = y-‘/2L,(x) 

On the other hand, with 61 = Enue - &a% = ~~(1 - 6,,)pTV, Eqn.(S) becomes 

Ll(X) = y--(3+y)(l - 6az)Lo(s) 

(12) 

(13) 

Combining Eqns.(l2) and (13) and linearizing in y - 1 = (bR/R,), we can relate 

the reduction in stellar radius to the relative axion power, 

6R 6 a2 -=- 
R u + 2.5 

Using Eqn.( 12) and the temperature scaling T - y-l, we find the increase in 
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stellar luminosity and central temperature, 

.6L 6 -: 
L 2(v y2.5) 

6Tc Lz 
T,= v + 2.5 

(15) 

(16) 

In Eqn.(lG), we have used the fact that the stellar center is a homologous point. 

From Eqn.( 15)) we see that the luminosity is relatively insensitive to a small 

perturbation in the energy generation rate E: because the nuclear reaction rates are 

moderately sensitive to the temperature; this reflects. our earlier conclusion that 

the luminosity is primarily determined by the condition of hydrostatic equilibrium 

and the equation of radiative transfer. 10 

The evolution time of a star is given by the rate of hydrogen burning, r - 

CIGLUC, where C is the energy released per gram of hydrogen consumed. From 

Eqns.(6-11) we find r - Tci (v+3) , and thus 

67 -=- (LJ + 3)&z 
7 (u + 2.5) (17) 

Eqn.(l7) gives the fractional change in the main-sequence lifetime and in the 

time required to burn to a given core value of the hydrogen mass fraction XH. 

III. THE SUN 

In this section, we apply the analysis of Sect.11 to obtain bounds on axion 

emission from the sun and solar mass stars. From Eqns.(14)-(17), we see that 

the most sensitive parameter is the stellar evolution timescale r. From meteor 

dating, the solar lifetime is known to be 70 = 4.5 x 10’ years, with an estimated 
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uncertainty S lo8 years. l1 Current evolutionary models of the sun are able to 

reproduce quite well the observed luminosity and radius at an age corresponding 

to 70. 

If axions were included in these models, they would evolve more rapidly, 

leading to a luminosity and radius at 70 in conflict with observations. To regain 

agreement with observations of the sun, the evolution time of these models could 

be partially compensated by changes in the initial solar composition and in the 

convective mixing length parameter. To be conservative, we assume that the 

largest timescale change y-hich could be reasonably accounted for in this way, 

i.e., the uncertainty in evolutionary lifetime of solar models, is of order 4 x lo8 

years, or 

67 < 0.1 
7 - 08) 

A good fit to the solar energy generation rate is obtained with Y = 4; then 

Eqns.(l7) and (18) imply a bound on the axion rate 

&z(Z,o) 5 0.1 (19) 

The usually quoted bound on the axion rate arises from the requirement that 

the axion luminosity is less than the observed solar luminosity, L,, 5 La. This 

constraint on L,, has no physical basis, however, since L,, is not an observable 

quantity. More to the point, our bound (19) is an order of magnitude stronger 

than this. In addition, Eqns. (15) and (19) yield a relatively strong constraint 

on the allowed change in solar luminosity, 

5 0.01 (20) 

From Eqn.(20), it is clear that the solar luminosity is not a useful observable for 
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placing limits on the axions. 

The coupling of Nambu-Goldstone bosons to electrons is 

From bremsstrahlung and Compton emission3j4 of Nambu-Goldstone bosons, our 

self-consistent limit, S,, 5 0.1, corresponds to a solar bound on the pseudoscalar 

coupling constant, 

-i gg,j < 1.6 x lo--l1 . (21) 

For axion models, gae = (2X:/F) m, , which yields a lower bound on the Peccei- 

Quinn scale, 

F 
- > 3.2 x 107GeV , 
2x,’ (22) 

a factor of 3 stronger than the usually quoted limit. (Here, 2X,’ is a model- 

dependent parameter of order unity.12 ) Assuming the axion mass is”12 ma2 e 

7.2 eV (107GeV/F), th’ 1s corresponds to the upper limit maz 5 2.3eV (for 

2X,’ = 1). For the majoron model of Gelmini and Roncadellil , the coupling 

constant is gMe = (1.6 x 10-llMeV-l) VT, where VT is the triplet majoron vac- 

uum expectation value. The bound (21) then corresponds to the limit 

VT 5 1 MeV . (23) 

If the coupling constant is near the upper bound of Eqn.(21), Nambu-Gold- 

stone boson emission from the sun will have additional consequences. For exam- 

ple, the solar neutrino luminosity per unit mass from 8B decay is approximately 
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i &U = ApTC, with a steep temperature dependence, c N 13.8’11 By analogy to 

Eqn.(l3), the perturbed neutrino luminosity is Ll,“(x) = y-(3+c)Lo,v(x), and 

from Eqn.(l4) we find 

6JL (c + 3)&z 
- = (v + 2.5) 5 0.25 
L” 

Thus, axion emission at the solar bound would exacerbate the solar neutrino 

problem. Until the solar neutrino problem is understood, however, we cannot 

use (24) to obtain a better axion limit. 

Saturation of the bound (18) would also reduce the main sequence lifetime 

of solar mass stars by of order 10-g. The age of the 01.dest globular clusters cor- 

responds roughly to the main sequence lifetime of solar mass stars; that is, from 

isochrone fitting of cluster Hertzsprung-Russell diagrams, the main-sequence 

turn-off point for old globular clusters is found to occur at a mass near M cv Ma. 

Since axion emission reduces stellar lifetimes, isochrone fitting using stellar evo- 

lutionary models without axions taken into account will overestimate the ages of 

globular clusters. This is good news for advocates of inflation, since some esti- 

mates for globular cluster ages, of order (16- 18) x 10’ years, in conjunction with 

the inflationary prediction n = 1 (assuming A = 0), imply an uncomfortably low 

value of the Hubble parameter, Ho II 35 - 40 km/sec/Mpc (the observed range 

for the Hubble constant is generally taken to be 75 f 25 km/sec/Mpc). 

It has recently been recognized that axions emitted by the sun may be de- 

tected in deep underground detectors by the axioelectric effect.13 The lack of 

an observed signal at present detector sensitivities yields a bound on the axion 

scale, 14 

F 
- > lo7 GeV 
2x,’ 

(experiment) (25) 
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Comparison with Eqn. (22) h s ows that this limit, like the usually quoted solar 

bound, is not self-consistent: Eqn. (25) was derived using a standard solar model, 

but axion emission saturating this bound could severely perturb the evolution of 

the sun (&, - 1). A proper treatment would have to include the nonlinear effects 

of axions on solar evolution, and the consequent changes in the solar axion flux. 

This would alter the limit (25) slightly, but clearly cannot raise it above the solar 

bound (22). As detectors are improved, however, the experimental bound will 

become competitive with the solar limit. 

-- ” -i 

III. LOW MASS STARS 

Given the approximations embodied in Eqn.(ll), the homology treatment 

given above should provide an adequate description of the response of solar-type 

stars to axion perturbations. These stars have thin convective envelopes, and 

their structure is relatively insensitive to surface boundary conditions; to first 

approximation, they can be treated as being in radiative equilibrium throughout. 

This approach is further justified by the fact that the boundary of the convective 

envelope is a homologous point. 

For lower mass stars, the situation is different. Low mass stars have suffi- 

ciently low surface temperatures for neutral hydrogen to form in abundance in 

the envelope. As a result, molecular contributions to the opacity become impor- 

tant, and K. increases sharply with temperature (instead of decreasing, as in the 

Kramers law for fully ionized atoms). In this case, near the surface the opacity 

increases rapidly with depth, and radiative transfer becomes unstable to the on- 

set of convection. This instability is responsible for the convective envelope of the 

sun as well; however, for the cooler low-mass stars, the convective envelope is deep 
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and plays an important role in determining internal structure. We will consider 

the transition to deep convection to occur at a stellar mass Mt, N (0.3 - 0.4)Mo, 

i.e., for the late M dwarfs. 

For simplicity, we will treat stars with mass M 5 Mt, as completely convec- 

tiven2 ( corn u er models indicate full convection for M 2 0.3Ma15 ). The p t 

difficulty is that the luminosity of such stars is sensitive to surface boundary 

conditions. For a star in which most of the energy flux is transported by bulk 

convective motion of the fluid, the equation of radiative transfer (4) must be 

replaced by the mixing length theory of convection, which gives *i 

L conu - (A v T)3’2 (26) 

where 

AvT= ($(g) (27) 

is the superadiabatic excess, i.e., the excess of the temperature gradient over the 

adiabatic gradient. In contrast to the radiative luminosity (Eqn.(4)), L,,,, is not 

determined by the temperature gradient itself but by the small excess (typically, 

.(A v T)/ldT/drl N 10-6). A s a result, the temperature profile of the star is 

essentially decoupled from the convective energy transfer; this makes Eqn.(25) 

impractical for use in calculating the luminosity. 

To compute the luminosity of completely convective stars, we must instead 

impose boundary conditions at the photosphere, the layer from which the stellar 

fl2 The structure of low mass stars is further complicated by different contributions to the 
opacity in different regions (which we model crudely), as well as by the onset of partial 
electron degeneracy (and hence deviations from the ideal gas law) at high density (very low 
mass stars). As a result, the homology assumption for such stars may be less justified, but 
it should still give a first approximation to their response to perturbations. 
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energy is radiated into space. By definition, the region above the photosphere 

must be in radiative equilibrium, since energy is radiated, not convected, into 

space. In practical terms, we can define the photosphere as the region in which the 

stellar temperature is approximately equal to the effective temperature, TPh N Te, 

which is defined as the equivalent black body temperature for a star with given 

luminosity, 

L = 4?rR20T,4 (28) 

Generally, Te is within a factor unity of the surface temperature. From our 
-i 

definition above, the depth of the photosphere is roughly the photon mean free 

path, Arph cz (~~hp)-l. 

We can solve for the pressure at the photosphere by using the condition of 

hydrostatic equilibrium (2), evaluated at the stellar surface, 

dpN-GW 
dr - R2 (29) 

Thus 

p h II ~WAr*h) N GM 
P R2 KphR2 

(30) 

where we have neglected radiation pressure at the surface. We have also assumed 

the photosphere is sufficiently thin to take the opacity there as roughly constant; 

in low mass stars, this is a reasonable approximation. (We could use a more so- 

phisticated model of the photosphere than the simple thin atmosphere treatment 

given here, but the results do not differ substantially.) Equation (29) furnishes 

the requisite boundary condition to find the luminosity. In the photosphere, the 
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opacity can again be taken to have the homogeneous form 

fCph = %,P;&-’ (31) 

where now the exponent s < 0 reflects the influence of partial ionization. For 

numerical estimates, we will take n = 1, s = -4, appropriate to envelopes of 

low-mass stars with Te < 5 x 103K.10 Assuming the ideal gas approximation, 

Eqn. (29) becomes 

” -5 
Ml/2 

--Pph N - 
RT,“/” -- (32) 

In the convective interior, bulk motion of the fluid establishes nearly adiabatic 

conditions. As a result, the interior is well described by the polytropic equation 

of state with polytropic index n = 1.5, 

p = K(M, R)T2.5 (33) 

where K - M-l&@2 - is a constant for the star. (Note that (32) is invariant 

under a homology transformation.(6-9)). I n our approximation, the outer bound- 

ary of the convective zone is the base of the photosphere; imposing the boundary 

condition (31) on the pressure (32), we find the effective temperature scales as 

Tj - MR’12 (34) 

and from (27) the luminosity as 

L c,,nv - MR512 (35) 
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Under a homology transformation, this gives 

L conv - y5/2L,(s) (36) 

On the other hand, the condition of thermal equilibrium still implies Eqn.(l3). 

Comparing Eqns.(l3) and (35) and linearizing as before, we find the resultant 

changes in the structure of convective stars: 

6R bT, S,, -- = -= 
R Tc u + 5.5 (37) 

6L i 206T,- 2.567 2.5&z -=-= 
L Tc (u + 3)7 = -(u + 5.5) * (38) 

Two features of these relations are worth noting. First, the radius of the 

convective star is less sensitive to the axion perturbation than for the radiative 

star (this is compounded by the growth of the exponent u at low temperature). 

Second, since s < 0, a convective star grows dim under the influence of axions, 

while a radiative star brightens(15). Unfortunately, even the axion-shortened 

lifetime of low mass stars is much longer than the age of the universe, so stellar 

ages cannot be used to constrain axion emission. 

. For our purposes, the best diagnostic to use for studying axion perturbations 

of low mass stars is the mass-luminosity relation. (Because axions do not affect 

the stellar mass, this test is preferable to the usual Hertzsprung-Russell diagram, 

i.e., the L - Te plane.) The results are shown in Fig.1, where we have used the 

main-sequence models of Refs.15; to calculate 6,,, we have taken saz from refs. 

3-5 (including Compton emission) and have used the interpolation formulae for 

cnuc and v from Clayton.8 (This will result in a slight overestimate of snclc for 

M 2 0.5Ma due to th e assumption of He3 equilibration. 15 ) 
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In general, one expects axion effects to become more important at low stellar 

mass. However, in the mass range (0.2 - 0.3)Ma b remsstrahlung emission, which 

is the dominant axion process down to 0.2M0, becomes severely damped by 

plasma screening l6 (see Fig. 3 of Ref. 5). Thus, S,, declines as the mass is 

lowered from 0.3Ma to 0.2Ma.l’ In addition, since the central temperature only 

drops by a factor of 2 between lM@ and 0.3Ma,6,, does not grow appreciably in 

this range. For a pseudoscalar coupling at the solar bound (21), the axion effects 

remain linear down to the lowest stellar masses. 

The luminosity changes produced by axions may.. also be partially compen- 

sated for by uncertainties in stellar input parameters and stellar physics, in par- 

ticular in the surface (molecular) opacities and in the metallicity. For example, 

for a star of mass 0.3M0, we find that axions saturating the solar bound (21) 

reduce the luminosity by 

6L 
-351og & = 
L ( ) 

-0.04 
. (39) 

This is comparable to the change in luminosity induced by a factor 10 reduction 

in the He3 abundance l5 or by a corresponding increase in the metallicity. The 

results of refs. 15 are in reasonable agreement with the observations, perhaps 

slightly subluminous if high metallicity (e.g., Pop. I, 2 = 0.02) is assumed for 

most of the sample. Axions would worsen the agreement on the low mass end, but 

this could be accounted for by assuming a reduced metallicity for the low mass 

stars of the sample. Thus, it appears difficult to obtain a significantly stronger 

independent bound on the axion scale from low mass stars. 

One possibility is to study the pre-main-sequence contraction of very low 

mass stars. Stars with mass less than MC, N 0.08Ma are believed to never reach 
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a stable hydrogen-burning main sequence phase. ‘* This is because the interior 

temperature of astar contracting in the convective pre-main sequence phase 

reaches a maximum when the electron gas becomes degenerate. If the nuclear 

generation rate cntLc is too low to establish thermal equilibrium at Tmax, the star 

continues to contract. The degenerate configuration, however, now cools as it 

contracts, and the star moves further out of equilibrium (recall cncLc - TV). Stars 

with mass M < Merit end up as degenerate brown dwarfs. 

Energy loss due to axion emission reduces the net heat output for given 

interior conditions. As a result, stars above the critical mass will have to contract 

to higher densities to achieve thermal equilibrium; some of these will become 

degenerate and never reach equilibrium. The effect of axions is thus to raise 

the main sequence cut-off mass Merit. A simple analysis using the results of 

refs. 5 and 15 (here, only the axiorecombination process is important) indicates 

the critical mass is raised to Mc’,.it N 0.15M0, again assuming the solar bound 

(21) is saturated. A number of stars have been observed in the mass range 

Writ L M L Mirit. If any of these can be demonstrated to be on the main 

sequence, this would yield an independent bound on the axion scale, slightly 

stronger than the solar limit. This avenue appears particularly promising since 

recent theoretical determinations of Merit appear to be relatively insensitive to 

uncertainties in opacities and metal abundances. 

IV. CONCLUSION 

We have discussed the effect of Nambu-Goldstone boson emission on the 

structure and evolution of main sequence stars. Our primary aim in so doing 

was to clarify previous work on the subject; although the usually quoted solar 

constraint on axion emission, L,, 5 La, is suggestive, it is not empirically verifi- 
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able, for L,, is not an observable. As a result of our more careful treatment, we 

obtained a factor 3 improvement on the upper limit to the coupling of light pseu- 

doscalars to electrons and have obtained a bound which is self-consistent. There 

are stronger, but relatively more speculative, constraints on axions which arise 

by considering axion emission from red giants,3” white dwarfs2’ , and neutron 

stars 21 ; the strongest of these corresponds to gBe 5 2 x lo-‘. The solar limit, 

though less restrictive, is, however, based on a better understood, nearby star. 
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FIGURE CAPTIONS 

1. Mass-luminosity relation for low mass stars. Filled circles represent data 

compiled by Popper. lg Solid lines are theoretical results of Vandenberg, 

et a1.15 and open circles are theoretical points of Grossman, et all5 The 

dashed line indicates the modified M-L relation including the effects of 

axion emission if the solar bound (Eqn. 20) is saturated; here, the unper- 

turbed models were taken to be those of Vandenberg, et al., with 2 = 0.02. 
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