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1. INTRODUCTION 

In a linear collider an intense, ultra-relativistic bunched electron (or positron) 
beam traverses a large number of accelerating cells on its way to the interaction 
point. Strong wakefields will be excited. The longitudinal wakefields will cause 
the beam to lose energy and induce an energy spread along the bunch. If the 
bunch does not move along a symmetry axis of the accelerating structure, trans- 
verse wakefields will be excited. The beam can then develop a corkscrew-like 
tail in a process called single bunch beam break-up. One cause can be static 
errors along the linac that are not perfectly corrected. Or, if there are errors 
in the manufacture of the accelerating structure, there may not even be a sym- 
metry axis along which the bunch should move to avoid transverse wakefields. 
The cause can be jitter (a pulse-to-pulse variation) in injection, or jitter in field 
quality or component positioning along the linac; if they are random, these er- 
rors are probably uncorrectable in a linac. Beam breakup can affect the collider 
performance in many ways. The tail of the beam will confuse position monitor 
readings, making it difficult or impossible to correct the orbit. The tail particles 
themselves, or showers of secondaries that they can create when impinging on an 
insertion, can damage equipment or confuse the detector. Even when particles 
are not lost the luminosity can be greatly reduced. 

The luminosity of two identical-unperturbed beams with gaussian profiles 
colliding head-on is given by 

where N is the total number of particles in each bunch, frep is the repetition 
rate and Q,, oy give the b earn size in the transverse plane. Since 0% = m 
and similarly for the y plane, with E the emittance and p the beta function, we 
see that the luminosity varies inversely as the emittance. We will introduce an 



effective emittance growth factor in this paper that can be used as a figure of 
merit for the luminosity reduction, at least for modest emittance growth. Note 
that Eq. (1.1) d oes not give the luminosity for a perturbed beam in which case 
the correct overlap integral can give a very complicated expression. 

In this paper we first discuss the wakefields for the SLAC accelerating struc- 
ture, then some considerations dealing with the longitudinal wakefields. The 
main focus, though, will be on the effects of the transverse wakefield on the 
beam, including the case when there is an energy variation along the bunch. 
The use of an energy spread to inhibit emittance growth in a linac, indeed to 
damp the oscillations of the core of the bunch to below the unperturbed be- 
tatron oscillations, (in a process that is similar to Landau Damping) was first 
described by Balakin et. al.’ These authors have done quite extensive work 
on the transverse beam dynamics in colliders (see in particular Ref. 2). Our 
approach will be more qualitative in nature. In the final chapter the example 
of the SLC, including errors, will be studied in detail. 

The bunch-to-bunch or long range wakefield effects will not be discussed in 
this paper. The transverse long range wakes can cause an instability also called 
beam break-up, which should not be confused with the single bunch beam break- 
up of short bunches discussed in this paper. 

2. WAKEFIELDS FOR AN ACCELERATING STRUCTURE 

Consider a high intensity, ultra-relativistic bunched electron beam moving 
in a straight line. If the bunch is moving within a smooth, perfectly conducting 
pipe there is little electromagnetic interaction between the particles within the 
bunch; the Lorentz force between the particles is of order rB2, with 7 the beam 
energy. If, however, the walls have a longitudinally varying shape, as is the case 
with an RF cavity, or if the smooth pipe has a finite resistivity, this is no longer 
true. Due to these wall perturbations, the head of the beam excites electromag- 
netic fields that kick the tail with an intensity that does not diminish as 7 -+ 00. 
These electromagnetic forces are called wakefields, since from causality the head 
can kick the tail and not vice versa. They depend linearly on the charge & of 
the beam and are only important in high intensity accelerators. 

If we integrate the force felt be a co-moving test charge over a cell or over 
a meter of structure we have the wake potentials. Instead of a quantity that 
depends on position with respect to the bunch and time we are now left with 
a function of position only. The integral of the longitudinal electric field gives 
the longitudinal wake potential, a knowledge of which may be used to find the 
total energy loss of the bunch as well as its induced energy spread. The integral ; 
of the transverse Lorentz force gives the transverse wake potential which is 
used to study the transverse dynamics of the beam. If the beam is sufficiently 
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rigid so that changes in its transverse position are negligible over the length of 
an accelerating cell, the wake potentials can be used as Green’s functions in 
the equation of motion of bunch macro-particles, thus greatly simplifying the 
problem. On the other hand, the’concept of wake potential is of little utility 
at the low energy end of an accelerator, near the gun. For these problems the 
electromagnetic fields and the equation of motion of bunch particles must be 
solved self-consistently. 

2.1 WAKEFIELDS OF A POINT CHARGE 

Consider now an ultra-relativistic exciting particle of charge Q moving in 
the z direction in an accelerating structure of length L. The longitudinal wake 
potential I+‘, (more precisely, the delta-function longitudinal wake potential) is 
defined as the total voltage lost by a test charge following at a distance s on the 
same path, divided by LQ: 

L 
K(s) = -& / dz &(z, (z + 8)/c) (2-l) 

0 
_ where E,(z, t) is the z component of the electric field E on the path of traversal. 

We have set the magnitude of the velocity v to the speed of light c, an approx- 
imation which will not change the result significantly for high energy particles. 
Note that since a signal cannot travel faster than the speed of light, I+‘, = 0 for 
s < 0. Similarly the transverse wake potential WI is defined as the transverse 
momentum kick experienced by the test charge divided by LQ. (Note that WI 
is a vector with both x and y components.) Thus 

L 

W.(s) = &J dz 1% + (v x BLlt=(z+e)/c - 

0 

P-2) 

We approximate the SLAC linac accelerating structure by a periodic, cylin- 
drically symmetric disk-loaded structure with period p and iris radius a (see 
Fig. lb). In a cylindrically symmetric structure all the modes depend on the 
azimuthal angle 8 as eim8, where m is an integer. The m = 0,1,2 modes are 
called respectively the longitudinal, dipole, quadrupole modes. In a periodic 
structure the modes come in frequency bands, though a charged particle trav- 
elling through the structure will only excite a discrete set of these modes. Each 
mode mn is characterized by a frequency w mn/27r (the eigenvalue) and a loss 
factor k,, (the eigenfunction). The loss factors have units of V/PC/m. The 
possibly more familiar quantity R/Q (the shunt impedance per unit length di- 
vided by its quality factor) is simply equal to 4k/w. (For more discussion of this 
see for example Ref. 3.) 
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Fig. 1. Examples of cylindrically symmetric periodic structures: 
(a) general case, (b) 11 a surfaces parallel or perpendicular to the z-axis, 
(c) weak wall perturbation. 
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We arrange the axes so that the transverse position of the exciting charge is 
r = r’, 6 = 0 (on the x-axis). The test charge also moves in the z direction but 
at transverse position (r, 0) and at a distance s behind the exciting charge. It 
can be shown that the m-pole component of the wakes experienced bv the test 
particle can be written as a sum over all the m-pole modes 

Wzm = (G)” (~)mcosmB~2k,ncos~ 
n 

while for m # 0 

3-5 - 
as 

s>o (2.3) 

wL, = m (z)” (f)“-’ (icosmfl-asinmf?) c ,w2_k.ma;C, sinZ?!!$ s > 0, 

with $, 3 the unit vectors in the r and 8 directions respectively. For m = 0, 
m.t7& = 0; the longitudinal wakefields do not give a transverse kick. We can 
summarize the relationship between the components as 

For cylindrically symmetric structures, given one component of the wake po- 
tentials the other two are known. Eq. (2.5) is sometimes called the Panofsky- 
Wenzel Theorem. 6 It ,applies also to structures that are not cylindrically sym- 
metric. 

To get the total wakefield we need to sum over all the multipole contributions 
excited by the leading charge. Normally bunches remain near the axis and the 
factors (r/a), 
is dominated 
dominated by 
as 

(r’/a) can be considered small. Then the longitudinal wakefield 
by the longitudinal modes whereas the transverse wakefield is 
the dipole modes. Thus normally we can approximate the wakes 

Wz N- 2 2koncos 7 s>o 
n 

WL N p rl fy 2k1n - - 
0 

WnS 

n (ulna/c) ‘ln C 
s>o , 

a 

P-6) 

(2.7) 

where ji is the unit vector in the x direction. We see that the dependence 
of the wakefields on transverse position is particularly simple. Note that the 
longitudinal wake is approximately independent of the transverse position of 
both the exciting charge and the test charge. The transverse wake depends on 
the exciting charge as the first power of its offset. The transverse wake is in the 
x-direction and is independent of the test charge’s transverse position. 
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In this paper we will work in MKS units, with W, given in units of V/PC/m. 
To be consistent with common usage we will give the dipole wake W, in units 
of V/PC/m”. That is, we take %W, = (Wl(/r’ with WI given by Eq. (2.7). 
To get the transverse kick experienced by the test charge in volts, W, needs to 
be multiplied by the charge Q and position r’ of the exciting charge, and by 
the length of the structure L. In Gaussian units W, is in units of cm-= and W, 
in units of cm- 3. In these units the scaling of the wakes becomes clear. If all 
dimensions of the structure are modified by the scaling factor X then if we also 
scale s as X 

SN x , P-8) 
we find that the wakes scale as 

w, -A--= 
w, -x--3 - (2.9) 

Sometimes one is interested in the wake potential of a single cavity with 
beam tubes. If we take an infinitely repeating structure, increasing the tube 
length between the cells, we can imagine that the wake potential per cell of the 
repeating structure will approach the total wake potential for a single cavity 
with long beam tubes. For proof that Eq. (2.5) as well as the r, 8 dependencies 
of Eqs. (2.3) and (2.4) hold for a single cylindrically symmetric cavity with long 
beam tubes, see Ref. 7. 

2.2 WAKEFIELDS OF A CHARGE DISTRIBUTION 

The longitudinal wake of a point charge W, can be used as a Green’s func- 
tion for computing the voltage loss within an ultra-relativistic bunch of arbitrary 
shape. When the bunch remains close to the axis of a cylindrically symmetric 
structure we can solve the longitudinal problem independently of the transverse 
equation of motion: the voltage induced along the bunch is approximately in- 
dependent of its transverse position or its transverse shape. This is due to the 
fact the Green’s function W, is approximately independent of the transverse 
position of both the exciting charge and the test charge (see Eq. (2.6)). The 
wakefield induced voltage loss of a test particle at position s within a bunch, 
per unit total charge Q per meter, will be denoted by W,. It is also called the 
wake potential, or sometimes the bunch wake to differentiate it from W,. The 
two wakes are connected by 

wz(s) = ; Jds’ p(s - s’) w&‘) , 

0 

(2.10) 

with p(s) the charge distribution of the bunch. Eq. (2.10) is only valid for 
bunches that remain near the axis of a cylindrically symmetric structure. 
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A bunch dipole wake W, can be defined in a manner analogous to Eq. (2.10). 
But since the dipole Green’s function W, does depend on the transverse position 
of the exciting charge (see Eq. (2.7)), W z only gives the correct transverse kick 
within a bunch under the assumption that the bunch is unperturbed and moving 
at a given offset from the structure axis. 

The bunch’s total energy loss (per meter of structure) divided by Q2 is then 
given by 

hot = $ 7 ds P(+‘&) . (2.11) 
-00 

Combining Eqs. (2.6), (2.10) and (2.11) we find that for a gaussian bunch in a 
cylindrically symmetric structure the total loss becomes simply 

ktot 11 2 kone-(WO~u~/C)2 . (2.12) 
n 

The above expression is only approximately true since the higher multipole 
modes (m # 0) will also contribute to energy loss. But when the bunch does 
not stray too far from the structure axis (i.e. (r/a)= is small compared to one, 
with r the bunch offset) this additional contribution will be small. 

Historically the wakefields for the SLAC disk-loaded structure were first 
calculated by the modal method described here. It should be noted that the 
wake potentials for a smooth charge distribution can also be calculated by a 
time domain integration of Maxwell’s equations using a computer program such 
as TBCI? (See also Ref. 9.) Th’ 1s is normally the quickest way of finding the 
bunch wakes Wz, W, of a cylindrically symmetric structure of arbitrary shape. 
If we use such a code to calculate the wakefield of a sufficiently short bunch this 
wakefield can also be used as a Green% function. For example, if the longitudinal 
wakefield of the short bunch is Wlz, then we can approximate the wakefield of 
a significantly longer bunch by 

W=(s) = + 7 ds’ p(s - s’) W,,(s’) . (2.13) 

It is interesting to note that if the two bunches are gaussian, with bunch 
lengths of olz and a, respectively, and if a, > crlz, then W, is given by 

co 

J 
ds’ Wlz(s’) exp (- (‘2-i)‘) , (2.14) 

-00 

where a& = crz - a:,. Eq. (2.14) follows from a property of the convolution of 
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gaussians. Thus the longitudinal bunch wake of a gaussian can be used as a 
Green’s function for any longer gaussian bunch. 

There are other sources of wakefields in a linac, such as bellows, scrapers, 
position monitors. The wall resistance also contributes to a wakefield even in a 
smooth tube. But a linac is normally composed mostly of accelerating structure, 
and the effect of all these additional sources is normally small in comparison. 

Much work has been published on wakefields over the years. This section 
was not intended to give a thorough treatment of the subject. Refs. 3, 10 and 
11 are review articles on the subject. For relations that can be useful for scaling 
the wakefields of a bunch, see Ref. 2. 

2.3 THE WAKEFIELDS FOR THE SLAC STRUCTURE 

The SLAC accelerating structure is a cylindrically symmetric, disk-loaded 
structure, with wave length XRF = 10.5 cm, period p = XRF/3 = 3.5 cm and iris 
thickness of 0.6 cm. It is a constant gradient structure; the iris radius and cavity 
outer radius of every cell in a three meter section are unique. For calculating the 
wakefields this structure was modelled by the four parameter periodic structure 
shown in Fig. lb. The dimensions used are those of the average SLAC cell; i.e. 
iris radius a = 1.16 cm and outer cell radius b = 4.13 cm. 

The longitudinal wake was calculated by summing over modes according to 
Eq. (2.6). 4 The frequencies wg n and the loss parameters ken of 416 longitudinal 
modes were computed using the computer code KN7C.12 But to be used as a 
Green’s function for a bunch as short as 1 mm many more modes would need 
to be computed. However, for higher frequencies it is sufficient to know the 
statistical properties of the modes, which for a periodic disk-loaded structure 
can be represented by the so-called optical resonator model. 12-14 Based on this 
model an analytic extension was added to the modal sum to obtain the total 
wake. 

The modal sum is given by the dashed curve in Fig. 2 (top), whereas the 
sum plus analytic extension is given by the solid curve. Note that the optical 
resonator model yields a wake W, that is finite at the origin, in this case with 
a value of 8 V/PC/cell. The bottom frame of Fig. 2 shows the longitudinal 
wake on a longer time scale. Note that test particles at between 20 and 75 mm 
behind the exciting charge will gain rather than lose energy. The jaggedness 
in the wake after 38 mm indicates the beating of a few dominant modes. The 
dotdash curve gives the contribution of the fundamental mode only. We see 
that the long range behavior of the longitudinal wake is roughly given by the 
fundamental mode. 

Similarly, the dipole wake potential was calculated for the SLAC structure 
according to Eq. (2.7) using modes computed by the program TRANSVRS.15 

. 
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Fig. 2. Longitudinal delta-function wake per cell for the average SLAC 
cell for O-5 mm (top) and O-100 mm (bottom). The dashed curve in 
the top frame gives the sum of 416 modes only, whereas the solid curve 
includes the analytical extension. The contribution of the fundamental 
mode is given by the dotdash curve. 
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Fig. 3. Dipole wake per cell for the SLAC structure for O-5 mm (top) 
and O-100 mm (bottom). The dashed curve in the top frame gives a 
linear approximation to the wake seen by a 1 mm bunch. 
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Fig. 4. The bunch wake per cell for gaussian bunches with a, of 1, 5, 
15 mm (from top to bottom) in the SLAC structure. The dotted curve 
gives the charge distribution of the bunch. The head is to the left. 
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The sum for 56 modes plus analytic extension is shown in Fig. 3. In the top 
frame a linear approximation to the wake that is seen by a 1 mm bunch is shown 
(dashed). This linear approximation, after scaling to a higher frequency, will be 
used in the simulations of Chapter.4 The bottom frame shows the dipole wake 
on a longer scale. Again the ringing of a few of the lowest frequency modes can 
be seen beginning near 38 mm. 

We see a general property of wakefields of cavities. The wakes can generally 
be divided into two parts: (i) The short range wake, which is smooth, takes 
many modes to approximate well. A time domain calculation, for example by 
using the time domain code TBCI with a very short bunch, is more natural 
over this range. It is the effects of the short range wake that concerns us in this 
paper. (ii) The long range wake tends to be choppy, and is well characterized 
by the ringing of a few dominant modes. A modal calculation is more natural 
over this range. 

The convolution in Eq. (2.10) was performed yielding the bunch wakes for 
gaussian bunches with a, of 1, 5, 15 mm (see Fig. 4). The charge distribution 
of the bunch is given in the bottom frame. The head of the bunch is to the 
left. For short bunches (our main concern in this paper) all the particles of the 
bunch lose energy, as can be seen in the top frame. Across flo, of the bunch 
the induced voltage is rather linear. As the bunch length is increased, not only 
is peak of Wz reduced but the shape of the induced voltage changes significantly. 
When a, = 15 mm the tail particles regain some of the energy lost by the front 
of the bunch. 

4 
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I I I I 
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Fig. 5. The total loss parameter per cell as a function of bunch length 
for the SLAC structure. 

The integration of Eq. (2.11) was performed, yielding lCtot for a gaussian 
bunch traversing the SLAC disk-loaded structure. The results are given as a 
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function of a, in Fig. 5. The energy loss decreases as the bunch becomes longer. 
Note that ktot for zero bunch length equals WZ(0)/2. 

3. LONGITUDINAL WAKEFIELD EFFECTS 

An electron bunch loses energy when it traverses an accelerating structure 
due to wakefields. This loss is sometimes called beam loading. In the SLC 
(SLAC Linear Collider, see Ref. 16) the number of particles in a bunch is 
N = 5 x lOlo, the bunch length is a, = 1 mm, the cell length is p = 3.5 cm 
and the total linac length is 3000 m. From Fig. 5 we see that for a, = 1 mm 
the total loss is 2.1 V/PC/cell. Therefore a total of 1.4 GeV is lost to the linac 
cavities. This reduces the effective accelerating gradient by 3% if the nominal 
final energy is 50 GeV. 

Since the energy lost by a particle in the bunch depends on its longitudinal 
position, the wakefield induces an energy spread. Bunching and focusing effects 
of longitudinal modes are negligible for ultra-relativistic particles. In this paper 
we will not discuss multi-bunch effects. With a train of bunches the energy of 
the particles in a bunch is also affected by the wakefields of previous bunches. 

3.1 MINIMIZING THE FINAL ENERGY SPREAD 

If a bunch sits on the crest of the RF wave it will receive an energy spread 
due to the curvature of the wave form, though for short bunches this effect 
is small. For a short, intense bunch, though, the longitudinal wakefield can 
introduce to a large variation in energy along the bunch. As can be seen by the 
example of a 1 mm bunch in the SLAC disk-loaded structure (see the top frame 
of Fig. 4) the induced wake is rather linear with the tail of the bunch losing 
more energy than the head. Since, however, the slope of the RF wave also looks 
quite linear to a short bunch, one can imagine that the energy spread can be 
compensated quite well by running in front of the crest, at least over a certain 
range of parameters. 

Let the RF wave be given by Q COS(WRFZ/C). Then for short bunches the op- 
timal phase to cancel the wakefield induced energy spread can be approximated 

(3.1) 

where W:(z) is the slope of the bunch wake and positive phase is ahead of the 
crest of the RF wave. The integral in the above expression is the average slope 
of the induced voltage. It depends linearly on the total charge Q and inversely 
on a,. Therefore as Q is increased and/or a, is decreased the right hand side of 
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i Eq. (3.1) becomes larger. At some point 40 becomes so large that the beam is 
no longer getting a large portion of the available RF field, and this method of 
energy spread compensation loses its usefulness. Note that when the right hand 

_ side is greater than one Eq. (3.1) no longer has a solution. 

.- We have used a computer code to find the optimal phase 40 that minimizes 
the energy spread in a gaussian bunch traversing the SLAC structure, taking 
? = 17 MeV/ m. The longitudinal wake of Fig. 2 was used in the calculation. 
The solutions for N = 5 x lOlo (solid) and N = 7 x lOlo (dashes) are given in 
the top frame of Fig. 6. The dotted curves give the approximate answer given 
by Eq. (3.1). Th e middle plot gives the resulting final energy spread when the 
initial energy is small compared to the final energy. In the bottom plot we see 
the ratio V/e of the net gradient to the gradient that would be experienced by a 
test particle sitting on top of the RF crest. This plot includes both the effects of 
beam loading and of the loss of energy due to running off the RF crest. We see 
that for N = 5 x lOlo and a, = 1 mm that 40 = 12’, resulting in a final energy 
spread (w/E)f of 0.4% and V/P of 0.95. By moving off the crest the energy 
spread has been reduced from 1.3% to 0.4%. Fig. 7 gives the energy variation 
along the bunch for this case. If the bunch length of 0.5 mm were chosen, then 
the bunch would need to run at 40 = 30” to reduce (a~/E)f to 0.6%. But then 

- the effective accelerating gradient would only be 80% of the nominal value. 

It should be pointed out that to minimize the energy spread it is only nec- 
essary that the bunch on aoeruge see the optimal slope of the RF wave. By 
inducing a larger coherent energy spread early in the linac but reducing it again 
later on, one can gain the beneficial effects of Landau Damping that will be 
discussed later. 

Other work on compensating the induced energy spread by the slope of the 
RF wave is given in Refs. 16 and 17. In Ref. 18 the energy spread is made to 
be zero by properly shaping the bunch in addition to choosing the optimal RF 
phase. The cancellation of wakefield induced energy spread in longer bunches 
with Wz nearly symmetric about the bunch center is discussed in Ref. 19. 
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Fig. 6. The SLC: The optimal phase to minimize (a~/E)f (top), the 
resulting final energy spread (middle), and the ratio V/p (bottom) are 
shown us. bunch length. ? = 17 MeV/m, and N = 5 x lOlo (solid) or 
7 x lOlo (dashes). The approximate solution (Eq. (3.1)) is also plotted 
in the top frame (dots). 
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Fig. 7. The SLC: The final energy error along a gaussian bunch with 
N = 5 x lOlo and a, = 1 mm, and with the bunch at 12 O in front of 
the RF crest. The charge distribution is given in the top frame. 

17 



4. TRANSVERSE WAKEFIELD EFFECTS i 

Consider an ultra-relativistic bunched beam traversing a collider linac with 
a cylindrically symmetric accelerating structure. We can think of the bunch as 
composed of many macro-slices, each with its center x, and with its transverse 
charge distribution about this center, characterized by its rms value uZ. If the 
bunch does not stray too far from the structure axis, then a test slice is kicked 
by all preceding slices by an amount proportional to their charge, their offset 
from the axis and to the dipole wakefield of their longitudinal separation from 
the test slice. Since the dipole wake does not focus or defocus (it acts like a 
dipole magnet) the transverse size of the slices is not affected, assuming the 
slices are monoenergetic. Therefore we are justified in solving the equation of 
motion of the centers of the slices, without regard to their transverse charge 
distributions. After solving this problem we can add the transverse characteris- 
tics of the slices to the solution in order to discuss the emittance growth or the 
luminosity reduction. 

Let us begin with the case of smooth focusing. The equation of motion for 
a test particle at longitudinal position z within the bunch, and at position s 
along the linac is 

(4-l) 
with 7 the energy, k the betatron wavelength, p the charge density and W, the 
dipole wakefield. Note that the focusing strength is given by k = l/p = 27r/Xp 
where ,f3 is the beta function and Xp is the betatron wave length. (Note that s 
and z have different meanings here than in Chapter 2.) 

Table 1 gives some parameters for a 300 GeV on 300 GeV collider with an 
acceleration gradient of 100 MeV/m (C ase A). It is a somewhat modified version 
of the collider discussed by P. Wilson in Ref. 20. We will use this machine as 
our example for the simulations to be presented in this chapter. In this chapter 
we will approximate the wakefield by a linearly increasing function with slope 
I+‘;. The accelerating structure is taken to be the SLAC linac structure, but 
scaled up a factor of four in frequency to 11.4 GHz. Therefore the transverse 
wakefield (when given in units of Volts/pC/m2) increases by 43 = 64. We 
further open the aperture sufficiently (- 30%) to reduce the resulting wake by 
60%. The simplified wake of the SLAC structure (the dashed curve in Fig. 3) 
has a value of 1.5 keV/pC/m2 at a distance AZ = oz = 1 mm. Thus the wake 
at AZ = u, = 0.25 mm for the scaled collider is 39 keV/pC/m2. For comparison 
the SLC parameters l6 are given in column B, although in the real machine Xp 
is not kept constant. For simplicity the longitudinal wake will not be included 
in the simulations of this chapter. 
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Table 1. Parameters of two linear colliders 

Parameter 

initial energy, Ee _ 

final energy, Ef 

machine length, L 

number of particles, N 

betatron wave length, Xp 

RF wave length, XRF 

bunch length, a, 

dipole wake, Wia, 

A: 300 GeV Collider 

5 GeV 

300 GeV 

3000 m 

1 x 1010 

50 m 

2.6 cm 

0.25 mm 

39 keV/pC/m2 

B: Simplified SLC 

1.21 GeV 

50 GeV 

3000 m 

5 x 1010 

100 m 

10.4 cm 

1.0 mm 

1.5 keV/pC/m2 

4.1 THE TWO- PARTICLE MODEL 

The two-particle model can be useful for studying single bunch beam break- 
up in a linac. “J Let the beam be modelled by two macro-particles, each 
of charge Q/2 separated by a longitudinal distance AZ = 20,. As a further 
simplification let us consider the case of no acceleration. The two particles have 
respectively wave numbers k, k + Ak, and energies E, E + AE. (For smooth 
focusing Ak/k = -AE/E.) Particle l’s equation of motion is simply 

x’: + k2xl = 0 , (4.4 

where prime denotes differentiation with respect to s. It feels no transverse 
wake force and thus undergoes free betatron oscillation. Particle 2, though, 
experiences the force Fz = eQWLAzxr/2 due to the the off-axis motion of the 
leading particle. The equation of motion for particle 2 is that of a simple driven 
harmonic oscillator 

x; + (k + Ak)2x2 = Cxl (4.3) 

where C = eQWLAz/2E for IAE/EI small. 

The effective emittance growth due to the dipole wakefield is modelled here 
by the displacement of the particles in phase space. Hence we would like to 
keep the quantities 1x2 - xi 1 and 1x12 - xi I small. If both particles have the same 
initial conditions and Ak = 0 then 

cx2 - xl) cs iks 
? 

E-e 
2ik ’ (4.4 

where E is a complex constant determined by the initial conditions. Eq. (4.4) is 
a linearly growing oscillation. The quantity (x\ -xi) is just the derivative of Eq. 
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(4.4) and would therefore also be represented by a linearly growing oscillation, 
for large s. For small lAk/kl but with Ak # 0 we get 

(4.5) 

Eq. (4.5) represents two beating sine waves with amplitude A = 2(1- C/2kAk). 
We see an asymmetry in the effect of the energy spread. For least growth, that 
is, to minimize A, we want Ak > 0: the trailing particle should have lower 
energy than the leading particle. In particular, if A = 0, that is if 

eQW;Az 
AE = - 4k2 , 

the trailing particle also undergoes pure betatron motion and exactly tracks the 
motion of the leading particle. In this case the extra phase advance of Particle 
2 over a given distance, due to the difference in energy, exactly cancels the 
wakefield kick it feels due to Particle 1. Therefore there is no emittance growth. 

We also note that both Eq. (4.5) and its derivative reach approximately zero 
for Ak s/2 = mr, where n is an integer. By a proper choice of Ak, one of these 
minima can be made to coincide with the end of the linac, thus minimizing the 
emittance there. Note that the point of zero crossing is independent of the sign 
of Ak. 

From the two particle analysis we might expect that the energy spread 
necessary to effectively damp emittance growth in a bunch is 

with the head at higher energy than the tail. This is very similar to a relation 
given in Ref. 1 as an estimate of the energy spread needed for good damping in 
a linear collider. For our 300 GeV collider this relation yields UE = 1 GeV. Note 
that for a machine with constant quad strengths and constant quad spacings, 
k varies as E- ‘j2. In such a case Eq. (4.7) indicates a constant value of UE/E 

would be optimal. 

We can similarly construct a three-particle model which will yield a particu- 
lar solution including the factor s2 when the particles all have the same energy. 
In general an n-particle model will have as highest power of s a term with 9-l 
when the particles all have the same energy. An n-particle model with energy 
spread yields quite complicated results. 

We can also include acceleration in our two-particle model. Let us assume 
k is constant, the acceleration is constant, and the acceleration is adiabatic; 
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i.e. kEo/g is large compared to one, with EO the initial energy of the beam 
and g = dE/ds the accelerating gradient. For the 300 GeV collider we find 
kEo/g = 4. The homogenous solution of Eq. (4.1) gives the motion of the lead 
particle: 

Xl -= 
it 

5 ,iks 

Ef 
, (4.8) 

with Ef the final beam energy. The factor under the radical in the above 
equation is called the adiabatic damping factor. In the absence of wakefields 
the betatron amplitude as well as the beam size decrease as Em1i2 when k is 
kept constant. The particular solution of Eq. (4.1) becomes 

with the gradient g = dE/ds. Apart from the adiabatic damping the oscillation 
amplitude of the second particle only depends on s as a log function, whereas 
with no acceleration its dependence is linear. Note that the terms within the 
brackets approach s as the gradient approaches zero. 

Another more general derivation of the threshold for effective Landau Damp- 
ing in a bunch is given in Ref. 21. 

4.2 A PERTURBATION SOLUTION 

In Ref. 22 a perturbation approach is used to solve Eq. (4.1) for a rectan- 
gular charge distribution under certain assumptions. The beam is assumed to 
be monoenergetic, the charge distribution is uniform over the length 1 (and zero 
elsewhere) with total charge & and -the wakefield grows linearly as Wz(Az) = 
Wi-AZ. If the acceleration gradient is constant, and the betatron wave number 
k is also constant the solution is given by 

z(s,z)= 
x0 

(4.10) 

as long as the acceleration is adiabatic. The strength factor 17 is given by 

rl= (~-f)29$!ln[l+$] . (4.11) 

The front of the bunch is at z = 1/2. Note that q depends most strongly on 
z/Z. This qualitatively agrees with beam break-up simulations where the tail of 
a bunch can be greatly perturbed whereas the front half of the bunch is only 
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slightly affected. Note also that q depends linearly on bunch length. It depends 
on s only as the log function. But when g becomes zero the strength factor 
depends on s linearly. 

The sum is highly peaked at one term which depends on the value of q. 
We see that the n = 0 term represents free betatron oscillation, the n = 1 
term gives the two-particle model, the n = 2 term gives a three particle model, 
and so forth. Therefore a single particle model is appropriate until Q M 4, the 
two-particle model is then appropriate until q = 48, the three particle model 
until pl M 180, etc. For r] not small, Eq. (4.10) can be summed by asymptotic 
techniques giving22 

+, z> -=/~~-~exp(~~~) cos[ks-ivi+f-] . (4.12) 
x0 

It is the exponential factor that characterizes single bunch beam break-up. Note 
that the phase also depends on the strength parameter q, with the tail lagging 
the head in phase. 

In Fig. 8 the orbit of the --a, point (at a, = Z/2fi behind the bunch center) 
as given by Eq. (4.12) is plotted for the 300 GeV collider of Table 1. The plot 
is normalized to the initial offset and the adiabatic damping factor has been 
taken out. With no wakefields the orbit is a pure cosine wave with amplitude 
one. With wakefields, we see that at the end of the linac the strength parameter 
v = 45 and that the normalized offset x(-u=) = -9.0. The three particle model, 
the n = 2 term in Eq. (4.10), yields -10.3. 

0 1000 2000 3000 

s/m 

Fig. 8. The 300 GeV collider: The orbit of the --a, point in a rectangular 
charge distribution as given by Eq. (4.12). 

The perturbation method can be extended to find the orbit of a rectan- 
gular charge distribution with an energy spread.23 The solution, though, is 
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quite complicated. A Laplace Transform method has also been used to solve 
the problem of this section, as well as the case when the wakefield includes a 
quadratic term. 24 

. . 4.3 SMOOTH FOCUSING SIMULATION 

If the longitudinal charge distribution of the bunch is gaussian, if the dipole 
wakefield is not a simple linear function, or if the bunch is not monoenergetic, 
the equation of motion (Eq. (4.1)) cannot be easily calculated by analytical 
methods. But the equation can be quite simply solved by a computer code. 25 

First the bunch is represented by a finite number A4 of macro-particles. By 
writing the equation of motion in terms of x and y = x’ we are left with 2M 
coupled first order differential equations: 

dyi = -k2x 
A4 

_ gi?li 
ds i - + & ~eQpjW,(zj - zi) 

mc2 
' j<i , (4.13) 

dxi - = yi 
ds 

with the gradient gi = dEi/ds. The bunch is taken to be moving in the positive 
z direction; the first slice is slice No. 1. Note that the sum is only over the slices 
ahead of the jth one. 

We have written a computer code to solve these equations using a Runga- 
Kutta method. For our simulations we represent the bunch by 41 macro- 
particles evenly spaced in z with a gaussian variation of intensity. The longitu- 
dinal wakes are not included. The gaussian is truncated at f2u,. To simulate 
emittance growth due to injection jitter, the beam enters one unit off axis into 
a smooth focusing structure with no -errors. 

In Fig. 9 (top) we see the distribution of the macro-particles in phase space 
at the end of the 300 GeV linac, when there is no energy spread in the beam. A 
cross represents each macro-particle, with the head (at z = 2u,), center (z = 0) 
and tail (z = -2~~) macro-particle denoted respectively by the letters H, C, T. 
Both the abscissa and the ordinate are normalized by the adiabatic damping 
factor (Ef/Eo) lj2. Without wakefields all particles would move together on the 
unit circle in the clockwise direction as they proceed along the linac; at the end 
(at s = 6OXp) they would sit at position x = 1, x’ = 0. With wakefields we see 
that much growth has occurred in the tail. The --a, point (a, behind the bunch 
center) is at an amplitude of 10 times the free betatron oscillation amplitude. 
As we move from the head to the tail the particles lag more and more in phase. 
Note that in this plot the head and tail are on opposite sides of the x axis. The 
center frame shows the beam in the z - x plane. In the bottom plot we see the 
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orbit of the --a, macro-particle as it moves along the linac. Again the adiabatic 
damping factor has been removed. This plot looks very similar to Fig. 8, the 
results for a rectangular distribution as given by Eq. (4.12). At the end of the 
linac ~(-a,) = -10.3. 

Next the beam was injected into the linac with a linearly varying energy 
spread, with the head at a higher energy than the tail. Thus the energy of slice 
i is given by 

(4.14) 

with E the energy of the central slice. This sign of energy spread will tend to 
cause the tail to advance in phase with respect to the head, thus compensating 
for the phase lag due to the wakefields. 

The development of phase space as the beam moves down the 300 GeV linac 
with UE = 0.75 GeV is shown in Fig. 10. The wave number of the central slice is 
denoted by ko. The beam begins by forming a loop near its center. Note that the 
sense of the phase variation, as one moves from the head to the tail, has changed: 
rather than in the counter-clockwise direction (lagging in phase) one now moves 
clockwise (advancing in phase). As the beam progresses, the amplitude of the 

- tail decreases, and the beam wraps itself more and more around in phase space. 
From these phase space plots one can imagine that a two- or three-particle 
model is far less useful for a beam with energy spread than for one without. At 
s = 6OXp the head and tail are near the free betatron amplitude, whereas the 
core of the beam (that part from -uz to a,) is at amplitudes significantly less 
than this value. Rather than just inhibiting emittance growth, the effect of the 
energy spread actually damps the core of the beam toward the structure axis. 

The top frame of Fig. 11 shows the beam in the z - x plane at the end of 
the linac. One clearly sees the damping of the beam core. In the bottom frame 
we see the orbit of the --a, macro-particle. Note that the oscillation at first 
grows and then reduces to a value less than 0.5. 

Fig. 12 gives the phase space at the end of the linac for different amounts of 
energy spread, with again the head at higher energy than the tail. At UE = 0.25 
GeV the tail has not been reduced significantly. A small loop has formed near 
the bunch head. At UE = 0.5 GeV the core of the beam is all within the aperture 
of the free betatron amplitude at the end of the linac. 

Fig. 13 (top) g ives the phase space at the end of the machine when UE = 0.75 
GeV, but with the sign of the energy variation reversed; i.e. the tail is given 
more energy than the head. In this case the tail spirals around the head in the 
natural (counter-clockwise) direction. It can be seen that beam break-up is not 
nearly as effectively inhibited as when the head has more energy than the tail. 
In the middle frame we see a snapshot of the beam in the z - x plane. The 
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Fig. 9. Case A: Results for the case with no energy spread; the beam 
in phase space (top) and in the z - x plane (middle) at the end of the 
linac, and the orbit of the --a, slice (bottom). 
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Fig. 10. Case A: The development of phase space along the linac for 
uE = 0.75 GeV, with the head at a higher energy than the tail. 
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Fig. 11. Case A: The beam in the z - x plane at the end of the linac 
(top) and the orbit of the --a, slice (bottom) when UE = 0.75 GeV. 
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Fig. 12. Case A: Phase space at the end of the linac for beams with 
linearly varying energy spread. In all cases the head is at a higher energy 
than the tail. 
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Fig. 13. Case A: Phase space (top) and z - x plane (middle) at the end 
of the linac; orbit of the --a, slice (bottom) with 0~ = 0.75 GeV, but 
with the head at lower energy than the tail. 
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oscillation amplitude grows as one moves to the tail of the bunch. The bottom 
frame gives the orbit of the --a, slice. Its oscillation amplitude grows quickly 
to a constant value. 

In addition to Ref. 25, Refs. 26 and 27 also have used smooth focusing 
simulation to study transverse beam dynamics including transverse wakefields 
for future linear colliders. 

4.4 MEASURES OF BEAM QUALITY 

Suppose the bunch enters the linac with an initial offset xc. The simplest 
figure of merit for beam degradation is the x offset of a certain slice of the bunch 
at the end of the linac, divided by the transverse size oZ of this slice. For the 
--a, slice to be offset by less than oZ at the end of the linac was taken as criterion 
for acceptable emittance growth in the SLC Design Report.” This figure of 
merit has the great advantage that it scales linearly with x0. But it only gives 
a rough estimate of the emittance growth. In addition, one must search for the 
maximum value of this indicator near the end of the linac: it is possible that 
this indicator is nearly zero at the end of the linac while x’ of the indicator slice 
is very large. 

We can define an effective normalized emittance growth factor as 

& = & 2 &i (4 + (x:/ko)2) , i 
(4.15) 

with 7 the energy of the central slice and 70 the initial beam energy. Every 
slice contributes to the effective emittance in proportion to its charge and the 
area its position in phase space traces when rotated about the origin. Our 
emittance is independent of x0; it is normalized in such a way that when there 
are no wakefields it will remain essentially at a value of one. One normally 
wants to compare the phase space area of the perturbed beam with that of an 
unperturbed beam. This can be simply done by multiplying E by (xo/Q~o)~, 
with 0~0 the initial beam size. 

Note that this definition of emittance growth is not very useful for study- 
ing the effect of a static injection error on luminosity. For example, if there is 
no wakefield and no energy spread a static injection error causes no emittance 
growth and can be perfectly corrected at the end of the linac by steering. Our 
emittance growth factor E, however, yields a value of one; and it does not dif- 
ferentiate this case from the case with no wakefields and with energy spread, if 
cr~/E is small. The latter case, however, is not so easily correctable if the total 
phase advance of the head differs significantly from that of the tail. Precisely 
which definition of effective emittance is most useful depends on the particular 
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application. The definition given here is simple and can be useful for studying 
jitter. The product ~:(xe/a,e)~ gives a measure of the average luminosity reduc- 
tion over many pulses, for an injection jitter of amplitude xc. A result of .s < 1 
means the average luminosity reduction over many pulses is less than in the case 
with no wakefields. 

In Fig. 14 we see the development of the emittance as the beam progresses 
down the 300 GeV linac for four values of energy spread, with the head at 
higher energy than the tail. When there is no energy spread E: continues to grow 
along the whole machine. When there is sufficient energy spread, however, the 
emittance first grows and then decreases. At oE = 0.75 GeV the emittance first 
grows to 1.4 at the beginning of the linac but then settles down to the value of 
0.2. 

E 

102 

101 

100 

0 1000 2000 3000 
s/m 

Fig. 14. Case A: The effective emittance as a function of s for several 
values of oE, with the head at a higher energy than the tail. 

. Fig. 15 gives the effective emittance growth as a function of energy spread at 
the end of our example linac with smooth focusing. The solid curve represents 
the case when the head is at a higher energy than the tail. The curve drops 
sharply as a function of 0~. Note that the effective emittance is greater with 
no wakefields than it is with wakefields when oE 2 0.5 GeV. The two-particle 
criterion, Eq.(4.7), yields 0~ M 1 GeV, overestimating the threshold for optimal 
damping by about a factor of two. The dashed curve shows the emittance 
growth when the energy spread is of the opposite sign. (Note that an emittance 
curve similar in character to this one is given for the VLEPP linear collider in 
Ref. 1.) 
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Fig. 15. Case A: Final E: as a function of oE with the head at higher 
(solid) or lower (dashes) energy than the tail. The dots give the no wake 
case. 

One problem with taking E: as indicator of luminosity reduction is that it 
overestimates the effect of large excursions of the tail particles. To overcome 
this problem we can define a luminosity reduction factor as 

2 h4 f-=Z c 
Qi 

Q i xf + (xyk0)2 +a; ' 
(4.16) 

with oZ the beam size of the central slice. Like an emittance, r is a smoothly 
varying function of S. Unlike e, the luminosity reduction factor is a function of 
the beam size, which serves as a cut-off in the sum, so that r is never greater 
than one. Note that for growth that is small compared to uZ we have 

(4.17) 

In Fig. 16 we plot r as a function of xe/oZe for energy spreads of O., 0.50 and 
0.75 GeV. The dotted curve gives the results with no wakefields. With a jitter 
amplitude XO/Q~O = 1 the luminosity factor t is reduced to 0.86 if UE = 0.75 
GeV. With the same initial conditions r = 0.16 if there is no energy spread 
(which, however, is not so pessimistic as l/c = 0.01 as given by Fig. 15). With 
no wakefield r is 0.50 with the same initial condition. 
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Fig. 16. Case A: The luminosity reduction factor r at the end of the 
linac for several values of OE, with the head at a higher energy than the 
tail. The dotted curve gives r in the absence of wakefields. 

4.5 SIMULATION WITH DISCRETE FOCUSING ELEMENTS 

Typically, a collider linac will be composed of mostly acceleration struc- 
ture with an evenly spaced array of quadrupoles thrown in for focusing. Since 
the focusing is not continuous along the accelerator one would expect beam 
break-up to be worse in such a machine than in an idealized smooth focusing 
machine with the same value of betatron wave length. A method of tracking the 
single bunch behavior in a linac, including wakefields is described in Ref. 28. 
The computer code LTRACK, which employs this method, divides a bunch of 
charged particles into a number of slices longitudinally. It transports each slice’s 
centroid vector (x,x’, y, y’) and sigma matrix (a 4 x 4 matrix describing the 4 
dimensional transverse beam shape) through a lattice to first order by matrix 
multiplication. (See for example Ref. 29.) The program also keeps track of 
the-energy of the slices (each slice is assumed to be monoenergetic). It assumes 
that the slices do not move longitudinally with respect to each other, a good 
approximation for high energy linacs. Unlike in the smooth focusing program, 
the effects of beam mismatch to the machine, and the effects of errors in the 
placements and strengths of the various lattice elements can be easily studied. 

When traversing an acceleration section the centroids in either plane of a 
bunch normally transform as 

0 X x’ = 0 

f ln(1 + 6) 

1 ( 1 1 
1+6 

(4.18) 

The parameter e in the matrix (called the transfer matrix) is the length of the 
section and 6 = AE/E, with AE the unloaded energy gain in the section. It is 
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assumed that 6 is small compared to 1. When the longitudinal wake is included 
the change in energy of the ith slice becomes 

AEi =AE - $tQibz(O) - ed?QjWz(~j - Zi) 
j<i , (4.19) 

=AE - eeQW,(si) 

with Wz(z) is the longitudinal wake and W,(z) the bunch wake at position z. 
The second term on the right of the top line of Eq. (4.19) represents the energy 
loss of slice i itself. For each slice the results of Eq. (4.19) are used to calculate 
Si = AEi/Ei h’ h w lc in turn is used to calculate the transfer matrix. The dipole 
wakefield affects the angle of slice i as 

AX: = $ E dQjxjWz(zj - Zi) , 
’ j<i 

where xi is the transverse offset of slice i and Wz(z) is the dipole wake at position 
z. Since this is a thin lens approximation longer acceleration sections may need 
to be cut into smaller pieces, with the longitudinal and dipole effects applied 
alternatively. It can be seen that LTRACK needs the longitudinal and dipole 
wakefields of the acceleration structure as input. 

We have used LTRACK to calculated the effective emittance growth as a 
function of energy spread for the 300 GeV collider of Table 1. The lattice is a 
FODO type with thin lens quadrupoles and a phase advance of 90’ per cell. To 
compare with the smooth focusing results the other conditions are the same as 
in the previous section. Again 41 slices over the interval [-2a,, 2a,] represent 
the bunch. The longitudinal wakefield is not included: the beam enters the linac 
wit-h an (absolute) energy spread that does not change as it progresses down 
the machine. The dipole wake is again given by its linear approximation. The 
results can be seen in Fig. 17. The dotted curve gives the smooth focusing 
results for comparison. Note that although with no energy spread E: is a factor 
of two larger in the discrete than in the smooth focusing case, the difference 
disappears by oE = 0.5 GeV. The difference at low values of QE is mostly due to 
growth in the bunch tail. With no energy spread, and at xe/a;e = 1 the smooth 
focusing case yields r = 0.16 at the end of the linac whereas the discrete case 
gives r = 0.14. 

As discussed before, the beam also loses energy to the dipole wakefields. 
But for beams that stay near the structure axis this energy loss is very small 
compared to that of the monopole wake and can usually be ignored. If de- 
sired, however, this effect can easily be included in the calculation. The higher 
moments of the transverse beam distribution will also drive higher moment 
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Fig. 17. Case A: Emittance growth for a FODO lattice with 90” per 
cell. The computed values are given by crosses. The dotted curve gives 
the smooth focusing results. 

wakefields, but again these are small when the beam remains close to the axis. 
The quadrupole wake which, in addition to affecting their centroids, also tends 
to distort the profiles of the slices, can also be incorporated into the matrix 
formalism discussed in this section.28 

4.6 FURTHER DISCUSSION 

We have shown some wakefield effects and the effects of Landau Damping in 
a linear collider. The work on the simple 300 GeV collider presented here can be 
extended in several ways. For example, we can vary the betatron wave length 
near the beginning of the linac. If we reduce Xp at the beginning of the linac we 
will reduce the initial energy spread CE/E needed for good damping from the 
value of 15% (0.75 GeV/5 GeV) g iven in our example. According to Eq. (4.7) 
the optimal energy spread should reduce by a factor of 4 when reducing Xp by 
a factor of 2. At some point the real wakefield of a structure, rather than the 
linear approximation, should be included in the simulation. The longitudinal 
wake needs to be included. And further, the effects of errors, including orbit 
correction, need to be considered. 
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5. A MORE DETAILED EXAMPLE: THE SLC3’ 

In the SLC, after leaving its damping ring, the electron (or positron) bunch 
is accelerated from ‘1.2 GeV to 50 GeV in sectors 2-30 of the linac, before 
entering the collider arcs. It is important that the beam emittance growth 
in these sectors be small. For 5 x lOlo particles per bunch slight excursions 
from the structure axis will induce dipole wake forces that will tend to cause 
large emittance growth. Position monitors and correctors are installed that 
will help keep the beam close to the structure axis. Further, instrumentation 
will be added that will allow the initial x,x’, y, y’ of the beam to be varied, to 
compensate coherent effects of machine errors, 22 until the best quality beam 
reaches the end of the linac. These measures, however, will have no effect on the 
pulse-to-pulse jitter of injection, whose tolerances turn out to be quite stringent 
in the SLC. According to calculations, ‘e the allowable jitter amounts to 1% of 
0~0 positional and 1% of 0~10 angular injection errors, either of which results in 
an emittance growth of 25%. 

In the SLC the beam leaves the damping ring with very little energy spread. 
We propose running the bunch behind the crest of the RF wave in the early 
part of the linac, in order to induce a large coherent energy spread between 

- the head and the tail of the bunch. This energy spread induces a damping 
similar to Landau damping that stabilizes the beam against the large transverse 
wakefields. This extra energy spread is gradually removed by placing the bunch 
at a suitable position in front of the crest of the RF wave in the later part of the 
linac. We shall see that this phase juggling results in greatly relaxed injection 
jitter tolerances, but at the cost of some final energy. 

5.1 THE EFFECTIVE EMITTANCE 

For this study we define the total effective x-emittance of a bunch 

where 

uZZ = iEQi(uzzi + (xi - 2)2) 3 

i 
(5.2) 

Q is the total charge, M is the number of slices in the bunch, Ozzi is the square 
of the standard deviation and xi is the center in x of slice i, and the centroid of 
the bunch z is given by 

lM z=- 
’ i Qixi ’ 

c (5.3) 

The other total moments uZIZr and uZZt are defined in an analogous fashion. 

-. 
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The effective emittance cZ is a measure of the effective area in phase space 
populated by all the bunch slices. This definition of emittance again suffers from 
the problem that tail particles at large amplitudes can dominate the results, 
overestimating their effect on beam quality. One should not take very large 
values of emittance growth seriously, other than to note that the emittance 
growth is very large. 

We then define the emittance growth factor 6c, from position 0 to position 
1 in the linac as 

(5.4 
where 7 is the average energy of the bunch. Normally position 0 is taken to be 
the beginning and position 1 the end of the linac. 

What is normally called beam break-up is the misalignment of the slice 
centroids in phase space due to the action of the dipole wakefield. When there 
is an energy variation along the bunch-the slices will twist with respect to each 
other, also contributing to emittance growth, but normally to a much lesser 
extent. This might be called a chromatic emittance growth. 

5.2 INDUCING AN ENERGY SPREAD 

The layout of one cell of the SLAC linac, sectors 2-30 is shown schematically 
in Fig. 18. Four cells followed by a drift of 2.5 m make up one 100 meter sector. 
The peak accelerating gradient is 18 MeV/ m. To induce an energy spread in the 
beam we separate the 232 klystrons (one for each 12 meter accelerator section) 
into two families. Family a contains n, klystrons phased so that the bunch 
center sits at phase & with respect to the RF crest. In family b, containing the 
remaining klystrons, the bunch sits at phase &. In the SLC without Landau 
damping, for minimal energy spread at the end of the linac, the bunch needs to 
sit at 12’ ahead of the RF crest, to compensate the variation of the longitudinal 
wakefield along the bunch (see Chapter 3). With Landau damping, the bunch 
needs to see, on average, the same slope of the RF wave. Therefore, since all 
the accelerator sections are of the same length, we want 

na sin +a + (232 - na) sin da = 232 sin 12’ . (5.5) 

The discrete focusing code LTRACK was used for the simulations. In all 
runs presented here the longitudinal distribution of the bunch is taken to be 
gaussian, truncated from 4u, in front of bunch center to 2u, behind, and with 
a, = lmm. The number of particles contained in a bunch is 5 x lOlo. The 
number of slices is 16. The initial normalized emittance is 7~~ = 3.0 x 10e5rm. 
All slices begin upright, with a,0 = 300pm, u,~c = 42pr and energy EO = 
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Fig. 18. One cell of the SLAC linac, sectors 2-30. 

1.21GeV. In all runs the quads are adjusted such that the P-function of the 
central slice is matched, and as given in Fig. 19. For the first 1300 m the phase 
advance per cell is 90”. From there to the end of the linac the quad strengths 
are approximately equal to 110 kilogauss, their maximal value. The longitudinal 
and dipole wakefields of the average SLAC cell were used in the simulations of 
this chapter (see the solid curves of Figs. 2 and 3). 

60 

4-85 

0 IO00 2000 3000 
s/m 5122A2 

Fig. 19. The matched P-function in sectors 2-30. 
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5.3 THE IDEAL MACHINE 

The LTRACK results for the SLAC linac with no errors are given in Fig. 20. 
Cases with 4a = -15”,- 300,-45’;-60’ were run. Fig. 20a gives the initial x 
offset that produces 25% emittance growth in the linac, zd. The number na was 
adjusted in each case to maximize zd. For the case with no Landau damping 
(denoted by NL in Fig. 20) we get zd = 2.1pm. Fig. 20b gives the final energy 
EF of the beam for the same runs. For no Landau damping EF = 50.0GeV. 
The dashed curve gives EF if we allow xd to decrease by 20% from the optimal 
values, by reducing na, and gives an indication of the width of the minimum 
as a function of energy. We see that although we have more stability as 4a 
becomes more negative (up to $0 fi: -50’) we lose more energy. The drop in zd 
for 4a < -50’ is due to increased mismatch along the bunch (see below). 

46 

-60 -40 -20 

5122A3 
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-60 -40 -20 
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Fig. 20. Results for the error-free machine. 

Fig. 2Oc gives the emittance growth for an initial offset xc = 0.1~~0 = 30pm. 
For no Landau damping the emittance growth is very large. The dashed curve 
is the emittance growth for a beam launched on axis, and is due only to the 
twisting of the slices with respect to one another in phase space. This effect is 
stronger for da more negative, and is in fact the dominant effect for da = -60”. 
This is due to the greater lattice mismatch along the bunch when the energy 
spread is added quickly rather than more gradually along the linac. Fig. 20d 
gives the values of na used. 
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In Fig. 21 the beam behavior with no Landau damping (column 1) is com- 
pared with the case where +a = -30’ and na = 31 (column 2). The initial 
offset xc is 30pm. The bunch centroid z is plotted as a function of s in Fig. 
21a, for the case with no damping. In Fig. 21b we see the rapid emittance 
growth along the linac. A scatter plot of the beam at the end of the linac is 
given in Fig. 21~. (The head is to the right.) Note that the tail half of the 
bunch is strongly perturbed; in comparison, the front half is little affected. For 
the case with damping, the oscillation amplitude first grows but then becomes 
quite small by the end of the linac (see Fig. 21d). A coherent emittance growth 
is induced early in the linac, which then largely disappears toward the end of 
the machine, as is seen in Fig. 21e. The beam arrives at the end of the linac 
relatively unperturbed, as shown in Fig. 21d. 

5.4 THE MACHINE WITH ERRORS 

In order to study the effects of machine errors, runs with 1OOpm rms quadrupole 
offset errors (the SLC spec 16 ) were done. Table 2 gives the results. Case 12 
is with no Landau damping. In case 15 da = -15’ and na = 51; in case 30 
+a = -30’ and n, = 31. The letters A-E represent four different sets of random 
numbers. First, correctors (C) were adjusted to correct a low current beam to 
beam position monitors (M) with 100pm rms offset errors (see Fig. 18). Then 
the high current beam was launched on axis with these same corrector settings. 
In this way the head of the beam was corrected to the monitors. (Correcting the 
high current beam directly does not work due to the large tail that is formed on 
the uncorrected beam with the level of errors studied here.) Column 2 gives the 
resultant emittance growth. The emittance growth at this point is much larger 
without than with Landau damping. By adjusting x0 and xb coherent effects of 
the errors can be largely compensated (column 3). (In practice a screen monitor 
at the end of the linac would be used for the feedback in this procedure.) Note 
that the compensation is not perfect. In some cases the injection conditions 
have not enough leverage to reduce the final emittance to a small value. Note 
also that at this point Landau damping usually but not always results in a lower 
emittance growth than with no damping. 

By now adjusting two correctors which are 90’ apart at the beginning of 
sector 6, we can reduce the emittance further (column 4). (In practice the screen 
monitor would again be used here.) At this point S,, is no bigger than 30% in 
all the Landau damped cases. With no Landau damping the extra correction 
has little effect. The final column gives the minimal change in xc that increases 
the emittance by 25% above the values given in column 4, Axd. (Normally the 
effect is not the same for equal changes in the two directions.) The results agree 
well with those for the error-free machine, ranging from 70-100% of the values 
given in Fig. 20a. These runs are a sort of proof of principle indicating that the 
dispersive effects are manageable, at least for 4a down to -30’. 
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Fig. 21. Results without/with Landau damping. 

5.5 c ONCLUSIONS 

In the SLC Landau damping can greatly stabilize the beam against changes 
in injection conditions into the linac. For example, by choosing da = -15’, 
na = 51, the jitter tolerances for 25% emittance growth can be relaxed by 
greater than a factor of 10, while sacrificing 1.6 GeV in final energy. Increasing 
the focusing, especially near the beginning of the linac, will lessen the energy 
penalty for a given amount of stability. For example, with the addition of more 
quads in sectors 2-431 the stability of the above example can be achieved at the 
cost of only 1.0 GeV in final energy. The simulations including machine errors 
indicate that the static residual emittance growth can be kept consistently below 
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Case 
12A 
12B _ 
12c 
12D 
12E 
15A 
15B 
15c 
15D 
15E 
30A 
30B 
3oc 
30D 
30E 

944. 

271. 

69.0 

38.9 
112. 10.3 

1010. 

82. 

39.9 

4.5 
51. 16.7 

8150. 

332. 

32.4 

48.2 

3870. 404.2 
5080. 115.9 

305. 126.2 
92. 33.9 
22. 6.0 

138. 62.6 
266. 96.1 

25.1 20. 

64.4 

6.9 

1.5 

24. 
3.6 23. 

37.5 

11.4 

1.8 

20. 
30.1 25. 

30.1 

23.5 

1.7 

36. 
10.8 42. 

374.6 

4.7 

2.6 

51. 
29.0 33. 

105.5 

18.7 

2.0 

39. 

L %ilw 

Table 2. Results for the machine with errors. 

- 30% with Landau damping, but that this would be difficult to achieve without 
Landau damping. 

Some Landau Damping simulation results for the SLC with the additional 
quads in sectors 2-4, is given in Ref. 17. 
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