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Introduction 

For the past t&o years, a large part of the theoretical physics community has 

.- been locked in single-minded concentration one highly speculative approach to the 

fundamental structure of matter-the theory of relativistic strings. Proponents 

of this theory have claimed that it provides the basic laws unifying all known 

interactions and that it promises the solution to some of the deepest remaining 

questions about Nature, including the origin of the quark and lepton generations. 

Such a fundamental description of Nature seems even more wonderful because 

it is built up of elementary entities of a simple and concrete structure. These 

basic entities, the elementary strings, can in fact be readily visualized by any 

physicist who has developed a proper quantum-mechanical intuition. The theory 

of superstrings has acquired a reputation as being mathematically abstruse and 

formidable in the extreme, but, while it is certainly true that some unfamiliar 

mathematical technology is needed to perform calculations in this theory, the 

basic elements of the theory are remarkably accessible. The purpose of this 

lecture is to set out these basic elements in terms which are as pictorial as possible. 

(Students who wish to study this subject in a serious way should consult one of 

the excellent technical reviews now available. II-51 ) 

Before beginning this explication, however, it is worth reviewing the main 

properties of string theories and, especially, of the supersymmetric version of the 

string theory which shows the most promise of making contact with the phe- 

nomena of elementary particle physics. This version of the theory was originally 

formulated in 1970 by Neveu and Schwarz, I61 Ramond,[71 and Thorn. I81 It 

underwent a second stage of development in the early 1980’s, when Green and 

Schwarz lgl clarified many of its properties and pressed its interpretation as a 

unifying theory for all interactions. 

The main properties of this superstring theory which bolster its interpretation 

as a fundamental theory of Nature are the following: 
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~. 1. The theory requires that all particles-quarks, leptons, gauge bosons, gravi- 

tons, and their supersymmetric partners-are built of the same fundamen- 

tal entities, the elementary strings. In this sense, string theories are the 
. . 

.- most elegant of all models of elementary particle substructure. One of 

my main tasks in this lecture will be to explain the origin of the various 

quantum numbers that these particles carry. 

2. The theory requires that space-time be fundamentally supersymmetric. It 

also requires the existence of 10 space-time dimensions. This would be an 

excessive number if all of these dimensions were extended to the size of the 

4 dimensions that are part of our everyday experience. However, the extra 

6 dimensions may play a more subtle role, which the last two sections of 

this lecture should make clear. The most probable size for the compactified 

dimensions is the characteristic length of an elementary string; this is of 

order the Planck length, 1O-33 cm or (lOI GeV)-l. 

. 3. The theory naturally contains as a part of its structure the gauge invari- 

antes of Yang-Mills theory and gravity. In fact, these invariances are real- 

ized as a small part of an enormous group of generalized gauge symmetries. 

This enormous gauge structure was first made clear in the work of Siegel.I”] 

4. Although the theory contains within it a quantum theory of gravity, it 

is apparently free of ultraviolet divergences. The finiteness of the theory 

has been shown explicitly to l-loop order IW~I and a plausible intuitive 

argument has been given which extends this result to all orders. 1131 

5. The theory restricts the possible choices for its Yang-Mills symmetry group 

to only two candidates: 0(32) and Es x Es, the latter involving the largest 

of the exceptional groups. 1141 In fact, these two symmetry groups arise 

geometrically as solutions for the space-time structures allowed by the 

theory. llsl I will explain this point in some detail at an appropriate stage 

of my development. 

This list of properties, some of which arise rather magically from the proper- 
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ties of the underlying strings, should be enough to attract anyone with a specu- 

lative bent. Still, it is worth noting that string theories also occupy a privileged 

position within theoretical physics, as the unification point for many strands of 

theoretical investigation which have been actively pursued in the past decade. .- 
First of all, strings are a natural generalization of point particles, since they are 

objects extended in a spatial direction as well as along a world-line. From this 

point of view, they have long been of interest to workers in the foundations of 

relativistic field theories. From the list given’above of the properties of string 

theories, it should be clear that these theories provide a natural meeting ground 

for workers interested in Yang-Mills fields and grand unification, supersymmetry, 

models of quark and lepton substructure, and gravitation. In addition, string 

theories have provided quite nontrivial applications for more mathematical as- 

pects of theoretical physics-the study of 2-dimensional model field theories, and 

the application of higher geometry and topology to field-theoretic problems. In a 

certain sense, it now seems that most of the developments in theoretical physics 

over the past ten years were really directed toward the solution of string theory. 

Small wonder, then, that this theory excites so much interest in so many quarters. 

I would like to conclude this brief survey of the prospects for string theory 

by citing the major problems which must still be solved in order to bring this 

theory from the level of speculation to a point where it can make concrete predic- 

tions for experiment. The most pressing problems are those which concern the 

conversion of the lo-dimensional space-time of string theory into a form closer 

to experimental reality in which 6 of these 10 dimensions are curled up to a 

very small size. The geometry of this compactification of dimensions determines 

all of the detailed properties of the system of elementary particles which would 

be visible at energies accessible to experiment: the number of quark and lepton 

generations, the gauge group which results from breaking the grand unification 

symmetry, the values of the strong- and weak-interaction coupling constants, and 

the existence and number of supersymmetric partners. The most basic aspects 

of how the geometry of the compact 6 dimensions determines these parameters 
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have been clarified by Candelas, Horowitz, Strominger, and Witten,116] among 

others. (An elementary discussion of the physics of compactification may be 

found in my lectures at the 1985 SLAC Summer Institute. [r7’ ) However, many 

issues, especially the mechanism of supersymmetry breaking and the relation of 

the weak-interaction scale to the fundamental string length scale, remain obscure. 

In addition, we still have no idea how Nature chooses a particular geometry for 

the compact 6 dimensions from among a wealth of possibilities. 

In addition to these questions of quite direct physical importance, there are a 

number of absolutely fundamental formal questions about the superstring theory 

which have not yet been settled. We still do not know the complete equations of 

motion for the theory (though considerable progress has been made in the past 

year in understanding the more elementary, nonsupersymmetric case lwgl )* we 

still do not have a complete set of rules for computing the perturbation the- 

ory in string interactions (though, again, there has recently been some dramatic 

progress in this direction [20-221 ). Finally, we have almost no idea of how to 

discuss string dynamics beyond perturbation theory. This last formal problem 

is a particularly important one, because it is known that many of the aspects of 

compactification that seem to us the most mysterious-which compact space is 

chosen, for example-are simply not determined at the level of the first pertur- 

bative loop corrections; quite plausibly, these questions can only be settled by 

looking beyond perturbation theory. [23,24] It is not an uncommon occurrence in 

physics that the most crucial phenomenological properties of a theory arise non- 

perturbatively; the appearance of solids in QED and the appearance of hadrons 

in QCD provide two examples. In both of those cases, the connection of the 

phenomena to the theory was forged by quite remarkable guesses about the cor- 

rect treatment of the theory in the regime of strong coupling, guesses which were 

motivated crucially by the findings of experiment. If string theory is to be made 

a predictive theory which brings new and relevant information to the study of 

quarks and leptons and their interactions, this will only be done through a simi- 

larly remarkable conjecture about how strings determine the form of space-time. 
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Let us hope that our imaginations are worthy of this challenge. 

The remainder of this lecture will concern the aspects of string t-heory which 

are well-understood, and which are most easy to visualize. I will develop the 

theory, to the level where it produces an observable spectrum of quarks and 

leptons, in eight easy lessons. 

Lesson 1: The Basic Quantized String 

A relativistic string is an idealized l-dimensional extended object, an object 

whose sole property is that it lies along some curve in space. It is, then, the 

natural generalization of an idealized point particle. Just as the point particle 

can be viewed as sweeping out a world-line as it progresses through time, the 

string sweeps out a 2-dimensional space-time surface, a world-sheet. A string 

may or may not have endpoints; one refers to a string with or without endpoints 

as being open or closed (see Fig. 1). 

5639Al l-86 

Figure 1. Typical configurations of open and closed strings. 

Such an idealized object must have an extremely simple equation of motion. 

This equation must be relativistically invariant; it must also be local along the 

string, or, in a space-time view, across the world-sheet. There are two natural 

candidates for such an equation; these are illustrated in Fig. 2. 
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(b) 

l-8C 

Figure 2. Rest-frame and space-time viewpoints on the equation of motion for 

a relativistic string. 
. 

The first candidate is best formulated in the rest frame of an infinitesimal 

bit of string. This string-bit has a rest energy per unit length TO. Stretching 

the string by dx would create more string, also at rest; this would cost energy 

Todx. Thus, To is also the (rest) tension in the string. We can then compute the 

net force exerted on each bit of string and, from this, deduce its motion. The 

second candidate is best formulated in a space-time approach. We know that 

the motion of a point particle in space-time is given by the geodesic principle 

that it should follow the shortest path between two points. The generalization 

of this statement to a string is that the string should sweep out a world-sheet 

of minimum area. Remarkably, these two formulations of the string equations 

of motion are equivalent. [25’261 Together, they give quite a clear picture of the 

classical mechanics of string. 

To discuss a quantum-mechanical relativistic string, we should quantize the 



- 8 - 

string’s vibrational modes. Let us discuss this procedure first for the open string, 

moving in d space-time dimensions. Let 0 be a coordinate along the string, 

running from u = D at one end to o = 1 at the other, and let Xi(a) be transverse 

displacement of the string as a function of 0 (i = 1,. . . , dl; dl = (d - 2)). This 

function obeys the boundary condition (a/&r)Xi(a) = 0 at CT = 0, 1, that is, that 

there should be no unbalanced transverse tension acting on the endpoint. Then 

we may expand Xi(a) in a Fourier series as follows: 

co 
Xi(u) = xi + CX~cosn7ru. (1) 

n=l 

In this expression, xi * 1s the position of the center of mass of the string. It 

should be no surprise that each Xi turns out to be the coordinate of a harmonic 

oscillator. Quantizing these oscillators, one finds an expression for the energy 

eigenvalues of the string in terms of the harmonic oscillator ladder operators ah. 

These correspond to the energies of relativistic particles with masses 

m2 = (27~0) - [g nai,tak + (dl - z)] . 
n=l 

(2) 

The last term in (2) represents the zero-point energy of the oscillators. This 

very simple equation summarizes all of the basic properties of the string. It is 

relativistic, since it is an equation which gives the rest mass of the string in terms 

of its internal structure. It is harmonic, since the internal states which appear 

are those of a set of simple oscillators. And, finally, it is geometrical in assigning 

energy only to transverse fluctuations of the string. Displacements of the string 

along the string itself are not physically observable and therefore should not affect 

the string energy levels. 

The quantization of a closed string proceeds in a similar fashion. In this case, 

the only boundary condition to be satisfied is that of periodicity. It is convenient 

to Fourier-analyze the string displacement in terms of running waves which move 
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to the left and to the right around the loop. Introducing a time coordinate r on 

the world sheet, 

co 
XZ(o) = x2 + CC xi e2M~+7) + rri, pW--7) + (C.C.)) . 

n (3) 
n=l 

The left- and right-moving excitations form independent sets of harmonic oscil- 

lators. Denoting the ladder operators for the left- and right-moving oscillations 

by a;, -d;i,, respectively, we may write the mass formula for this case as: 

(4) 

Again, this formula reflects the relativistic, quantum, harmonic, and geometrical 

aspects of the string. 

Lesson 2 . Zero-Point Energy . 

The last term in each of the formulae for the mass of a quantized string is the 

total zero-point energy of the harmonic oscillators. Normally in field theory we 

can simply throw away the zero-point energy, since it is not physically observable. 

In the analysis of the string, however, we have taken what is effectively a 2- 

dimensional field theory of transverse motions of the world-sheet and interpreted 

the eigenvalues of the Hamiltonian of this theory as the masses of particles. The 

zero-point energy of the field theory certainly contributes to these eigenvalues. 

Unfortunately, the zero-point energy of a field theory is usually infinite. We must 

regulate this infinity and try to make some sense of it. 

Assigning a zero-point energy of $J to each harmonic oscillator, we can write 

the total zero-point energy of the open string as 
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To define this ‘infinite sum, add to the definition of 2 a cutoff E: 

: 

(6) 

1 1 --- 
= 2 E2 [ ; + . ..I . 

The first term in this series is highly divergent as E --+ 0. I propose that we ignore 

it. The next term gives a finite, cutoff-independent residual contribution: 

Brink and Nielsen’271 have argued that the term we have omitted may be inter- 

preted as a renormalization of the speed of light in this noncovariant calcucation. 

In any event, there are many cross-checks which insist that the theory of strings 

which we are constructing can be Lorentz-invariant and self-consistent only if we 

define the zero-point energy by the regulated expression (7). 

For our future reference, it will be useful to perform another divergent sum: 

Z(a) = $(n+ a) . 
n=O 

(8) 

This quantity will arise as the zero-point energy of a string which runs around 

a region containing space-time curvature or magnetic field, as shown in Fig. 3. 

In that case, the boundary condition of periodicity may become slightly more 

complicated: Write X(a) = X1 (a) +iX2 (a). Then the magnetic field or curvature 
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1-86 5639A3 

Figure 3. A closed string running around a region containing magnetic flux. 

may be reflected in a phase factor: 

X(0 = 1) = e2aia X(0 = 0) . (9) 

When we Fourier expand X(a), we must use functions which obey this new 

boundary condition; for example, we must replace in (3) 

e2riin(a+?) + e2si(n+a)(a+7) . (10) 

Then all of the oscillator frequencies will be shifted by Q, and the zero-point 

energy will be given by (8). 

To evaluate 2 (a), we note that it obeys the functional equation 

Substituting for 2 ‘(a) an arbitrary polynomial of 0, we find that (11 .) can only 

Z(a) = ;cY + Z(cY+ 1) . (11) 
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i be satisfied for 

: Z(Q) ,= ;a(1 - o!) + c . 

.- We can determine the constant by noting that 2 (0) = 2 (1) = 2. Thus 

Z(a) = -A + ~cx(l- cx) . 

(12) 

(13) 

The physical importance of the zero-point energy will be made clear by the central 

role that 2 (o) plays in our later discussion. 

Lesson 3: The Bosonic String 

Now that we have clarified all of the terms in (2) and (4), we should display 

the spectrum of possible string states that these equations predict. Let us begin 

with the case of the open string: 

m2 = (27rT4 * [F 7LcL$zi, - $1 . 
n=l 

(14) 

The ground state of the string is the state IO) annihilated by all of the CL;. Most 

regrettably, this state has m2 < 0. The first excited state is almost as problem- 

atic: 

Ui,r IO) , m2 = (2703 * (1 - 2) . (15) 

The di vector components are obviously trying to form a vector particle. How- 

ever, this vector has only dl polarization states; the longitudinal polarization 

state is missing. This contradicts Lorentz invariance unless the vector particle is 

massless. Thus, we find that the open string theory we have constructed can be 

Lorentz-invariant only if dl = 24, that is, if d = 26. As an integral part of this 

construction, we find a massless vector field. It can be seen that, once we have 
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set d = 26, the Lorentz group automatically acts properly on all higher mass 

levels. For example, the next level contains states 

uf+uf+ lo) ) u;+ lo) ; m2 = (27rT0) (16) 

of exactly the right number to form a 25 x 25 traceless symmetric tensor; this 

accounts for all of the components of a massive tensor field in 26 dimensions. 

This construction works in a similar way for the closed string. In 26 dimen- 

sions, the mass formula is 

m2 = (47rTo) - [e TL(u~,u~, + ~i,t&) - 21 . (17) 
n=l 

The ground state IO), and also the states CZ,~+ IO), $ IO), are tachyons, with m2 < 0. . 

But now the states 

u;+i$+ lo) (18) 

appear just at m 2 = 0. These states form a transverse symmetric tensor; this 

state would also be inconsistent with Lorentz invariance if it were not precisely 

massless. 

It is tempting to speculate that the massless vector and tensor states that 

we have uncovered can be identified with the corresponding states that we see 

in Nature-gauge bosons and gravitons. This interpretation is surprisingly ro- 

bust: when one introduces interactions into the string theory in the natural way, 

one finds that the low-energy scattering amplitudes for these particles agree with 
b&29] the predictions of Yang-Mills theory and general relativity. L One often hears 

theorists mutter that these gauge-invariant equations are the only possible equa- 

tions for massless vector and tensor fields; still, it is amazing that this observation 

constrains a system that, at first sight, has nothing to do with local field theory. 
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I should note that the multiplet (18) actually contains other particles in addi- 

tion to gravitons, since the states shown form a transverse tensor of arbitrary 

symmetry. Symmetrizing and antisymmetrizing, we find: 

symmetric, transverse, traceless -+ hij (the graviton) 

antisymmetric, transverse + bi.i (19) 

trace -+ 4 (a scalar, the dilaton) . 

The antisymmetric tensor particle b ij also appears in the string theory with 

appropriate gauge-invariant interactions. 

Before we leave the subject of the closed string spectrum, I should correct 

one statement that I made above. In enumerating the low-mass states of the 

closed string, I listed the states uit IO) and ~1~ IO) as tachyons. But, in fact, these 

states do not exist in the interacting string theory. I would like to explain this 

statement, which reveals some subtle properties of string interactions. 

Generalizations of this statement will play a crucial role in later stages of our 

analysis. The argument for this statement proceeds in three stages, indicated 

diagrammatically in Fig. 4. In this first stage, we note that the states such as 

uit IO) with a preponderance of left-moving excitations have net momentum P 

running around the closed string.. The ground state, and the states (18), have 

P = 0, so the state uit IO) is distinguished from these by a conserved quantum 

number. We must next ask whether interactions can couple states with P = 0 

to states with P # 0. To answer this question, note that P = 0 is exactly the 

criterion for the string state to be invariant under rotations of 0 around the 

loop. Now study the picture of the 3-string interaction shown in Fig. 4(b). The 

three strings sweep out tubes in space-time. We can make them interact by 

connecting the tubes in a join; in an geometrically invariant theory, we should 

allow the join to form in all possible ways. In particular, we must integrate over 

the angle 0 indicated in the figure. But if the string state coming in from the 
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Figure 4. Three stages of the argument that states with net momentum around 

the string do not exist. 

right is a rotionally invariant (P = 0) state, and the third state is joined on 

in a rotationally invariant way, the state going out to the left will rotationally 

invariant as well. This geometrical interaction, then, couples P = 0 states only 

to other P = 0 states. Finally, if states with P # 0 cannot be produced directly, 

they still might appear as intermediate states in closed-loop diagrams. This 

possibility is excluded by viewing string loop diagrams in the manner shown in 

Fig. 4(c). If we are to include all possible geometries in the join, we must sum 

over twists 8 as indicated in the figure. The integral over 6 projects out all states 
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but those which are rotationally invariant (P = 0). We find, then, that states 

with P # 0, although apparently present as eigenstates of the mass operator, 

cannot be produced by string interactions, either as real or as virtual particles. 

For all practical purposes, then, they do not exist. 

This argument greatly simplifies the spectrum of the closed string, leaving 

only a single tachyon, IO), the massless states given in (18), and the higher-mass 

states with P = 0, such as a1 al a2 it jt-kt 10). Th e L orentz group in 26 dimensions acts 

in a consistent way on the higher-mass states, as long as we consider only states 

with P = 0. 

Lesson 4: Compactification on a Torus 

We have now come roughly one-third of the way toward a theory which could 

be realistic. The simple, unadorned string discussed in the previous section con- 

tains vector bosons and gravitons; however, it includes no fermions. It has no 

well-defined gauge group. And it has a serious affliction-tachyons in both the 

open- and closed-string sectors. In the following two sections, I will explain how 

to remedy these difficulties. First, though, I would like to give a preliminary 

treatment of another issue which is raised by our results in the previous sec- 

tion: the proper interpretation of the extra spatial dimensions required for the 

consistency of the theory. Clearly, these extra dimensions must curl up into a 

compact space. Let us study, in a simple example, a possible consequence of this 

compactification. 

Consider, then, the 26-dimensional closed string theory with one spatial di- 

mension closed into a ring, so that space-time has the appearance of a cylinder 

of circumference R (Fig. 5). 

To analyze the spectrum of string states in this geometry, let us Fourier- 

analyze Xi(a). Th’ 1s expansion is changed from (3) only in the compactified 

direction XC(a), and there only in two simple respects: First, we must restrict 
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I-86 5639A5 

Figure 5. A space-time with one compactified dimension. 

5639A6 

Figure 6. A closed string which winds around a compactified dimension. 

the center-of-mass coordinate xc to 0 < xc < R, and, second, we must allow 

closed string to wind around the -c direction (Fig. 6). 

Then 

XC(a) = xc + a!. Ro 

+ &x;e 2a%g+7) + XfLe2nin(a-r) + (c*c*)) ; (20) 
n=l 

the integer .J2 is the number of times that the string winds around the cylinder. 

To express the spectrum of string states, we should write the energy of a 
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string as 

i E2 = p2 f m2 I fi2 + p; + m2 , (21) 

.- where i is the momentum in uncompactified directions. Since the compacti- 

fied dimension will be extremely small, the momentum in this direction will be 

physically relevant only as a part of the string energy. If we do not observe the 

extra dimension directly, we would say that the string states appear in (d - 1) 

dimensions with mass fi given by 

m2 = p; + m2 . (24 

Taking into account the new contribution to energy cost of winding, and the fact 

that pC is quantized, we find for this effective mass: 

7ii2 = (g2 + T(@q2 + (47rTe) - [-y(n + E) - 23 . (23) 

Here k is an integer, and the last term is an abbreviation for eq. (17). 

Let us examine this formula for the particular choice R = (27r/Te) i. In that 

case, the mass formula becomes 

iFi = (2703 - (“” + t!“) + (4765) - [-y(yL + 5) - 21 . (24) 

The ground state is still a tachyon: IO), with k = e = 0 still has m2 = (-2).(47rTe). 

However, we now have a more interesting spectrum of zero-mass states. Let us 

-d enote the state composed of the oscillator ground state plus winding quanta 

k, l by Ik,t.) Th is state has P = k e e. We can then enumerate the states with 

ti2 = 0 and P = 0. These include, of course, the states of (18) with both indices 

in uncompactified dimensions, plus 

zi;+ jl,l) a;+ 11, -1) 

,;+a;+ lo, 0) aft21+ lo, 0) (25) 
a;+ I-1, -1) a;+ I-1,1) 

These new states form two triplets of massless vector bosons. It is extremely 
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tempting to conjecture that these are the gauge bosons of SU(2) x SU(2), and 

that the complete string theory has an SU(2) x SU(2) symmetry group. A 
: detailed analysis shows that this is indeed the case. (For values of R other than 

.- this special choice, one finds only one zero-mass state on each side of (25) and 

thus a lower symmetry, U( 1) x U( 1) .) 

We can describe this phenomenon more generally as follows: Consider com- 

pactifying some number n of the extra dimensions into rings. The result is a 

generalized torus. A set of motions <carry us around the compact manifold and 

back to the same point. These motions form a lattice in n-dimensional space. We 

can, in fact, view the torus as being the full n-dimensional space, but with points 

related by lattice translations identified. This correspondence is illustrated in 

Fig. 7. 

Certain lattices are closely connected to Lie groups, since the quantum num- 

bers associated with the finite-dimensional representations of Lie groups fall at 

points of a lattice, called the root lattice* . A trivial example is given by SU(2): 

the values of I3 for all (tensor) representations are integers; thus, the root lat- 

tice of SU(2) is the l-dimensional lattice shown in Fig. 7(a). Physicists will 

recognize the lattice of Fig. 7(b) as the root lattice of the group SU(3). Using 

this language, we can state the generalization of our result above to any “simply 

laced” group (a class which includes SU(N) and 0 (2N) for all N and also the 

exceptional groups Ee, &, Es): If one compactifies the closed string on a torus 

whose associated lattice is the root lattice of G, there is a special value of the 

radius of the compact space at which the compactified theory has a G x G gauge 

symmetry! The dimension of the compact space gives the rank of the symmetry 

group, the number of generators which can be simultaneously diagonalized. This 

number equals (N - 1) for SU(N) ( as in the two examples given), N for 0(2 N) , 

and Ic for the exceptional groups Ek. 

* Properly, the root lattice includks only the quantum numbers of representations which can 
be built up as products of the adjoint representation. For SU(2), this lattice includes the 
quantum numbers of the tensor, but not the spinor, representations. 
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Figure 7. Examples of the correspondence between lattices in n-dimensional 

space and n-dimensional tori. 

Apparently, closed-string theories compactified on tori can give rise to gauge 

symmetries in a way that is completely geometrical; this mechanism generates 

the gauge bosons and the gravitons in exactly the same fashion, as zero-mass, 

P = 0 closed-string eigenstates, so that these closed-string theories represent a 

true unification of Yang-Mills theory with gravity. It seems appropriate, then, to 

discard the open-string theory and pursue the theory of closed strings alone. 
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i Lesson 5: The Superstring 

Now let us begin a search for solutions to the difficulties of the bosonic string 

theory listed at the beginning of the previous section. Let us take up first the 

question of how to introduce fermionic states of string. In the theoretical climate 

of the 1980’s, a natural suggestion is to replace the geometrical theory of world- 

sheets (2-dimensional gravity) by 2-dimensional supergravity (Fig. 8).* The 

practical effect of this change is to replace the transverse displacement field Xi(a) 

by a supermultiplet (Xi (a), ?Ji (a)). The new field $J’ (0) is a fermion on the world- 

sheet and cannot be directly interpreted as a space-time fermion. Its influence 

on the theory is, as we will see, considerably more subtle. 

1-86 
Figure 8. Conversion of the bosonic string world-sheet to the superstring world- 

sheet. 

Let us, then, compute the influence of @( o on the closed-string spectrum. ) 

In performing this analysis, I will treat the left-moving modes of the string in 

isolation from the right-moving modes. At the very end of the analysis, we can 

add the right-moving excitations and impose the condition P = 0. 

* Historically, though, this construction was invented first, P-4 and supersymmetry arose 
from attempts to understand its structure. 1301 
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i Begin by choosing periodic boundary conditions (Ramond17] boundary condi- 

tions) for +!J~. Then @ has a Fourier expansion analogous to (3). We can quantize 

the n # 0 modes of ?,Li with (anticommuting) ladder operators bi, to find the mass 

formula 

m2 = (47rTo) - [c n(uzu’, + b;bk) - 2 + $1 . 
n=l 

(26) 

The last term denotes the corresponding right-moving contributions. Note that 

the fermionic contribution to the zero-point energy has just the opposite sign 

from the bosonic contributions, so that these two terms cancel. (This is a fa- 

miliar consequence of supersymmetry.) The constant terms of Xi(a) and its 

conjugate momentum form the center-of-mass position and momentum, which 

satisfy [si,pj] = ;&ii. Similarly, the constant term of ?Ji plays a special role. The 

constant pieces of the Gi naturally satisfy the anticommutation relations: 

{?&,&} = 2cw . (27) _ 

This is exactly the defining algebra for Dirac matrices. Thus, we may represent 

the $A as Dirac matrices; the string ground state must then be a zero-mass spinor. 

By the connection between spin and statistics, this state and all states built 

by applying to it the (space-time vector) operators a?, b”,t should be fermionic 

particles. 

It is, however, equally valid to begin with antiperiodic boundary conditions 

(Neveu-Schwarz lG1 boundary conditions): 

@(CT = 1) = -@(CT = 0) . (28) 

This condition also insures that bosonic quantities built out of the T,!.J~ are periodic 

around the loop. We can analyze the effect of this boundary condition by noting 

that it is just the condition (9) for CY = i. The quantization of the $i oscillators 

is then shifted by f. The constant mode $6 no longer satisfies the boundary 
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conditions and so disappears. The zero-point energy of the # oscillators is given 

-d1- Z(cx = ;, = dl. ($ - 2-) . 

Note that we have reversed the sign, as is appropriate for 

mass formula reads 

(29) 

fermions. Then the 

The spectrum of this theory is as follows: The ground state (0) is a tachyon of 

mass m2 = (47rTo) . (-i). S ince there are no q!~d operators, this state is a spinless 

boson. The first excited state is 

b; IO) , m2 = (47rTf~).(~ - $) . 

This state is a transverse vector; as we saw for the state (15), the present of this 

state is inconsistent with Lorentz invariance unless the state has precisely zero 

mass. This implies that the superstring with Neveu-Schwarz boundary conditions 

cannot be Lorentz-invariant unless dl = 8, or d = 10. As with the bosonic string, 

imposition of the condition d = 10 makes (31) a massless gauge boson (or, after 

adding the right-moving excitations, a massless graviton) with gauge-invariant 

couplings. 

We have now studied the supersymmetric string with two different boundary 

conditions for the fields q!~~. Each has its advantages: Ramond boundary con- 

ditions produce massless fermions; Neveu-Schwarz boundary conditions produce 

the massless vector bosons. Clearly, we want to include both sets of bound- 

ary conditions in our theory. In geometrical terms, we would like to sum over 

world-sheets with the two sets of boundary conditions shown in Fig. 9(a) and 
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Figure 9. Possible boundary conditions which one might impose on superstring 

world-sheets. Each dotted line represents an antiperiodic boundary condition: 

Identify $i on one side of the line with --tii on the other. 

This unification of the Neveu-Schwarz and Ramond. theories has a serendip- 

itous effect, first noted by Gliozzi, Scherk, and Olive. 1311 The prescription of 

summing over the first two sets of boundary conditions in Fig. 9 violates geo- 

metrical invariance unless we also sum over the remaining two sets of boundary 

conditions shown in that figure. These latter two conditions introduce an an- 

tiperiodic boundary condition in the r direction. Adding Fig. 9(a) and (c) or (b) 

and (d) is equivalent to inserting the operator 

PGSO = (1 - (+) , (32) 

where F is the fermion number. This operator, called the GSO projector, removes 

from the spectrum states of even fermion number. Thus, the spectrum of the 
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Neveu-Schwarz sector 

is reduced to 

“2 IO) , a;+b;+ IO) , . . . 
2 

(33) 

All states at half-integer mass levels disappear, including the tachyon. The effect 

of (32) on the states of the Ramond sector is to pick out one chirality for the 

spinors. (Recall that ri, which flips the chirality of a spinor, is identified with the 

fermion operator $$.) If we denote the left- and right-handed massless spinors 

by ILa), I&), the action of (32) leaves the states 

IL4 7 a;+ ILU) bft IRu) , . . . (35) 

The states eliminated by this GSO projection disappear from the theory, in just 

the way that the P # 0 states disappeared in our argument of Lesson 3. Summing 

over all possible boundary conditions in the join between three strings prevents 

these states from being produced in scattering processes. Summing over all 

possible boundary conditions on the figures associated with closed-loop diagrams 

(as indicated in Fig. 10) keeps these states from appearing in loops. For all 

practical purposes, then, the states removed by the GSO projection simply do 

not exist in the theory. 

Let us now add back the right-moving string excitations. It can be seen that 

it is consistent to impose Neveu-Schwarz or Ramond boundary conditions, and to 

perform the GSO projection, independently for the left- and right-moving parts 

of @(a). Summing over boundary conditions in this way, we find the following 

zero-mass states: 

“7 IO> @$lO> , [La) @$+ lo) , by lo) CSJ ILu) , ILU) QQ ILU) . (36) 

The first multiplet of states contains hij, bij, and C$ in just the manner indicated 

in eq. (19). Th e next two multiplets provide two vector-spinors; these act as 



- 26 - 

l-86 5639AlO 

Figure 10. Some typical contributions to the sum over all possible boundary 

conditions for a closed-loop diagram. 

gravitini, the supersymmetric partners of the graviton. The last multiplet is 

bosonic, and contains an array of tensor fields. All of these fields together form 

the content of N = 2 supergravity in 10 dimensions. Apparently, the theory we 

have constructed has not only lo-dimensional fermions but also IO-dimensional 

supersymmetry. 

Lesson 6: The Heterotic String 

The only element missing from the theory constructed in the previous sec- 

tion is a grand unification gauge symmetry group. In this section, we will see 

how to modify that theory so that a gauge group is naturally generated dy- 

namically. The required modification is a bit bizarre: One must consider a string 

whose left-moving components are those of the supersymmetric string, but whose 

right-moving components are those of the bosonic string! This hybrid forms the 

heterotic string of Rohm, Martinet, Harvey, and Gross. PI 

To say that this heterotic construction is problematical is something of an 

understatement. The supersymmetric string can be consistent only if it has 10 
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space-time coordinates. The bosonic string requires 26 space-time coordinates. 

How can these be made consistent? The solution is to find a physical interpreta- 

tion for the extra 16 purely right-moving coordinate fields. To begin, write the 

Fourier expansion of a purely right-moving field: 

Z(o - 7) = iY* (a - 7) + 2 (2: e2xin(a--7) + (c.c.)) . (37) 
n=l 

The a-dependence of the first term has the form of a winding; this term can 

be present only if we compactify these extra dimensions. For compactification 

to a torus, v’ will be a vector of the associated lattice. The r-dependence of 

this term indicates that v’ is also proportional to the center-of-mass momentum 

p’; if we compactify to a torus, this momentum will be quantized. The precise 

quantization rule is the following: Let {&} denote the basic periodicities of the 

compact space, that is, the elementary vectors of the associated lattice. Then 

v’ = &&. The momentum p’must then satisfy p’w kaza, where e’, . .,??b = &. If p’ 

is also to be identified with 5, then the e7, and the ,??a must coincide, that is, the 

lattice must be self-dual. In that case, for an appropriate choice of the radius, 

x(a-7) = (gye.~a.(0--7) + F( .*.). 
1 

Following the steps in the derivation of eq. (24), but inserting a factor f because 

the winding contributions come only from the left-moving components, we find 

m2 = f (2nTO) * ((-&ca)2 + (&Za)2) + (4nTo) - [C(n + E) - . . .] . 
(39) 

A factor f also appears in the equation for P: 

We can see from these formulae that the (40) will give integers and the first term 

of (39) will give integer multiples of (47rrTo) only if (Ca)2 = 2. A standard cubic 



- 28 - 

lattice is self-dual, but it does not satisfy this additional condition, so we must 

seek a more exotic lattice to use in our compactification. The simplest self-dual 

lattice in which the lattice vectors have length t/z occurs in 8 dimensions; Fig. 

11 gives some idea of its structure. 

, 

l-86 5639A 11 

Figure 11. A representation of the 8-dimensional self-dual lattice used to com- 

pactify the heterotic string. The arrows point to the centers of hypercubes; the 

bold arrows point out of the paper, the dotted arrows into the paper. 

The elementary vectors of this lattice consist of the points 

% - = (O,O,fl,O ,..., O,H,O) (41) 

at the opposite corners of squares from the origin, plus the points 

-t 
ea L (i;,*;,...,+ (42) 

at the centers of hypercubes (such that the product of the signs is (+l)). The 
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* first set of vectors generate the root lattice of O(16). The second set of vectors 

correspond to the quantum numbers of the left-handed spinor representation of 

O(16). Togeth er,‘ these multiplets comprise exactly the adjoint representation 

.- of E8. Compactifying the 16 right-moving dimensions using two copies of this 

lattice yields a gauge theory with gauge group Es x Eg. Repeating the above 

construction directly in 16 dimensions yields a second self-dual lattice with (e’a)2 

even; compactifying with this lattice gives an 0(32) gauge group. 

The zero-mass, P = 0 states of the compactified heterotic string theory are 

obtained as products 

(43) 

The product of the left-moving Neveu-Schwarz vector with the top state on the 

left gives the graviton multiplet (19). (Th is is also the bosonic content of N = 1 

supergravity in 10 dimensions.) The product of the Neveu-Schwarz vector with 

the states of the other two forms yields a multiplet of vector bosons in the adjoint 

representation of Es x Eg or O(32). The products involving the Ramond spinor 

give the supersymmetric partners of these states. We now have a theory with 

gauge bosons and fermions interacting through a large grand unification gauge 

group, unified in a most beautiful way with a supersymmetric theory of gravity. 

The theory even has a natural handedness, which will eventually be translated 

into the chirality of the electroweak interactions. What more can we ask of a 

unifying theory of Nature? 
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Lesson 7: Field Compactification on an Orbifold 

What more, indeed! We can hardly consider this grand theory more than 

a philosophy unless it can give some insight into the outstanding problems of 

elementary particle physics. We should certainly hope that this theory will have 

something to say about the origin of the quark and lepton generations and the 

calculation of quark and lepton masses. Though it is premature to give precise 

predictions, I believe that the superstring theory has the power to give insight 

into these questions. In these last two sections, I will try to demonstrate this by 

discussing some physical consequences of compactification from 10 to 4 dimen- 

sions. In this section, we will warm up by compactifying ordinary field theories. 

In the next section, we will discuss some additional issues which arise when we 

compactify strings. 

Onto what kind of space should we compactify the extra 6 spatial dimensions 

of the superstring theory? We should properly make this decision by solving the 

theory, but at the present level of our understanding there seem to be many 

possibilities. In particular, the possibility that the string prefers 10 extended 

dimensions has not been ruled out. Assuming, however, that the true solution 

to the string theory will involve compactification, several approaches have been 

proposed for choosing a particular form for the compact space. The first of these, 

due to Candelas, Horowitz, Strominger, and Witten,lr’] involves simplifying the 

problem by assuming that the compact space is larger than the natural length 

scale set by To, deriving the string Einstein equations in this limit (where they 

reduce essentially to the equations of supergravity), and then looking for solu- 

tions. This procedure led to the Calabi-Yau spaces, 6-dimensional spaces with 

R,, = 0, containing SU(3) gauge fields which trace the curvature. These spaces 

gave some appealing qualitative features, including chiral fermion generations, 

but they are unfortunately quite complicated to deal with, since they have no 

symmetries and only topological properties of these spaces are known explicitly. 

The second method is to choose the compact space to be a torus. This approach 
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suffers from just the opposite difficulty-it has too much symmetry In particular, 

neither the supersymmetry nor the Eg x Eg gauge symmetry can be broken. 

Fortunately, an elegant com&omise between these two approaches was dis- 
PI covered by Dixon, Harvey, Vafa, and Witten. These authors recommend com- 

pactifying on an o&fold, a torus with a further identification of points related 

by the action of a discrete symmetry. 

Identify 

L’ 

l-86 5639A12 

Figure 12. An example of an orbifold, obtained from the torus associated with 

the SU(3) lattice by identifying points related by 120” rotations. 

1-86 5639A13 

Figure 13. Fixed points of the orbifold shown in Fig. 12. 

A simple example of an orbifold is shown in Fig. 12. A good way to visualize 

the geometry of this orbifold is to identify the points which are fixed under the 
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combined action of the discrete symmetry and the lattice translation. In the 

orbifold of Fig. 12 there are 3 such points, shown in Fig. 13. Triples of points, 

related by 120’ rotations about the fixed point, are being identified; this process 

causes the neighborhood of the fixed point to be folded up into a cone, with the 

fixed point at its apex. 

Now imagine that 2 dimensions of space are curled up into the form of the 

orbifold in Fig. 12. Let us study the components of fields in such a space which 

would be visible at low energies. We saw in our earlier study that particles 

which are not massless in the first approximation receive very large masses: of 

order (7’0); - 10 rg GeV. We will, then look for particles which are left massless 

after compactification; these particles will then receive GeV-scale masses from 

SU(2) x U(1) b rea m and supersymmetry breaking effects at the weak scale. k’ g 

To begin, define the effective mass after compactification in the same way 

that we did in the discussion of Lesson 4: 

r7i2 = Pf2j + m2 , (4 

where ~(~1 is the momentum in the compactified dimensions, and look for modes 

of the field for which the effective mass 6 vanishes. If we start with fields which 

are massless in the original lo-dimensional space, we can satisfy this condition 

only for modes for which p(z) vanishes, that is, modes which are constant over 

the orbifold. 

For a scalar field 4(z), th is criterion is easily satisfied: Field configurations 

which are constant over the compactified dimensions will be viewed as massless 

scalar fields after compactification. For fields with spin, however, some subtleties 

arise. To explain them, I will introduce the following notation: Let indices in 

capital letters (M, N) run over the full 10 dimensions, indices in lower-case (m, 

n) run over compactified dimensions, and indices in greek letters (p, v) run over 

extended, visible dimensions. In this notation, the massless scalar field modes 
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we have just described have the form: 

$(P) = qqz”) . (45) 
.- 

Now let us try to generalize this condition for massless modes to a vector 

field A”(xN). For the components of AM which point into the uncompactified 

directions, the mode which is constant over the orbifold gives a massless vector 

field after compactification, 

A’+) = A/“(?) . (46) 

However, this observation fails for the components of AM which point into the 

compactified dimensions. 

l-86 5639A14 

Figure 14. If one identifies the boundaries of this figure to form an orbifold, 

one must also identify the dotted tangent vectors. 

The reason is shown in Fig. 14. When one identifies points related by a 

120' rotation, one must also identify the directions of the vectors between these 

points. An Am configuration constant on the orbifold is represented in the figure 

by the solid arrows. These arrows are tangent to the lower boundary but lie at 
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an angle to the boundary on the left. Thus, this mode of Am does not satisfy 

the boundary condition which is imposed when we identify these two boundary 

lines. 

It is useful to formulate the boundary condition required by the orbifold a bit 

more abstractly. A field on the left boundary of Fig. 14 must be rotated by 240' 

to bring it into coincidence with a field on the lower boundary. If this rotation 

is implemented by an operator R(240°), the field will be smooth across the join 

if it obeys 

Cp = R(240')y. (47) 

To find modes with Gz2 = 0, we must find constant fields which satisfy this 

criterion. The explicit form of R(240') depends on the spin and spin direction: 

for a vector field AIL: 

R(240") = 1 

for a vector field Am: 
R (2460) = e*W3 

for a spinor field \k: 

R(2460) = e*2ni/3 

on the combinations A1 i A2 

depending on the chirality 

Apparently, in this simple example, eq. (47) can be solved only by scalars and 

vectors oriented normal to the compact dimensions. 

It is possible to obtain a much more interesting result, however, by studying 

a slightly more complex generalization of this structure. Consider, then, the 6- 

dimensional torus shown in Fig. 15, consisting of three copies of the SU(3) torus 

in three orthogonal planes. 

We can turn this space into an orbifold (the Z- o&fold of ref. 32) by identify- 

ing points related by simultaneous 120" rotations in the three planes. In addition, 

let us introduce SU(3) gauge fields into the model, and allow a quantum of mag- 

netic flux to point upward through one of the corners. The boundary condition 
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d=5,6 78 9 9,lO 

l-86 5639A15 

Figure 15. The 6-dimensional torus used to form the Z-orbifold. 

for a field compactified on this space reads: 

P = P(240%,~ - [R(2400)1~,~ - [R(2400)]g,10 - 5 - CP , (48) 

where the three rotation operators implement the rotations in the three orthog- 

onal planes and G is the Bohm-Aharonov phase associated with the magnetic 

flux 

(49) 

Let us assume, further, that JJ is quantized so that, for the fundamental repre- 

sentations of SU(3), 

5 = e2ai/3 on the 3 5 = e-2ni/3 on the 3 . (50) 

On representations in the product of 3 and 3, or generally on representations of 

zero triality, 5 = 1. This association of a threefold gauge group element with a 

threefold rotation axis realizes the proposal of Candelas, Horowitz, Strominger, 

and Witten that gauge fields should trace the curvature of the compactification 

space. 
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Combining all the factors in eq. (48), we can find a myriad of nontrivial 

solutions to this boundary condition, depending on the spin and SU(3) repre- 

sentation of the field. Some examples are: 

A’1 in the 1 or 8 : l-1 * 1.1 =I 

A” in the 3 : e4ni/3 . 1 . 1 . e2ni/3 = 1 

\k in the 1 or 8 : e2ni/3 . e2ni/3 . e2ai/3 . 1 = 1 

Q in the 3 : e27ri/3 . e-2ni/3 . ,-2ri/3 . e2ai/3 = 1 

(51) 

The second and fourth lines show one of three possible solutions; the others are 

obtained by permuting the first three elements of the product. The solution for 

Am appears as a scalar in the uncompactified dimensions. In compactification 

of a lo-dimensional chiral fermion, the observed 4-dimensional chirality equals 

the product of the chiralities evident in (51). Both of the solutions shown, then, 

would be observed as positive-chirality spinors in 4 dimensions. Note that, for 

a XP in the 3, there is no solution which gives a negative-chirality spinor in 4- 

dimensions. Thus, this orbifold is capable of producing a spectrum of light chiral 

fermions resulting from compactification. 

Let us now apply this construction specifically to the massless sector of the 

Es x Eg heterotic string theory. The content of this sector is a multiplet of gauge 

bosons AM and gauginos \T, in the 248-dimensional adjoint representation of each 

E8 group. Es has a maximal subgroup Eg x SU(3), and under this subgroup the 

248 transforms as 

248 -+ (78,l) + (27,3) + (27,z) + (1,8) - (52) 

I should remind you that Eo has often been proposed as a grand unification 

group, since it contains SU(5) and O(10) as natural subgroups, and that, with 

this identification, one 27 of EC contains 1 generation of quarks and leptons. 
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From (51), we can see that this set of fields AM + XP transforming accord- 

ing to (52) yields the following set of massless particles: a 4-dimensional vector 

and chiral fermion in the (78, i), which form the gauge bosons and gauginos 

of Eg; a 4-dimensional vector and chiral fermion in the (1,8), which form the 

gauge bosons and gauginos of an extra SU(3); three 4-dimensional scalars and 

three &dimensional chiral fermions in the (27,3); and their antiparticles in the 
-- 

(27,3). This exercise has been a bit complex, but the result is worth it: From 

a simply visualized compactification geometry, we have seen quark and lepton 

generations-of definite chirality-emerge in a natural way as part of an effec- 

tive supersymmetric grand unified theory. We have, of course, found too many 

generations (and more will appear in the next section), but this problem is less 

severe for other choices of the 6-dimensional geometry. WI 

Lesson 8: String Compactification on a Orbifold 

The generalization of the argument just given to string compactification in- 

troduces some further complications, which I would like to discuss only briefly. 

Closed strings can actually wrap around the compactified geometry, giving rise 

to new configurations which appear as light particles in 4 uncompactified dimen- 

sions. 

Fig. 16 illustrates the various possibilities. Fig. 16(a) shows a string in a 

trivial configuration; all of the solutions described in the previous section corre- 

spond to this situation. Fig. 16(b) h s ows a string which winds around the torus. 

These states are analogous to the winding states discussed in Lesson 4, though 

for the Z-orbifold one finds no new massless particles in this way. Finally, Fig. 

16(c) shows a new configuration: a string runs around a fixed point from one 

point of the torus to a second point identified with the first under the discrete 

symmetry. This configuration is actually a closed loop on the orbifold. Strings 

in such a configuration are said to form a twisted sector. 

The twisted sectors of the string theory can contain additional massless states. 
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T;‘igure 16. Three possible dispositions for a closed string on an orbifold: (a) 

trivial; (b) winding; (c) twisted. 

To understand how this can occur, let me sketch the computation of the zero- 

point energy for the right-moving fields of the heterotic string in such a geometry. 

The nontrivial boundary conditions lead to a shift in the quantization of the oscil- 

lators in compactified directions by CY = i. The flux quantum (50) is implemented 

by insisting that the two identified ends of the string be shifted from one another 

on the E8 lattice, so that a fixed point of the orbifold has associated with it a 
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dislocation in the lattice of the 16 purely right-moving dimensions. For a string 

in the (27,l) of Eg x SU(3), the total zero-point energy is: 

64) + 1840) + ;; (53) 

the last term is the energy cost of the shift on the Eg lattice. The three terms in 

(53) sum to 0, so we find one 27 of fermions and one 27 of scalars in the twisted 

sector about each fixed point. This gives a second mechanism for producing 

chiral fermion generations, and their supersymmetric partners. 

Some of the scalars we have uncovered will become the Higgs bosons of the 

electroweak theory which is derived from the string theory. The couplings of 

these scalars to pairs of fermions thus provide the Yukawa couplings which are 

responsible for the quark and lepton masses. Since both the fermions and the 

Higgs bosons may be visualized as string configurations on the orbifold, the cou- 

plings of these particles may be evaluated by considering transitions from one 

string configuration to another. In some simple models, these calculations have 

been carried out explicitly.‘34’351 One remarkable feature of which has been un- 

covered in that analysis is shown in Fig. 17. It is simplest to think of the Yukawa 

coupling as the amplitude for two fermion strings and one Higgs boson string to 

combine and disappear into the vacuum, as illustrated in Fig. 17(a). Figs. 17(b) 

and (c) look inside the vertex for two different cases: If the three strings being 

coupled belong to the same twisted sector, the strings can combine and anni- 

hilate by the relatively simple process shown in Fig. 17(b). This produces a 

sizable Yukawa coupling: X - 1. However, if the three strings belong to three 

different twisted sectors, their annihilation requires a nontrivial physical process 

on the world-surface, shown in Fig. 17(c). Essentially, one string must tunnel 

quantum-mechanically across the compact torus. For this case, the annihilation 

amplitude contains a barrier penetration factor and so is suppressed by 

x - ,-aToR 
> (54 
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Figure 17. Illustration of the physical processes which determine the fermion 

Yukawa couplings. 
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where R is the physical size of the compactified dimensions. Thus, the hierar- 

chical pattern of Yukawa couplings observed in Nature may have an intuitive 

physical origin, even if this physical picture must be visualized at distances very 
.- close to the Planck scale. 

Conclusion 

In this course of lessons, I have tried to explain how string theory builds 

up all of the types of particles which appear in physics-quarks, leptons, gauge 

bosons, gravitons, and others-from the same basic elements. These elements, 

the fundamental strings, have a dynamics which one can grasp and visualize, 

even if some of its mathematical features appear magical. The theory gives a 

geometrical unification of all known interactions. But it also gives a concrete 

picture of what is happening behind the unification, a picture of the internal 

structure of quarks and leptons and their interactions. 

Critics of string theory often complain that the theory is predictive only for 

quantities observable at the Planck scale. I have tried to argue here that this 

is an overly pessimistic view. Because string theories treat quarks and leptons 

as dynamical entities, they allow explicit calculations of the quark and lepton 

Yukawa couplings. In ordinary field theory, Yukawa couplings normally cannot 

be computed as a matter of principle, and those models with sufficient structure 

to allow such computations often require a complex array of new interactions and 

undefined parameters. But string theory gives the promise of making definite 

predictions about the structure of the fermion mass spectrum, inviting a direct 

and nontrivial confrontation with experiment. This is, of course, an extravagant 

promise, but it seems to me not an unrealistic one. We will soon see whether it 

can be fulfilled. 
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