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ABSTRACT 

The supersymmetric effective action is constructed which when varied 

_ under gauge groups containing explicit U(1) factors reproduces the mixed 

gauge field contribution to the SU(N) anomaly while being U(1) invariant. 

It constitutes a generalization of the supersymmetric Wess-Zumino action. 

The form of the supersymmetric mixed anomaly is also discussed. 
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The presence of U(1) gauge fields can significantly alter the short distance 

behavior of field theories containing fermions coupled to non-abelian gauge fields 

which are associated with additional internal or space- time symmetries. In the 

case of internal symmetries, new mked U(1) and Yang-Mills field contributions 

to the non-a,belian anomaly occur ‘I-*’ . For local L0rent.z invariance in four 

dimensional space-time, while pure gravitational field contributions are required 

to vanish ‘I , mixed field anomalies can occur ‘6--B1 . When the internal symmetries 

are spontaneously broken or in the presence of torsion in the local Lorentz case, 

the associated Nambu-Goldstone modes or the additional degrees of freedom 

associated with the torsion can be utilized to construct an effective action whose 

variation reproduces the anomaly structure of the underlying theory”] . The 

part of this action which reproduces the mixed gauge field anomaly provides an 

extension of the original effective action of Wess and Zumino which reproduces 

the pure non-Abelian gauge field contribution to the anomaly. 

For supersymmetric theories, the Wess-Zumino action whose variation pro- 

duces the pure non-abelian gauge field contribution to the SU(N) anomaly has 

previously been constructed’*! as a functional of the anomaly. The explicit form 

for the anomaly, which was not required in obtaining the structure of the Wess- 

Zumino term, has subsequently been subject to numerous investigations ‘e-1*1 . 

The purpose of this paper is to extend the supersymmetric Wess-Zumino action 

to the case where explicit supersymmetric U(l)gauge fields are present. The re- 

sultant effective action constitutes a supersymmetric generalization of that found 

in the ordinary field theoretic case’*’ . The explicit form of the mixed supersym- 

metric gauge field anomaly will then be discussed. 

The U(1) invariant but SU(N) anomalous effective action will be constructed 

in terms of the supersymmetric (SUSY) SU(N) gauge fields, A’, the SUSY U(1) 

gauge field B, and (anti-) chiral Nambu-Goldstone boson superfields (~)g which 

are elements of the SUSY SU(N) group. Th is effective action reproduces the 

anomaly structure of the underlying theory that describes the SUSY gauge in- 

teractions of (anti-) chiral matter superfields, (6) 4, transforming as the m- 
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. 
dimensional representation Xi of SU(N), while carrying U(1) charge q, and m 

SU(N) singlet (anti-) h’ 1 c va ma.tter superfields, (s) S, each with U(1) charge -q. 

(We set q=l in what follows.) In addit,ion, these matter superfields might also 

carry non-trivial color quantum numbers and thus intera.ct, with the SU(N)xU(l) 

invariant vector supergluon field, 17, of the presummed confining color group. 

We also assume that the SU(N) y s mmetry is spontaneously broken (eit,her as a 

result, of condensation a.rising from the color interactions or due to a perturbative 

Higgs effect) resulting in the appearance of the Nambu-Goldst,one (anti-)chiral 

superfields (~)g. On the other hand, the U(1) symmetry is preserved. 

Defining (&‘)A’ as the SU(N) (anti-)chiral gauge paramet.ers and U = eminvx, 

rt = ciiI*’ as SU(N) group transformation matrices with A.X = hiXi, 8.X = A’X’, 

then the SU(N) SUSY gauge transformations of the fields are defined to be 

&J = uqb, & = &?7 

s, = s, SL’ = s 

e2Au .X = fi-le2A.XU-1 

&J =B 

Br/ = gu-f, &J = B-lg. 

For infinitesimal SU(N) gauge variations these reduce to 

6N(A, A)S = 0, 6,(A,A)s = 0 

(1) 

SN(A, h)Ai = f(Aj + Ai)fiikAk + i(X’ - A’)[A.tcothA.t]ji 
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dN(A, ii)B = 0 

~N(A, a)g = igA.X, ~N(A: a)~ = -ik.Xs, (2) 

where (A.t)jk = A'(t')jk, with f’ being the adjoint, representation matrices 

(ti)jk = -ifijk. Analogously, we define U(1) (anti-)chiral gauge parameters 

(il)Al and U(1) group transformation phases U1 =e -&, fT1 = eiAl, so that 

the superfields transform as 

s,, = su;‘, sv, = q’s 

At, = A’ 

e2Bu, = o-1 2B 1 e U;’ 

Qrr, = 89 Brr, = 8. 

For infinitesimal U( 1) variations this reduces to 

&(A1, &,)B = ;(A1 - a,) 

(3) 

(4) 



The SU(N)xU(l) g au g e and SUSY invariant underlying action I’0 is given by 

aq@A.X+2E+2’ ti + ,57B+2”q 

Sm 
I 

dSSgr$ + m 
J 

clS&S. (5) 

(We employ the conventions of reference PO! .) The full q uantum effective action, 

l?, is defined as 

(6) 

where the Nd symbol denotes that we employ the manifestly supersymmetric 

version of the BPHZ subtraction procedure in order to perturbatively define 

the renormalized time ordered functions of the mode1’211 . This algorithm also 

maintains the U(1) invariance explicitly yielding the unbroken SUSY U(1) gauge 

Ward identity 

b(h b)r[A 8 g> 81 = 0, 

where the U(1) Ward identity functional differential operator is 

(7) 

On the other hand, the SUSY SU(N) gauge invariance is broken by the over- 

subtraction of the mass term. More specifically, the interactions Sg@ and 4~s 

have power counting dimension 2 while the SUSY N4 prescription dictates that 

these vertices are to be subtracted as if they were of dimension 3. .Writing 
g = g.X,g = &A where (#)I? are the (anti-)chiral Nambu-Golstone superfields 

and recalling that the removal of (Q - l)or(g - 1) from within a normal product 

reduces the degree of subtraction by one, we see that the Yukawa interactions 

are minimally subtracted. However there remains the mass terms rnNa[Sd] and 



rnNz[$S] with degree of subtraction indicated by Na rather than the N2 normal 

product. This over subtraction leads to the broken SUSY SU(N) Ward identity 

d&,;i)r[A,B,g,g] = -inz 
J 

dS(NS[SA&#’ - hr2[SA.X@) 

+im 
I 

dS(N&KXS)r - N&LLxs)r), (9) 

where the SU(N) Ward identity functional differential operator 6x(A, A) is defined 

as 

bN(A, A) = 
/ 

dv[h,(n, A)A’]; 

+ 
/ 

dS[GN(A, A)g]; + /&[6,(A, A)#$ 

The difference between the oversubtracted and minimally subtracted mass inser- 

tions can be evalua.ted using the SUSY Zimmermann identity and usual graphical 

techniques. Of the various terms appearing, most can be written as the gauge 

variation of dimension 3 local supersymmetric monomials composed of gauge 

fields only. Such terms can be absorbed by adding finite, renormalizable coun- 

terterms to the action or equivalently by specifying normalization conditions. 

There are, however, certain monomials which are functions of the gauge fields 

only that cannot be written as ga,uge variations of terms containing only gauge 

fields. These terms constitute the Adler-Bardeen anomaly and in a sense form 

a minimal set of breaking terms. The Adler-Bardeen anomaly is independent 

of the method of calculation and thus represents intrinsic quantum mechanical 

constraints on the field theory. These constraints are manifested in the form 

of violations to low energy theorems or obstructions to a consistant quantiza- 

tion procedure. Note, however, that both the minimal or non-minimal form for 

the anomaly yields the same low energy theorem violations’22’ . Although they 

cannot be written as gauge variations of action terms composed of gauge fields 

only, the Adler-Bardeen anomaly can be written as gauge variations of an action 
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depending on both the gauge fields and the Nambu-Goldstone fields. Such an 

action, however, is non-renormalizable when the fields are quantized. It is this 

effective action, Fe// ? which we shall construct. 

The SU(N)xU(l) Ward identities for this effective action are 

Wl, we&J B, Q, g] = 0. (12) 

Here GA[A, A, A] = GA[A, A] + G:A[A, A] is the pure SUSY Yang-Mills gauge field 

contribution to the SUSY SU(N) Adler-Bardeen anomaly and Gg[.k, il, -4, B] = 

GE[W,B] + G$,A,B] is the mixed SUSY non-abelian and abelian gauge 

field contribution to the SUSY SU(N) Adler-Bardeen anomaly. The (GA)GA 

and (GB)GB are purely (anti-)chiral and can be written as 

GA[A, A] = 
J 

dSA’G;(A) 

and 

GE& A, B] = J dSA’G; (A, B) 

where 

D&i(A) = 0 = D&(A) 

&iGig(A,B) = 0 = D&(A,B). 

The Adler-Bardeen anomalies must satisfy the Wess-Zumino consistency condi- 

tions”] (which are also known as the first gauge cohomology conditions 1281 ). 
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These are obtained by applying the SU(N)xU(l) algebra satisfied by the Ward 

identity differential operators 

[&(A, a), fi,(A’,i’)] = bN(A x A’, ii x ii’) (15) 

[b(h a,), h(A:, a:)] = 0 

to the action r,l/[A, B, g, Q] yielding 

(17) 

SN(A, A)G,[A’, A’, A] - aN(A’, A’)G,[n, &A] 

= GA[A X A’, A X d’, A] (18) 

&(b, &)GA[& &A] = 0 (19) 

and 

= GB[A x A’, ii x A’,A, B] (20) 

bl(Al, &)G,[A, ;i, A, B] = 0. (21) 

In obtaining these results we have used the U(1) invariance of l?,ff[A, B,g, Q]: 

h(Al, h)relj[A, B, g, 81 = 0 and the independence of GA and Gg. 

We now turn to the solution of the Ward identities of Eq. (11-12) for the 

effective action. This action can be written as the sum of two terms 

where each term is separately U(1) invariant while the SU(N) variation of I’urz 

(rm&d) yields GA(GB). Th e s t ructure of the mixed gauge field contribution to 
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the. effective action, Imized[A, B, g, 01, is similar to the pure non-abelian gauge 

field term, I’wz[A, g, 81, which is the supersymmetric extension of the usual Wess- 

Zumino action and has the form”! 

1 

rwz[A, 8, Q] = - 
/ 

dtef6~“in~-i*)GA[iA, -in, A], (23) 
0 

where 

g = em’, 0 = ema 

and 

B = -jn’t’, p = ij+ti. 

Here $!‘(A, A) indicates the SU(N) variation of the Yang-Mills fields, A = A.t, 

only. Introducing the gauge transformed Yang-Mills field Aott) as 

e2A8(t) =e N GfA) (ir 7 -iii)e2A = ,6~)(it~,-it%)~ZA 

=e -tiie2Aetr 
= s(t) --le2Ag( t)-‘, 

with g(0) = 1 = g(O),g(l) = g, Q(l) = S, and using 

(24) 

,thf’(ir,-’ “)GA[ix, -ia, A] = G~[in, --i%, A,(,)], (25) 

the Wess-Zumino action can be cast into the form 

1 

I\wZ[A, g, g] = - 
I 

dfG~[i~, -i%, Ag(t,). (26) 
0 

By construction, we note that I’wz is U(1) invariant, while its SU(N) variation 
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gives the pure Yang-Mills field contribution to the non-abelian anomaly 

&v(A, ~)rwz[A, g, 8] = GA[& %A]- (27) 

In a similar fashion, we can construct the effective action whose varia,tion 

reproduces the mixed field contribut,ion to this anomaly. Noting that 

= [b& a)] ‘-‘G&i, A, 4 Bl 

= [sg’(A, A)] ‘-rGB[A,6,A,B], 

it follows that 

=r mized[A, By Q? 8) + 

=r mizcd[A, B, Q, g] + 
J 

1 dtet6~)(“,B)GB(d, A, -4, B]. 
0 

(28) . 

We recognize the left hand side of this equation as the gauge transform of 

r mized[Aj By 81 s]* H owever, we can always find gauge parameters which rotate 

the Goldstone fields to the origin. Specifically, by choosing A’ = in’, A’ = -in’, 
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the gauge transformed Nambu-Goldstone fields are 

,6N (in, -iC)g = gei(i7r).+ = ,77.X,-r.X = 1 

so that equation (29) takes the form 

kzed[A, 8 1,1] = rmized[A, B, a 8) 

1 

+ dte”r’ 
J 

(inV-i*)Gg[in, -i7i, A, B]. 

(30) 

(31) 
0 

Moreover, since no U(1) invariant action functional of the gauge fields alone can 

satisfy the SU(N) anomalous Ward identity, it follows that rmized[A, B, 1, I] must 

vanish. Finally, using the same reasoning as that leading to Eq. (25), it follows 

that 

GB[in: -ix; Aytt), B] = e t6(A)(ir9-is)GE[j,, -ix; A; B] N (32) 

and hence that 

kzed[A7 B, 8, g] = - 1 dtG&, -i% Ag(t), B]. (33) 
0 

Combining this term with l?n,Z[A, g, g], we secure the effective action satisfying 

the anomalous Ward identities of Eq. (11-12) as 

1 

=- 
I 

df [GAlin, --i%, A,(,)] + G&n, -% Ag(t), B]] . (34) 

0 

The form of the consistent Adler-Bardeen SU(N) anomaly is much more 

difficult to construct in the SUSY case than in the ordinary case. This is due 

11 



to the zero dimensionality of the gauge vect’or superfield and the constraints 

of SUSY as well as chirality. The determination of the pure Yang-Mills field 

contribubion to the anomaly has been discussed by several aut,hors using various 

methods. We will not discuss the pure non-abelian gauge field contribution to 

the anomaly any further in this paper, but will instead turn our attention to 

the determination of the mixed field contribution which has not been previously 

constructed. 

The imposition of U(1) invariance and chirality immediately restricts the 

form of the mixed anoma,ly to 

Gg[A,A, B] = i dSqDaBTr 

where R,(.4) is a. mass dimension l/2 function of the SU(N) gauge vector super- 

field and its covariant derivatives. Since A is dimensionless, we can in general 

write 

&(A) = 2 rmnAm D,AA” 
m ,n=O 

R’(A) = E rm,Am@AAn, (36) 
m ,n=O 

where the coefficients rmn are fixed by the consistency condition Eq. (20). The 

coefficient roe provides the overall normalization and is determined for example, 

by usual graphical techniques to be t-00 = l/16x2. The remaining coefficients are 

then recursively determined by using Eq. (20) and demanding that the anomaly 

satisfy the Wess-Zumino consistency conditions. In terms of the component fields, 
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the anomaly reduces to 

+SUSY partners, (3’1) 

where w = l/Z(A + A)le=+o p arameterizes the ordinary SU(N) gauge transfor- 

mations. This form for the ordinary mixed anomaly is precisely the same as that 

previously determined. Note that the covariant form of the mixed anomaly’*41 is 

also readily obtained as 

with (W’)lVa the (anti-)chiral field strength spinor. 

In conclusion, given the SU(N)xU(l) anomalous Ward identity functional dif- 

ferential equations (11-12) for the effective action I, the solution has the form of 

the generalized Wess-Zumino action given in equation (34). I’wz is the original 

Wess-Zummino action and it is determined solely by the SU(N) gauge field con- 

tribution to the SU(N) anomalous Ward identity, GA[A,A]. l?mizd, on the other 

hand, is determined by the mixed SU(N) and U(1) gauge field contribution to 

the SU(N) anomalous Ward identity, Gg[A, A, A, B]. The SU(N) anomalies, GA 

and Gg, are given in terms of supersymmetric power series in the SUSY gauge 

fields and their derivatives and are restricted, as usual, by SUSY power counting 

and discrete symmetry requirements. The coefficients of the various terms in 

each series can be evaluated by many methods such as customary perturbation 

theory or SUSY path integral and heat kernal techniques. Alternatively, one may 

calculate the lowest order terms by one of these methods and then extract the 

remaining higher order terms recursively by implementation of the Wess-Zumino 
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consistency conditions, Eqs. (18-20). For the pure Yang-Mills field anomaly 

GA the solution of this constraint can also be found through the structure of 

the SUSY SU(N) BRS transformation decent equa.tions”‘l . For the ‘case of the 

mixed anomaly Gg, however, the BRS descent equations associated with the 

U(1) factor in the product group are trivial. Consequently, a direct application 

of this approach fails to solve the consistency conditions for Gs. As such, one is 

led to the itera,tive solution outlined in the discussion surrounding Eqs. (35-36). 

14 



REFERENCES 

1) S. Adler, Phys. Rev. 177 (1969) 2426; 

J. Bell and It. Ja.ckiw, NuoLo Cimento 60A (1969) 47; 

S.L. Adler and W.A. Ba.rdeen, Phys. Rev. 182 (1969) 1517; 

W.A. Bardeen, Phys. Rev 184 (1969) 1848. 

2) The mixed anomaly also plays a pivotal role in constructing the ef- 

fective a.ction resulting when a fermion doublet is made very ma~ssive. 

See, for example, E. D’Hoker and E. Farhi, Nucl. Phys. B248 (1984) 

59; B248(84)77. 

3) T.E. Clark and S.T. Love, Phys. Lett. 158B (1985) 234. 

4) L. Alvarez-Gaume’ and E. Witten, ATucl. Phys. B234 (1983) 269. 

5) H.T. Nieh, Phys. Rev. Left. 53 (1984) 2219; 

S. Yajima and T. Kimura, Phys. Lett. B173 (1986) 154. 

6) T.E. Clark and S.T. Love, Phys. Rev. DS3 (1986) 1199. 

7) J. Wess and B. Zumino, Phys. Lett. S7B (1971) 95. 

8) T.E. Clark and S.T. Love, Phys. Lett. 138B (1984) 289. 

9) N.K. Nielsen, Nucl. Phys. B244 (1984) 499; B274(86)448. 

* 10) 0. Piguet and K. Sibold, Null. Phys. B247 (1984) 484. 

11) E. Gua,dagnini, K. Konishi and M. Mint,chev, Phys. Lett. 157B (1985) 

37; Non-Abelian Chiral Anomalies in Supersymmetric Gauge Theories, 

preprint IFUP-TH-10/85, Pisa. 

12) R. Garreis, M. Scholl and J. Wess, 2. Phys. C28 (1985) 623. 

13) K. Harada and K. Shizuya, Phys. Lett. 162B (1983) 322. 

14) M. Pernici and F. Riva, Nucl. Phys. B267 (1986) 61. 

15 



.- I 

15) A.W. Fischer, Phys. Lett. 159B (1985) 42; The Relation Between 

the Minimal and Non-Minima.1 Forms of the Supersymmetric Chiral 

Anomaly, preprint King’s College, London, 1986. 

16) V.K. Krivoshchekov, P.B. Medvedev and L.O. Chekov, Explicit Form 

of Non-Abelian Consistent Chiral Susy Anoma,ly, preprint ITEP-169, 

Moscow. 

17) S. Ferrara, L. Girardello, 0. Piguet and R. Stora, Phys. Lett. 157B 

(1985) 179. 

18) I.N. McArthur and H. Osborn, Nucl. Phys. B268 (1986) 573. 

19) R. Grimm, BRS Transformations in Supersymmetric Yang-Mills Theo- 

ries and the Algebraic Construction of the Chiral Non-Abelian Super- 

symmetric Anomaly, preprint LAPP-Th-176, 1986. 

20) J. Wess and J. Bagger, Supersymmetry and Supergravity (Princeton 

University Press, 1983). 

21) W. Zimmermann, Lectures on elementary particles and quantum field 

theory, 1970 Brandeis Lectures (MIT Press, Cambridge, 1970); 

T.E. Clark, 0. Piguet and K. Sibold, Ann. of Phys. 109 (1977) 418. 

22) T.E. Clark, 0. Piguet and K. Sibold, Phys. I+. 169B (1986) 85. 

_ 23) C. Becchi, A. Rouet and R. Stora, Ann. of Phys. 98 (1976) 287. 

24) B. Zumino and W.A. Bardeen, Nucl. Phys. B244 (1984) 421. 

16 

i 


