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ABSTRACT 

This paper analyzes the evaporation of WIMPS (weakly interacting massive 

particles) from the sun, both analytically and numerically. First an analytic 

approximation is made by defining an appropriate truncation of a Maxwell- 

Boltzmann distribution for the WIMPS and calculating the exact evaporation 

rate from this distribution due interaction with a truly thermal distribution of 

nuclei. Then, the actual (non-thermal) distribution of Dirac neutrino WIMPS 

in the sun is calculated numerically for WIMPS of mass 1 - 7 GeV. Evaporation 

from the actual and thermal distributions are compared. It is found that the 

evaporation mass for a solar life-time is 3.7 GeV and, for an ‘annihilation life- 

time,’ 2.9 GeV. These are about 8% lower than the most well-reasoned previous 

estimate. 
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1. Introduction 

WIMPS (weakly interacting’massive particles) may make up some or all of 

the ‘dark matter’ in the Milky Way. If they do, they will have been captured 

by the sun (Press and Spergel 1985) and other bodies (Faulkner and Gilliland 

1985) perhaps generating observable consequences (Faulkner and Gilliland 1985; 

Spergel and Press 1985). Since these particles have elastic cross sections much 

smaller than those of the solar nuclei, they orbit almost freely inside the sun, 

interacting only occasionally. To accurately predict observable effects, one must 

know the space and velocity distribution of the WIMPS and the rate at which they 

evaporate from the sun. In the past, the WIMP distribution has usually been 

assumed to be thermal, with a characteristic temperature which is an average 

of the temperatures of the regions in the sun which it samples. Of course, it 

is known that the distribution cannot be truly thermal because the WIMPS are 

transporting heat, but it has been assumed (as it turns out, correctly) that this 

approximation introduces relatively small errors (Faulkner and Gilliland 1985; 

Spergel and Press 1985; Griest and Seckel 1987). However, the analyses of the 

evaporation from a thermal WIMP distribution have been less than precise and 

have, for the most part misestimated the evaporation rate by one or several 

orders of magnitude. The most well-reasoned previous analysis succeeded in 

finding the correct functional dependence on the various parameters by using a 

detailed balance argument for the case when the WIMP temperature is equal to 

the nuclei temperature (Griest and Seckel 1987). But the correction factor for 

the case of unequal temperatures was not evaluated correctly, and this led to an 

overestimation of the evaporation rate by a factor of 6. 

_- 

. 

In this paper I begin by solving the problem of evaporation from a thermal 

distribution of WIMPS with a velocity independent isotropic cross section exactly. 

I then develop a rigorous method of numerical analysis which can determine 

the actual (non-thermal) distribution with arbitrary accuracy. I also develop 

analytic techniques for understanding the differences between the thermal and 
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actual rates. As it happens, this difference turns on rather subtle points. 

The rate of evaporation from the true distribution is found to be about one 

third of the rate from the thermal one with the same average kinetic energy. 

These corrections to evaporation rate (a factor of about 18) lead to an 8% reduc- 

tion in the evaporation mass (the WIMP mass at which the evaporation rate is 

the inverse of some specified evaporation time). Using an evaporation time equal 

to the lifetime of the sun (4.7 billion years), the evaporation mass is 3.7 GeV. 

Using the ‘annihilation time’ (computed for Dirac neutrinos), the evaporation 

mass is 2.9 GeV. (The annihilation time (Griest and Seckel 1987) is the lifetime 

of a WIMP orbiting in the presence of a thermal distribution of anti-WIMPS with 

an appropriate number density.) The large correction in evaporation rate leads 

to a relatively small correction in evaporation mass because the latter depends 

logarithmically on the former. 

- 

In section 2, I discuss qualitatively how one might expect the WIMP dis- 

tribution to differ from a thermal one, and how one should parameterize this 

difference. 

In section 3, I derive the general formula for evaporation from a Maxwell- 

Boltzmann distribution of WIMPS truncated at a given value of the kinetic en- 

ergy, due to immersion in a truly thermal gas of nuclei with arbitrary temperature 

and mass per particle. The results of this calculation are used to illustrate the 

problems with assuming that the distribution is thermal. 

In section 4, I describe the numerical simulation experiments I used to de- 

termine the actual WIMP distribution in the sun for various mass WIMPS. In 

section 5, the results of these experiments are given. 

In section 6, I discuss the case of WIMPS with an enhanced interaction cross- 

section of order 10-36cm2 which have been proposed to explain the solar neutrino 

problem (Faulkner and Gilliland 1985; Spergel and Press 1985). The numerical 

methods used here are not strictly applicable to these WIMPS, but it is argued 

in this section that a good estimate of the evaporation rate can nevertheless be 
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made by using them. 

2. Qualitative Picture of WIMP Distribution 

If the WIMP distribution were thermal with temperature Tw, then at every 

point in the sun, the WIMPS would have a distribution 

(2.1) - 

(k~ = l), where M is the mass of the WIMP, @p(r) is the solar gravitational 

potential, no is the total number of WIMPS, and 

(2.2) 

is the effective volume of the sun. At every point in the sun the velocity dis- 

tribution would be isotropic and the average kinetic energy would be equal to 

(~/W-W. 

If the WIMPS interact only once every several orbits, one could also param- 

eterize the WIMP distribution by energy and angular momentum rather than 

velocity and position. The thermal distribution would then be expressed in terms 

of these variables, 

fth = fth~J%o (2.3) 

How does one expect the true WIMP distribution to differ from this thermal 

one? For - 4 GeV WIMPS, the scale height of orbits is about l/12 of the solar 

radius. Thus the bulk of the WIMPS will be in a region of relatively uniform 

temperature, so that they might at first be thought to have a nearly thermal 

distribution. However, all the WIMPS which are kicked into higher energies (the 

Boltzmann tail) will leave the central region of the sun and experience the colder 
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outer regions. They will quickly scatter back down to lower energies. Thus the 

tail will be suppressed. In terms of equation (2.3) this may be expressed 

f(E,L) 
fth@, L) 

-1 (E-Tw) 

f (FL) 
fth (E, L) 

--+O (E>>Tw), 

(2.4) 

P-5) 

where f (E, L) is the actual WIMP distribution. Further, one would expect the 

high-energy, high-angular-momentum part of the distribution to be highly sup- 

pressed relative to the high-energy, low-angular-momentum part. This is because 

most of the tail is created in the hot center of the sun and consequently the typical 

high energy WIMP is in a radial, low-angular-momentum orbit. 

Another way to express these same qualitative features is to consider the av- 

erage WIMP kinetic energy, < Ek >, and average square of the radial component 

of the velocity unit vector, < (v,/v)~ >, as functions of position in the sun. One 

would expect < Ek > to fall with increasing radius and < (v~/v)~ > to rise. 

In section 5, it will be shown that for - 4 GeV WIMPS these qualitative 

expectations are borne out and that, roughly, the WIMPS may be considered as 

being in a cut-off thermal distribution, with a cut-off energy of about 40% to 

80% of the evaporation energy. (-The value depends on whether one estimates 

the cut-off from the energy distribution integrated over all angular momenta, 

or just the low angular momenta. The high figure is more appropriate for the 

central region of the sun because the high energy WIMPS there have low angular 

momentum. Far from the center, the lower figure is more appropriate.) 



3. Analytic Theory of Evaporation 

Consider first a single WIMP of velocity w and mass A4 scattering off a ther- 

mal distribution of nuclei with density N, mass m, and temperature T. Assume 

there is a velocity independent cross section O, with isotropic scattering. The 

rate at which w scatters to velocity v (derived in the appendix) is given by 

R(w + v)dv = A%JN t 
7ri P 

~[x(*~-,B+)e-~(“‘-“‘) + x(fa- a+)], , (3.1) 
- 

where 

x(a, b) E ] dyemy’, 

a 
(3.2) 

a* E (m/2T)i(p+v f p-w), (3.3) 

& s (m/2T)a(p-v f ,u+w), (3.4) . 

and the upper (lower) sign in equation (3.1) refers to the case when w < (>)v. 

To find the rate at which w ‘escapes’ to any velocity v > vu,, where v, is an 

escape velocity greater than w, integrate equation (3.1) from the escape velocity 

t-0 00: 
Cm 

Rwe(w) E 
J 

R(w + v)dv. P-6) 
we 

The identities necessary for evaluating this integral are given in the appendix. 

The result is 

Rw, (w) = - ’ 2T2-aN~p(ry+e~aa - ,-eeat) 
274 m p2 w 

+(p - 2pa+a- - 2p+p-)x(a-, a+) + 2j&x(@-, p+)e-~(w2-w2)], 
(3.7) 

where of and & are evaluated at v = ve. 
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Next assume that the WIMPS are in a truncated thermal distribution with a 

cut-off velocity wC: 

Then the total evaporation is given by 

R(wc 1 ve) = mfw(w)R,e(w)dw. 
J 
0 

(3.9) 

The evaluation of this integral is outlined in the appendix. There are two cases. 

For T = Tw 

R(wc 1 ve) = ~(2T/M)BaNNw[e-Ee/T(-P+P- - -$x(p-,p+) 

for T # TW 

+ e-Ec/T(a+a- - +-)&IL, &+) 
-,-(&/T+o:)(~)+ -WC 

2T 2 
+ ,-(&/T+a~)(~)~ve + WC 

2T 2 I 
, 

(3.10) . 

-t e-Ec’Tw;b+,_ - & + rf (; - ;)I+-, a+) 
- e-Ec/Twe -(&-E,)/T 4 

y+x(IJ-J+) 

- e-(Ec/Tw+Q~)E,+ + e-(Ec/Tw+a$)~a- 
2u 

In these equations, 
(3.11) 

-a - (m/2T) i (pve A- Ewe), (3.12) 
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Y&L. Tw 

(3.13) 

(3.14) 

(3.15) 

Although these expressions are exact and completely general, they are also 

less than transparent. Fortunately, a great deal of information can be extracted 

by considering appropriate limits. Consider first the case of a thermal WIMP 

distribution (that is, one cut off at the escape velocity). When the temperatures 

are also equal equation (3.10) becomes 

(3.16) 

Except for very heavy nuclei, evaporation is virtually independent of the mass of 

the nuclei. Because of this, and because most of the evaporation occurs in regions 

where the WIMP temperature is roughly equal to the nuclei temperature, I will 

now restrict attention to the analytically simpler case of p = 1. For this case 

(assuming, as I always will that E, > T, T w, as is true in the sun) equations 

(3.10) and (3.11) become 

(3.17) 

where A is a correction factor 

A= (I-Tw/2E,) -1 (T=Tw), (3.18) 

A = ;$[I - (F)t,%F] N g-& [l - e-%9] (T # Tw), (3.19) 
e e 

and AT = (T w - T). Using equation (2.1), equation (3.17) may be written in 
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the suggestive form 

where 

A(T(r)]N(r) y R (3.20) 

(3.21) 

is independent of radius and Eo is the escape energy at the center. That is, 

up to the correction factor, A(Ee/Eo) - A, all the nuclei in the sun contribute 

to evaporation equally. The nuclei high in the sun have fewer WIMPS to hit 

(because of Boltzmann suppression in equation (2.1)) but the escape energy is 

less, so there is a greater chance that any given collision will kick the WIMP out. 

_- 

A may be approximated as follows. When (I AT 1 /Tw) < (Tw/Ee), A is of 

order unity. But as the nuclei temperature falls below this range, A rapidly drops 

toward - (Tw/2Ee) at T = .5Tw. For Ee/Tw - 30, A is .47 at AT/T, = .O5 and 

is .26 at AT/Tw = .l. On the other hand, when the nuclei temperature is above 

the WIMP temperature, there is enhancement. At AT/Tw = -.05, A is 2.25. 

However, there is significant enhancement over only an extremely small region 

of the solar core. It follows that the evaporation due to a thermal distribution 

of WIMPS may be reasonably approximated by setting A = t9(T - .95Tw) in 

equation (3.20)) 

- 6(T(v) - .95Tw)N(r)R. (3.22) 

The relation (3.20) was originally discovered by Griest and Seckel (1987). 

They argued (from detailed balance) that in the equal temperature case, the 

evaporation rate of WIMPS from the sun should be equal to the capture rate of the 

tail of a (hypothetical) ambient WIMP distribution. This in turn, they argued, 

should be virtually equal to the interaction rate of the WIMP tail with a gas of 

stationary nuclei. This part of the analysis was correct. They went on, however, 

to estimate the correction due to unequal temperatures by assuming that the 

ratio of the rates at different temperatures was equal to the ratio of nuclei phase 
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space in a certain kinematic region, the region where a nucleus could promote a 

WIMP to escape velocity by donating all its kinetic energy to the latter. This 

approximation is not valid. The evaporation rate depends on nuclei phase space 

coupled to WIMP phase space. The nuclei dependence cannot be factored out. 

This physical fact is reflected in the mathematical form of the kinematic limits 

under various parameterizations of phase space. One may verify, by working 

through the appendix, that the kinematic limits of the problem assume a simple 

form when phase space is parameterized by certain linear combinations of the 

center of mass velocity, s, and the velocity of the WIMP in the center of mass 

frame, t; namely 

-- 

t fs. (3.23) 

One may also verify, this time by hours of tedious algebra, that the kinematic 

limits assume an unbelievably ugly and complex form when phase space is param- 

eterized by the velocities of the nuclei and WIMPS, and that in these coordinates 

the simplicity of the final result appears to stem from a miraculous series of can- 

cellations. That is, if one insists on analyzing the problem from the standpoint 

of the nuclei velocity distribution, one is not free to make simple assumptions 

about the kinematic limits. With their approximation, Griest and Seckel calcu- 

lated that A(Ee/Eo) h a d a mean value of about .5 averaged over the mass of 

the sun. Using the e-function approximation of equation (3.22), a WIMP tem- 

perature of 90% of the central solar temperature, and the standard solar model 

(Bachall et. al. 1982) ( in which only 7% of the mass of the sun is above 85% of 

the central temperature) it can be seen that by taking the evaporation rate to be 

proportional to half the mass of the sun instead of the mass of the core, Griest 

and Seckel overestimated the evaporation rate by a factor of - .5/.07 - 7. A 

factor of 7 in rate translates into a correction of about 6% in evaporation mass 

because the rate depends exponentially on the mass. 

However, as discussed in section 2, one expects that the actual distribution 

has a truncated tail and that the truncation point gets lower with increasing 
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. . radius. Equations (3.10) and (3.11) throw light on the question of how this 

affects evaporation. Consider first the case p = 1, Ee > E, >> T, Tw which 

reasonably approximates helium-WIMP interactions in the sun for WIMPS near 

the evaporation mass. Equations (3.10) and (3.11) become 

zNNwc(w) e 
2Tw f -E,/T~ Ec 

rr: ( -- i) (T =T~), 
Tw 

(3.24) 

These formulas may be combined as before in the form of equation (3.17) 

where now 

A - Ec/Ee (T = Tw), (3.26) 

A - $& [exp(-Ee&Ec F) - exp(-$%)I (T # TW). (3.27) 

When T - Tw, A exhibits the same temperature dependence as before but is 

now, in addition, linear in the cut-off energy. This means that near the center 

of the sun where the bulk of evaporation occurs, the non-thermal character of 

the distribution has relatively little effect. However, away from the center, where 

there is both a lower truncation point and a lower temperature, new effects come 

into play. Now, for (AT/TW) > (Tw/Ee), A is given roughly by 

A-exp(- 
Ee - EC AT 

T - . 
Tw > (3.28) 

Using Ee/T - 30, EC - .5Ee, this means that at nuclei temperatures more 

than 7% below the WIMP temperature, evaporation is exponentially suppressed. 

[When p # 1 equation (3.11) b ecomes considerably more complicated but nu- 

merical studies indicate that the similar qualitative conclusions hold.] 
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Next consider the case when ,U # 1 but T = Tw < EC < Ee. Recall from 

equation (3.16) that for E, = Ee, A was virtually independent of the mass 

of the nucleus. However, for a truncated WIMP distribution this is no longer 

the case; there is “impedance matching.” Evaporation due to nuclei which are 

not matched to the WIMP mass is suppressed. This may be seen by graphing 

equation (3.10) g a ainst loglo p for Ee/T = 30 with various values of EC/E, (see 

Figure 1). This means that evaporation due to hydrogen relative to helium is 

somewhat suppressed in the core and very suppressed further out. It also means 

that heavier elements [which despite their large cross sections play only a minor 

role in the WIMP mass range of interest even in the thermal approximation 

(Griest and Seckel 1987)] can be ignored altogether. 

The main effect of these two modifications is to further justify the assump- 

tion that no evaporation takes place outside the core region. For a thermal 

distribution, the relatively mild suppression of A in the outer regions of the sun 

is somewhat compensated by the large total number of nuclei in these regions. 

But for the truncated distributions, evaporation is exponentially suppressed there 

and is further suppressed because of the relatively high abundance of hydrogen. 

4. Numerical Model 

In order to find the actual WIMP distribution, I numerically solve the Boltz- 

mann collision equation. First I outline a method for doing this that is valid 

for WIMPS of arbitrary cross-section. Later I will make the additional simplify- 

ing assumption (valid for ordinary Dirac neutrino WIMPS) that the number of 

collisions per orbit is small compared to one. 

I begin by assuming that the WIMPS are interacting with a fixed solar 

medium. In principle, one should take into account the fact that the WIMPS 

alter the thermal conductivity of the sun and hence the solar model, and use a 

~. model which depends on WIMP properties. This could be done, for example, by 

solving for the WIMP distribution for a given solar model, finding out how this 
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WIMP distribution changed the solar model and iterating. For purposes of this 

calculation, however, I will simply assume that the given solar model is consis- 

tent with the presence of the WIMPS. In the case of ordinary Dirac neutrino 

WIMPS, this assumption is fully justified by the fact that these WIMPS produce 

little change in the solar model. In my numerical calculations, I simply used the 

standard solar model (Bachall et. al. 1982). 

Next, I assume that the WIMPS do not interact with each other, but only with 

the nuclei in the sun. This makes the Boltzmann equation linear in the WIMP 

distribution. Finally, I assume radial symmetry. These assumptions imply that 

the WIMP distribution can be described by three continuous parameters, which 

might be taken to be V, or, and r, the velocity, radial component of velocity, and 

height. However, these parameters are not convenient. The transport terms in 

the collision equation assume a complicated form. 

A better set of continuous parameters are E and L, the energy and angular 

momentum of the orbit, and R, the radial coordinate at the point where the 

WIMP entered the orbit. These must be supplemented by the discrete param- 

eter A = f which specifies whether the WIMP was going up or down when it 

entered its orbit. For each E and L one may find the probability of scattering 

at each point along the orbit. When, in addition, one knows the entry point, 

one may calculate the probability p(E, L, R, A, r, X) that a WIMP with param- 

eters (E, R, L, A) is at a given height, r, and going in a given direction X. At 

each such point, construct a local scattering matrix S,.(Ei, Li, Xi; Ef, Lf, A,) by 

Monte Carlo methods. The full scattering matrix, the rate at which a WIMP in 

state (Ei, Li, R;, Ai) scatters to a state (Ef, Lf, Rf, Af) can be obtained: 

S(E~,Li,Ri,Ai;Ef,Lf,Rf, A,) = 

Cp(Ei,Li,Ri,Ai,r,,X)s~,(~i,~i,~;~f,~f,~,). (4.1) 
x 

This procedure may seem rather cumbersome, but it greatly simplifies the Boltz- 

mann collision equation because it eliminates the transport terms. In this basis of 

13 



states, WIMPS leave a given state only if they collide. The Boltzmann equation 

reads simply 

df (E, L R, A) 
dt = - f(E,LJW) c S(E,L,R,A;Ef,Lf,Rf,Af) 

EfJf&,Af 

+ c f( 
(4.2) 

Ei,Li,Ri,Ai)S(Ei,Li,Ri,Ai;E,L,R,A). 
Ei,Li,RiA 

The above equation is completely general. It can be used regardless of how 

frequently or infrequently the WIMPS collide. As a practical matter, it is not 

useful in the limit of frequent collisions because the height grid size must be 

small compared to the mean free path. However, in the sun this restriction is not 

critical: Even 10-35cm2 per baryon cross sections yield mean free paths - .OlRa 

.- 

For Dirac neutrino WIMPS, moreover, this parameterization leads to a fur- 

ther simplification. Since the WIMPS interact only about once per 50 orbits, 

I@, L, R, A, r, A> is essentially independent of R and A. The states may be de- 

scribed with only two continuous variables, E and L. To model the WIMPS in 

the sun, I discretized these states into 64 equal energies, and within each energy 

level, into 5 equal angular momentum brackets. (A variety of tests showed that 

the discreteness of the grid introduced errors in the evaporation rate of about 

lo%, which corresponds to less than 0.5% in the evaporation mass. This is less 

than errors caused by uncertainties in the solar model.) 

- I constructed a scattering matrix, S(Ei, Li; Et, Lf) by Monte Carlo methods 

described below. I then numerically integrated the Boltzmann collision equation 

df(EJ) = 
dt -f(EJ) c S(E,L;Ef,Lf) + c f(Ei,Li)S(EiJi;EJ) (4.3) 

Er ,Lf Ei ,Li 

until the root mean square of 

C(fS)-fCS 
C(fS)+fCS 

(4.4) 

was less than one half percent. (Errors introduced by this cut-off were negligible 

compared to those mentioned above.) For every state I calculated the fraction 
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of the time the WIMP spent in each of 26 regions of the standard solar model 

(Bachall et. al. 1982). In each region I calculated the evaporation rate due to 

hydrogen and helium using equation (3.7), the average kinetic energy, and the 

average of the square of the radial component of the velocity unit vector. This 

data could then be summarized by state, by energy level, or by solar region. 

To construct the scattering matrix, I numerically integrated each orbit and, 

at each of 50 points, allowed the WIMPS to randomly scatter off hydrogen and 

helium at their density and temperature as given by Bachall et. al. (1982). I 

assumed the WIMPS were Dirac neutrinos with cross sections (Griest and Seckel 

1987) 

ai = 2.1 - 1o-39 [ c>%Qi] 2cm2 (4.5) 

where Qf = (N - (1 - 4sin2 O,)Z)z for helium and Qg = 3gi - 3(1.25)2. 

[ (1 - 4 sin2 0,) = .124; masses are in GeV.] Because it was necessary to get 

equally good statistics on events which happened with roughly unit probability 

and events which happened with probability lo-l6 or less, I used the following 

technique: I divided the range of possible nuclei velocities with which the WIMP 

of velocity 20 could interact into, say, 16 segments by velocities (0, ur, ~2...~15, oo) 

such that 90% of the interactions happened with velocity less than ~1, 99% with 

less than 2~2, 99.9% less than us, etc. Then one collision was allowed in each 

segment and its probability appropriately weighted. The number of segments 

was chosen so that, given the local temperature and density, all events at least 

0.1% as probable as WIMP evaporation would be sampled. 

From the final WIMP distribution, I calculated the average kinetic energy and 

defined a WIMP temperature Tw = (2/3) < Ek >. I then populated the sun with 

a ‘thermal’ distribution of WIMPS at this temperature and compared these two 

distributions and their resulting evaporation rates. (The term ‘thermal distribu- 

tion of WIMPS’ will always be used to designate a thermal distribution truncated 

at the evaporation energy. The term ‘truncated distribution of WIMPS’ will al- 

ways mean truncated below the evaporation energy.) It was found that while the 
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Tw varied about l%, the evaporation rate varied by only 3% (which corresponds 

to a variation in evaporation mass of only 0.1%). At first one might think that the 

numerical fluctuation in WIMP temperature and that in the evaporation mass 

should be about the same. But from equation (3.26) one can see that roughly 

equal amounts of evaporation should come from every energy bin, whereas the 

average kinetic energy is determined mainly by the lowest Tw/Eo fraction of the 

bins. Since my statistics were about equally good in every bin, one would expect 

roughly (Ee /Tw ) $ - 6 times more fluctuation in the WIMP temperature than 

in the evaporation mass. 

[The method described above has some interesting, sometimes indirect, re- 

semblances to methods developed for the analysis of globular clusters (Shapiro 

1985) .] 

The computations just reported were done for the precise solar model given 

by Bachall et. al. (1982). H owever, the standard solar model does not fix the 

core temperature exactly; a small range of temperatures is consistent with the 

input data, provided that the central pressure is also adjusted. This range is of 

order 1% (Bachall and Ulrich 1987). Since, for small changes, WIMP evapora- 

tion is proportional to core temperature, the numerical errors in this calculation 

are of the same order as those introduced by uncertainties in the solar model. If 

one considers a larger variation in the solar model, one should scale the WIMP 

evaporation mass proportional to the change in the core temperature and in- 

versely proportional to changes in the gravitational potential difference between 

the center and infinity. This method of adjustment can be verified by considering 

equation (3.17). [Th e central temperature I used, based on the standard solar 

model (Bachall et. al. 1982), was 15.5 million degrees kelvin. My calculated 

value for the gravitational potential difference, using data from this same model, 

was 5.077GM~/R~.] 
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5. Results 

Figures 2, 3 and 4 demonstrate the non-thermal character of the WIMP 

distribution for 3.7 GeV WIMPS. Figure 2 shows the average kinetic energy 

(normalized to the WIMP temperature) and average square of the radial com- 

ponent of the velocity unit vector as functions of solar radius. The curves would 

be horizontal (at 1 and l/3) if the distributions were thermal. Also shown on 

this figure is the local temperature of the sun normalized to the WIMP temper- 

ature. Figure 3 shows the ratio of the real WIMP distribution to a thermal 

one by energy. The lowest curve includes all the angular momenta; the highest 

one includes only angular momenta which are less than 20% of maximum for 

that energy (states which account for about l/3 of the evaporation). The middle 

curve shows angular momenta below 40%. These curves indicate that the WIMP 

distribution might reasonably be approximated as truncated at 40% of escape 

energy if all WIMPS are included, or at 80% if only those passing through the 

core region are included. Figure 4 shows the logre of the evaporation rate per 

unit solar mass as a function of solar radius for thermal and actual distributions. 

Even on a log graph evaporation cuts off extremely rapidly for the thermal dis- 

tribution and still more rapidly for the actual distribution. This confirms the 

analysis of section 3 that almost all evaporation takes place in the core. If the 

sun had a uniform temperature, these curves would be virtually straight lines. 

.- 

In view of the fact that the local WIMP average kinetic energy falls with 

radius (albeit more slowly than the temperature) it may be asked why, in sec- 

tion 3, I chose to analyze the deviations from a uniform temperature as a cut-off 

Maxwell-Boltzmann distribution at a single temperature, as opposed to, say, a 

true thermal distribution at a radially dependent temperature. The answer is to 

be found in the fact (mentioned in a completely different context in section 4) 

that evaporation is extremely sensitive to the structure of the tail of the WIMP 

distribution, whereas the local value of the average kinetic energy is sensitive to 

the low-energy ‘hump.’ The hump is in turn relatively sensitive to local condi- 
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tions, because, especially near the center, low energy WIMPS tend to stay where 

they are. The tail, on the other hand, tends to be highly non-local, because 

virtually the entire tail at every point in the sun is created in the core. Thus the 

local average kinetic energy is not a good indicator of WIMP evaporation. [By 

contrast, the sliding average kinetic energy may well have a depressing effect on 

heat transport (Nauenberg 1986) .] 

Figures 5, 6, and 7 illustrate the behavior of the WIMP distribution and the 

corresponding thermal distribution over a range of WIMP masses from 1 to 7 

GeV. Figure 5 shows the WIMP temperature normalized to the central tempera- 

ture of the sun. As the WIMPS get lighter they tend to sample the higher (colder) 

regions of the sun and this depresses their temperature. Figure 6 shows evapora- 

tion due to the actual WIMP distributions compared to that of corresponding 

thermal distributions. For high mass WIMPS, as the temperature asymptotically 

approaches the central solar temperature, the loglo of the evaporation rate for 

the thermal distribution approaches a straight line with slope -A@/(Te In 10) = 

-3.5/GeV. However, for low mass WIMPS, the lower WIMP temperature tends 

to suppress the rate relative to this line. For the actual distribution, the rate is 

suppressed by about a factor of 3-5 relative to the thermal rate for high mass 

WIMPS, and is about the same for low mass WIMPS. It turns out that the low 

mass WIMP distribution (while not thermal) more closely resembles a thermal 

distribution than a truncated one. However, the higher mass WIMPS do have 

a truncated distribution (see Figure 3) and so (according to the analysis of sec- 

tion 3) should have their evaporation somewhat suppressed. Figure 7 shows the 

relative contribution of hydrogen to evaporation. For higher mass WIMPS hy- 

drogen plays a reduced role in the actual distribution compared to the thermal 

one. This is due to the “impedance matching” analyzed in section 3. For low 

mass WIMPS there is no hydrogen enhancement relative to helium because, as 

mentioned above, the actual distribution more closely resembles a thermal one. 

The evaporation rate for 3.68 GeV WIMPS is (4.7 billion years)-l. Thus 

the evaporation mass for a solar lifetime is 3.68 & 0.04GeV. (The error does not 
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include possible inaccuracies in the solar model.) If there are equal numbers of 

WIMPS and anti-WIMPS which annihilate through the weak interaction then 

Griest and Seckel (1987; Griest 1986) have calculated an annihilation time for 

3.0 GeV WIMPS of 15 million years. This is also the inverse evaporation rate 

for 2.94 GeV WIMPS. Thus the evaporation mass for an annihilation time is 

2.94 f 0.03GeV. (Th e error accounts for neither the substantial errors in the 

annihilation time calculation nor those in the solar model). According to Figure 

6, the annihilation signal from solar WIMPS which are lighter than 3 GeV will 

be suppressed by a factor of lo2 for each .3 GeV compared to the signal above 

this value. 

Finally, I wish to again emphasize that the evaporation mass is proportional 

to tf+o) - Q(O), inversely proportional to the core temperature and logarithmic 

in the helium cross section. Thus, any small change in the first two of these 

parameters, or a comparatively large change in the last, can be compensated 

easily without redoing the calculation. 

6 . 10H3” cm2 W IMPS 

Faulkner and Gilliland (1985) and independently, Spergel and Press (1985) 

have proposed WIMPS with about 200 to 800 times greater than weak interaction 

cross sections to explain the solar- neutrino problem. The approximation made 

in going from equation (4.2) to equation (4.3) are not valid for these WIMPS 

because they interact about four to 16 times per orbit. However, at least in the 

lower range the distribution of these WIMPS should not be very different from 

the WIMPS considered above. If the WIMPS interacted many times per orbit, 

then their local distribution would be thermal at the local temperature. For the 

Faulkner-Gilliland WIMPS (200 times weak cross section) there will be a mod- 

erate deformation of the distribution in this direction relative to the WIMPS in 

my model. However, since the deformation will be moderate and since most of 

the evaporation occurs in regions of the sun where the WIMP and the solar tem- 
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peratures are about equal anyway, it seems reasonable to ignore this difference. 

This assumption is further justified by the fact that the presence of these WIMPS 

alters the solar model so that the whole core has a nearly uniform temperature. 

Making the assumption that my model would produce the correct distribu- 

tion, I ran my program using Faulkner’s solar model (Faulkner and Gilliland 

1985; Faulkner et. al. 1986; Faulkner 1987) and cross sections which were 190 

times the ones used above. In view of the lack of a microscopic theory to ac- 

count for these WIMPS, I simply scaled up the Dirac neutrino cross sections so 

that hydrogen and helium each had about 10-36cm2 per baryon cross sections. 

Finally, I introduced an additional suppression factor of .2 because this is the 

fraction of WIMPS reaching evaporation velocities in the core which will actually 

make it to the surface before they rescatter. Using these approximations I get 

an evaporation mass (for a solar lifetime) of 3.8 GeV. Assuming that my com- 

bined assumptions have introduced errors in the evaporation rate of a factor of 

3 (the difference between the thermal non-thermal rates), the error in mass may 

be guessed to be about .15 GeV. 

Nauenberg (1986) h as shown that maximum heat transport (which is what 

is needed to solve the solar neutrino problem) occurs at about 7 x 10-36cm2 per 

baryon. This cross section implies about 30 collisions per orbit. To properly cal- 

culate evaporation for these WIMPS would require solving equation (4.2) rather 

than equation (4.3). 
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APPENDIX Thermal Scattering 

Here I evaluate‘R(w + TJ), the rate at which a WIMP with isotropic, velocity- 

independent cross-section scatters off a thermal distribution of nuclei, and display 

the identities which make the derivation of (3.10) and (3.11) tractable. I have 

gone into some detail because I believe the substitutions and identities introduced 

here are of general use in solving a broad class of double Maxwell-Boltzmann 

distribution scattering problems. I use the notation introduced in section 3. 

The differential rate at which w scatters off a nucleus with velocity u and lab- 

frame angle 8 is equal to the product of the cross section, the Maxwell-Boltzmann 

number density, and the relative velocity, 

12 
u(u2 + w2 + 2uwzi)5,N~ 3 2 u e -K”U2e(l- ) zi I)dudq, 

7r2 
(Al) 

where /c2 = m/2T and zi = cos 8. Switching to coordinates s and t which specify 

the velocity of the center of mass and the velocity of the WIMP in the center of 

mass frame, 

(1+ /.L)s =I u’+ /XC 1 (1 + p)t =) w’- u’ 1, (A21 

this becomes 

qs,t> _ u2uJ 
qu, &) 8/..+t’ 643) 

2 
R3Note-‘c2tL2 32p”+ 

& W 
e(w- 1 s -t I)e(s + t - w)dsdt, (A4 

where u is now regarded as a function of s and t: 

u2 = 2pp+P -t 2#u+s2 - pw2. (A5) 

The rate at which w scatters to v is given by integrating equation (A4) against 

1 

d+ 
J 

dq6(v - (s2 + t2 - 2stq):) = 2st ’ vdve(u- 1 s - t I)ecs + t - v) (~6) 

-1 
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over all s and t. Here zf is the cosine of the recoil angle in the center of mass 

frame. Thus 

03 

R(w -+ v)dv = s J 
& m& “d- &Q$te-‘C2U2 

rrf 
0 0 

e(w- 1 s -t l)ecs + t - w)e(v- 1 s -t I)ecs + t - v). 
(A71 

Again changing variables to - 

x=t+s y=t-s, Lw 

noting that 

P++P-=/q- 2 =I4 Lw 

u2 = &+a: + cL-Y)2 + P(Y2 - w2) = (p+y + p-x)2 + p(x2 - w2), (AlO) 

and choosing the case w > II, this becomes 

Co ccl 
R(w --+ v) = - 4p:Na: da: 

& W J J dyrc3(x + y)e-lcau2 e- I Y Iv+ - 4 (~11) 
0 --co 

co 

= !!&TuZ) 

V 

nip w s s 

dx dyn3 [(p+x + ~_y)e-ffi2[(~+z+~-Y)z+~~~2-w2)1 

W -v (fw 
+(P+Y + w+ --162[(p+y+p-2)2+p(22-w2)] I 

V 

[I 

dye-~2[(Cc+w+~-Y)2+~(Y2-w2)] 

-v 
00 (A 13) 

+ 

J 

dx(-e-~2(P+‘J+P-~)2 + e-‘c2(P+v-k‘-~)2)e--n2/+2-W2) 1 J 
W 
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3 
V 

= %NunL 

7&L V 

dye-‘C2(P+Y+P-W)2 
W 

-v i 
co (Al4 

+ 
s 

dx(-e-~2(P+z+P-V)2 + e-~2(P+~-+~)2)e-is2~(v2-w2) 

1 
W 

J 

t = ~%Nu~[x(-~.-,a+) + x(-P-,P+)e-~(V2-w2)]. W5) 

The case of w < v can either be done the same way or deduced from detailed 

balance arguments. Next, one may easily establish the following identities: 

CY; =/3;+pc2(v2- w”) = 7; + < - Ytc2W2, W) 

P- d --x(-j-a-, a+) = e-P2(v2-w2) 
P+ dv $x(*P-, P+), Lw 

e --YlG2w2 d zX(fa-, a+) = ~e-pK2~v2~w2~e~uK2w2 -&X(&P-,P+) 

p- _ d 
= Ee S~x(57-y7+)j 

2&L; s dvvx(fa-, a+) = $z-emfft 7 ia+emUT 

( w 

2n2& 
J 

dwwx(fp-,P+) = --i&e-P: f ip+e-p’ + (-p+p.- - i)x(*/t~-,p+), 

(A20) 
where 

1= 
vtc2p~v2 

e2 - (A211 

Using equations (A17), (A18), and (A19) it is trivial to derive equation (3.7). 
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BY writing the evaporation integral as 

L R(wc 

!- 
-1 

I 2v 
s 

[p(a+epaP - a-e -*') + (p - 2pua+a- - 2p+,u-)~(a-, a+)] deAunzw2 
w=o 

-1 wc 
+ 2(LJ - P) s 

Qe-w2v2 x(p-, /3+)de-(y-p)n2w2 

w=o 
(A221 

integrating by parts, noting that in 

$$ [p( f a+e-OLa- - cx-e-a~) + (p - 2j.~ucr+a- - 2~+~-)x(~ta-, a+)] 

= 2(~ - p+p-) ( f ema’ + e+) + 4j+-~w~(fa-, a+), 

(A23) 
the complicated terms cancel, and using equations (A16) and (A18), one may 

obtain equation (3.11) with only half a dozen lines of algebra. One may similarly 

obtain equation (3.10) by using equations (A16), (A18), and (A20). 
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FIGURE CAPTIONS 

8. IMPEDANCE MATCHING: Evaporation rate as a function of loglo for 

_ .’ T = Tw = E,/30 and E,/Ee = .5, .6, .7, .8, .9, 1.0. Curves are normalized 

to rate for p = EC/E, = 1. 

2. NON-THERMAL RADIAL DISTRIBUTION: (2/3x) average WIMP ki- 

netic energy (solid) and average square of the radial component of WIMP 

direction (dots) as functions of solar radius. Also shown is solar tempera- 

ture (dashes). Temperatures are normalized to WIMP temperature. WIMP 

mass is 3.7 GeV. 

3. NON-THERMAL ENERGY DI!!$RIBU?ION: Ratio of true=WIMP distri- 

bution to a thermal distribution at the WIMP temperature, as a function 

of energy; for all angular momenta (dashes), for the angular momenta less 

than 20% of maximum (solid), and for less than 40% of maximum (dots). 

WIMP energies are normalized to escape energy. WIMP mass is 3.7 GeV. 

4. EVAPORATION SUPPRESSION: The loglo of the evaporation rate per 

unit solar mass (in inverse seconds) as a function of solar radius for 3.7 GeV 

WIMPS. Actual distribution (solid) and thermal distribution at WIMP 

temperature (dots) are shown. 

5. WIMP temperature as a function of WIMP mass (in GeV). Temperatures 

are normalized to the central solar temperature. 

6. The log,, of the total evaporation rate (in inverse seconds) as a function 

of WIMP mass (in GeV) is shown for the actual distributions (solid) and 

thermal distributions at the WIMP temperature (dots). The ratios of the 

thermal to actual rates are also shown (dashes). 

7. Fraction of total evaporation which is due to hydrogen as a function of 

WIMP mass (in GeV) is shown for actual distributions (solid) and thermal 

distributions at the WIMP temperature (dots). 
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