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1. INTRODUCTION 

Oscillating fields in tree space, far from all sources (i.e., at distances r very 
much larger than the wavelength X of the radiation), consist of a sum of all pos- 
sible traveling electromagnetic waves. Provided the particles to be accelerated 
are traveling less than the velocity of light, acceleration2 can occur. Once the 
velocity approaches that of light, only waves traveling in the same direction as 
the particles remain in phase with the particles. Unfortunately, since free radi- 
ation is transversely polarized, no continuous acceleration is possible. Despite 
claims,3 no juggling with holograms, phase plates or foci can change this. In the 
presence of a magnetic field, the particle’s direction can be perturbed in such a 
way as to allow continuous acceleration ,4 but this too decreases as the particle’s 
momentum increases and significant perturbations become impractical. In5 or 
near6 a dielectric, the inverse eerenkov effect will accelerate, but the field that 
can be used is limited, because the dielectric cannot be allowed to break down. 
At high fields any dielectric becomes a plasma and the situation becomes very 
complicated. Acceleration within such a plasma is certainly possible7 but the 
practicality of such acceleration remains to be determined. 

Acceleration is, of course, possible in vacuum near to an electromagnetic 
source or structure (where r is not large compared to X). Electrostatic acceler- 
ation satisfies this requirement as does any conventional linac structure. And 
it is easy to show that a linac structure in which X is small compared to the iris 
radius r has an accelerating field that falls as X/r compared with the fields of 
the walls. It is also easy to show that such linac structures must be either peri- 
odic or contain a dielectric. Fields in any smooth structure (it is a waveguide) 
have wave velocities greater than that of light and cannot couple continuously 
to a relativistic particle. The periodicity or dielectric serves to slow the waves 
to that of the particles: they match the mode of the initial fields to the particle 
acceleration. Linac cavities also perform a second function: that of provid- 
ing a cavity in which the fields are contained where they are required, without 
unwanted loss. In conventional structures this is done by using a “closed” struc- 
ture. They are cavities within a continuous conducting wall. In the absence 
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of any losses they would contain accelerating modes indefinitely. Openings of 
some kind are needed only to make up for resistive losses. 

An “Open” Accelerating Structure must first perform the mode matching 
function of any accelerating structure, i.e., it must couple an incoming free field 
to an accelerating mode (later we will see that open structures can also perform 
the second function of containing the accelerating fields). The simplest open 
periodic structure that can be considered is a grating. 

Two papers have attempted’ to employ this inverse Purcell effect9 by illu- 
minating a grating from directly above with plane parallel light and passing the 
particles over the surface of the grating at right angles to the lines (Fig. la). 
Unfortunately, it has been shown by Lawson6 that these geometries fail to ac- 
celerate relativistic particles. 

I will restate Lawson’s theorem but show that it applies only to the simple 
two-dimensional situation. 
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ation of relativistic particles; 
c) with skew initial wave as 
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2. LAWSON’S THEOREM’ 

We are considering the acceleration in fields above a linear grating when 
that grating is exposed to a propagating or standing free wave. In the two 
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papers8 referred to above, this incoming radiation consisted of plane waves 
falling onto the grating with the rays perpendicular to the grating lines. The 
acceleration was of particles traveling across the surface, also perpendicular to 
the grating lines. Such geometries impose the symmetry condition 

dE 0 -= 
dy , (1) 

where y is the coordinate along the grating lines and at right angles to the 
particles. Let z be the coordinate perpendicular to the grating and z be along 
the particles’ direction of motion. Let S be the grating spacing. 

Given condition (l), the fields above a surface in the direction of motion x 
of the particle can always be givenlo as a sum of fields of the type 

E, = A,,&Pnz+K.z-wt) 

and if E, = 0, then 

E, _ AnKn~i(pnz+Knz-wt) , 
Pn 

(2) 
where 

pn = f 

k. = 27r/X . 

The A, are a set of complex constants describing the amplitude and phase of 
the different modes n. 

When Kn < ko, then pn is real and the mode is a free propagating wave 
either approaching (pn negative). or leaving (p, positive) the surface. These 
-waves are at an angle 0 with respect to the normal given by sin 0 = Kn/ko. 
When Kn > ko and p, is positive and complex, the mode is a surface or evanes- 
cent wave that falls off exponentially from the surface. Modes with the negative 
sign would rise exponentially from the surface and cannot be present. 

The requirement that the field remain in phase with a particle of velocity 
P c is 

Knp= ko . 

Thus, 

Pn = 4 l- l/p2 . 

As the momentum of the particles increases, p approaches 1 and from Eq. (3) 
we see that pn approaches zero. From Eq. (2)) we then see that E,/Ez 
for that mode also approaches zero and there can be no net acceleration. 
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The reason for this is that the only wave consistent with the symmetry, condi- 
tion (1) that stays in phase with a particle traveling at the velocity of light is a 
simple propagating plane wave traveling in the direction of the particle. Such 
a wave is always transversely polarized and thus cannot accelerate in its direc- 
tion of propagation. In order to overcome this restriction, we must break the 
symmetry condition (1) and consider waves traveling at an angle to the beam 
direction. If, for instance, we simply rotate the grating by an angle 1c, with 
respect to the beam (see Fig. lb), then the condition for synchronism becomes 

Kn/3 COS T,LJ = ko 

P,=J1i-TiKzF ; 
(4 .- 

Incoming Radiation 
From Sides 

now pn and E, no longer ap- 
preach zero as p approaches 
unity. We thus see that Law- 
son’s theorem, while showing 
that the proposed geometries 
do not work, does not rule 
out all acceleration in the fields 
above a grating. An alter- 
native to a skew grating is 
to employ a skew initial wave 
(Fig. lc). In this case, although 
the grating lines are perpen- 
dicular to the particle beam, 
the induced surface waves can 
still be at an angle to the 
beam and Eq. (4) still ap- 
plies. 

3. THE EXTENDED 
GRATING 

icles 
It is convenient to consider 

the case where the incoming 
wave direction lies in a plane 
perpendicular to the beam di- 

Alternate Lines Different 5631/\2 rection, and in which a second 
incoming wave is introduced to 

Fig. 2. Geometry of grating and inCOming symmetrize the problem about 
radiation showing perturbed grating lines to 
couple the radiation to the accelerating mode. 

the vertical plane including the 
beam (see Fig, 2). 
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The fields are now given by 

E, = coi wt cos Ky Bo sin pz + c q/n BneBqnZ cos nkoX 

E, = 0 

Ez = - cos wt cos Ky 2 Bn(nko)evqnZ sin nkoX 
n=l 

where 
K = cos 6, B as defined by Fig. 1 
k. = 2nfX 

qn=dK2+nkz-I . 

B and Bn are now real numbers. All waves vary in the same way with both 
time and y position. Clearly maximum acceleration is obtained at y = 0 and 
at values of y spaced at intervervals of 27~/K. The first term inside the curly 
bracket is that due to the incoming and outgoing waves. It is only in the x 
direction, varies sinusoidally with distance above the grating, and is constant 
along the direction of acceleration. The second term in the brackets includes 
all the surface waves that fall off exponentially with height above the grating 
and vary periodically with position in x. The average acceleration of a particle 
traveling in the x direction at height h above the surface is zero for all modes 
except 1, and since q1 = K and the average particle acceleration is 

. 

K 
(&a) = cos Ky T 

B1 CK= cos 8 

where B is a phase angle determined by the relative x position of the accelerated 
particle. As 8 + 90°, K + 0 and the acceleration &a + 0 also, as predicted by 
Lawson’s theorem. 

This case has been studied in detail both my myself’l and by Michael 
Pickup.12 Solutions are found for various grating slopes and it is established 
that solutions can be found that not only couple incoming radiation to ac- 
celeration (see Fig. 3a), but also solutions that accelerate, and do not cou- 
ple to any incoming or outgoing waves (see Fig. 3~). Such a solution is 
like a “cavity” in the sense that, in the absence of losses, it will contain 
the accelerating field indefinitely. It is what I define as an “open acceler- 
ating cavity.n Intermediate solutions can be found (Fig. 3d) that partially 
couple to an incoming wave so as to allow the “cavity” to be filled and to 
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Fig. 3. The electric field patterns produced by different combinationsof modes, 
together with the shape of the grating surfaces that will support these combi- 
nations: a) case with initial wave (n = 0) and the accelerating modes (n = fl) 
only; b) field lines for the accelerating (n = zkl) modes alone; there is no grat- 
ing surface that will support this mode alone; c) case with accelerating mode 
(n = fl) and a small addition of the third mode (n = f3); this solution does 
not couple to any initial wave; d) case with a small initial wave (n = 0), a 
strong accelerating mode (n = fl) and a small addition of the third (n = f3); 
this solution couples to the initial wave and provides good acceleration. 
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provide energy to make up for resistive losses. One notes that the simple mode 
converter has a X periodicity, the cavity solution has a l/2 X periodicity, and 
the partially coupled solution has an approximate l/2 X periodicity with a X 
perturbation. 

4. RESTRICTED PERIODIC STRUCTURES 

In the above sections we have found that accelerating fields above a grating 
can be made to fall off exponentially from that surface. Unfortunately, these 
fields will inevitably13 spread over the full two-dimensional surface of the grat- 
ing. (The h p o e expressed in Ref. 11 that the fields could be restricted to a 
narrow band along the grating by the use of cylindrical optics appears not to 
be possible.) 

Various solutions to this problem have been discussed, and are illustrated 
in Fig. 4. 

The iris-loaded linac (Fig. 4a) can serve as a standard for comparison. 
The SLAC structure, for instance, has a Q of 13,000, and this would scale 
as the inverse root of the wavelength (10.5 cm). The loss parameter kl is 

(01 LINAC (e) 2 ROWS OF DROPLETS 

Beam 

(b) GRATING 
(f) 4 ROWS OF DROPLETS 

(c) GRATING WITH WALL 

(d) INSIDE OUT LINAC (h) SUPER BUMPS 

Fig. 4. New field accelerating structures. 
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19 volts/picocoulomb/meter, scaling as the inverse wavelength squared. The 
shunt impedance (r = 41crQ/w) is 56 M ohms/m and this scales as the inverse 
root of lambda. i 

A. GRATING WITH SIDE WALLS (Fig. 4) 

This structure has been studied by M. Pickup at Cornell.12 The walls which, 
although theoretically of infinite height, need be only of the order of a wave- 
length high, can be placed at any multiple of half the transverse field periodicity. 
Pickup studied the case where they are one-half period apart. Leaving aside the 
question of how such walls could be constructed, Mike has shown that the Q, 
scaled to 10.5 cm, would be 16,000 (even higher than in the iris-loaded case); 
however, the loss parameter k, again scaled, is 1.7 volts/picocoulomb/meter 
(much lower). One must remember, however, that as the wavelength gets 
smaller the loss parameter rises as the square and a high initial value is not 
necessarily desirable. 

- 

B. INSIDE-OUT IRIS-LOADED CAVITY (Fig. 4d) 

Kroll14 has considered the fields that can be formed on the outside of a 
structure which is geometrically like a conventional linac. This case can also be 
though of as that of a grating in which the two sides have been curled under and 
joined together. As in the grating case, nonradiating modes exist and, also as in 
the grating case, these fields must be periodic transverse to the acceleration, i.e., 
periodic in the azimuthal angle, in this case. The number of periods around the 
azimuth may be described by the index m. For m = 0 there are no solutions, in 
analogy with the Lawson theorem for the grating case. He also showed that the 
m = 1 case (dipole) has a field that extends to infinity. For m = 2 (quadrupole) 
the fields do fall off but the total energy has a logarithmic divergence. Only 
for m = 3 and above are the fields truly local, with the structure behaving as 
a true “open cavity.” Kroll also considered structures formed of more than one 
parallel inside-out cavity, each operating in the m = 1 mode. All these cases 
give insight into the droplet structures described below. 

C. DOUBLE ROW OF DROPLETS (Fig. 4e) 

An rf model consisting of two copper spheres places between two paral- 
lel metal plates demonstrated7 a mode that would accelerate along the axis 
between two rows. The spacing between two spheres, both along the rows 
and between them, was A/2, and their diameter was approximately X/3. The 
measured fields were well-represented by the assumption that the sphere’s act 
as oscillating dipole radiators with their polarization directed in towards the 
axis. The “measured” loss parameter k, scaled to a wavelength of 10.5 cm, 

8 



i was approximately 2 volts/pC/m, i.e., similar to that for the grating case. 
However, this case is essentially that of two m = 1 inside-out cavities, and the 
long-range fields -must have the m = 2 character that, as was pointed out by 
Kroll, has a divergent energy and thus a zero k parameter. In the measurement, 
however, and in any practical case, a cut-off is in fact imposed either by the 
surroundings or by the pulse length. Thus despite the divergence this may be 
a useful case. 

D. FOUR ROWS OF SPHERES (Fig. 4f) 

With four rows of spheres the long-range fields are octupole (m = 4) and 
no divergence occurs. Such a mode was also observed with the rf model, but 
the k has not yet been measured. 

E. ROWS OF BUMPS (Fig. 4g) 

A second mode observed with two rows of spheres has a symmetry plane 
such that it would also be present over a double row of hemispheres on an 
infinite plane. This then represents a “grating” in which no side walls are 
required. Maximum acceleration in this case occurs along a line over the top of 
either row of bumps; in fact one row could accelerate electrons while the other 
accelerated positrons. The logarithmic divergence would still be present in this 
case, but could, if required, be removed by the use of three or more rows of 
bumps. 

F. SUPER BUMPS (Fig. 4h) 

Kroll has proposed a case derived from a double row of inside-out iris cavi- 
ties. Each of the inside-out cavities is excited in a mode m = 2 with left-right 
symmetry and up-down antisymmetry. Half of this arrangement is then placed 
-over a plane conductor to produce the structure illustrated. The long-range 
fields are m = 3 so there is no divergence, and there is even a neutral axis 
above the surface with quadrupole focusing fields about it. 

Two versions of the super bumps have been modeled and tested. They are 
illustrated in Figs. 5a and 5b. The relative dimensions that established the 
required accelerating fields where: 

Fig. 5a S = X/2 
h = .83 X 
g =.2x 
d = .28X 
.t = .46 X 

Fig. 5b S = X/2 
h = .23 X 
g = .16X 
w = .16X 



i 

12-86 I 563185 

Fig. 5. Two alternative realizations of the collonade accelerating structure. 
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5. COUPLING TO INCOMING RADIATION 

It is too early- to say whether such open structures will have practical 
application. They have the advantage that they can be machined or etched 
from a solid block and can thus be made with high accuracy and small size. 

l-86 5631Al 

Fig. 6. Electron microscope photograph of our 
etched collonade structure for 10 pm radiation. 

Fig. 6 shows such a struc- 
ture etched in silicon on a 
scale appropriate for 10 mi- 
cron wavelength radiation. 
A disadvantage is the in- 
trinsic up-down asymmetry 
of the fields. Although 
no dipole fields are present 
on the accelerating axis, 
sextupole fields will always 
be present. Whether the 
quadrupole fields are an ad- 
vantage (for focusing) or a 
disadvantage, is not clear. 

In all the above cases we have been discussing z modes in which 
the fields in or over successive lines or droplets are advanced by the 
phase z. Such modes do not radiate energy out, but also cannot be ex- 
cited by any incoming radiation. In order to couple to external fields, 
some perturbation is needed to the symmetry. In the grating case, 
alternate lines can be made slightly higher. In the case of the two 

Amp rows of droplets, alternate 
droplets can be displaced 
out of the plane or other 
perturbed. In this case 
the angular distribution 
of radiation that would 

I I be emitted, and thus the 
-80 -40 0 40 80 distribution of incoming 

12-86 4 *Deg. 5631A6 radiation that would be 

Fig. 7. Angular distribution of radiation to 
or from droplet structure. 

perfectly absorbed, is 
shown in Fig. 7. 
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