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1. Introduction 

Linear colliders are a relatively recent development in the evolution of particle accelerators. 
This report discusses some of the approaches that have been considered for the design of Fi- 
nal Focus Systems to demagnify the beam exiting from a linac to the small size suitable for 
collisions at the interaction point. The system receiving the most attention is the one adopted 
for the SLAC Linear Collider. However, the theory and optical techniques discussed should be 
applicable to the design efforts for future machines. 

-- 

‘.-- 

2. The Problem ---e- - - 
The principal problem in designing Final Focus Systems (FFS) for linear colliders is the 

elimination or minimization of the chromatic distortions introduced by the final lens system 
nearest to the interaction point (I.P.). If the beam exiting from the linac is monoenergetic 
and has a small enough emittance, then the FFS design for colliders is relatively simple. It 
could consist of a simple first-order optical system demagnifying the monoenergetic linac beam 
to the small size needed for collisions at the I.P. The ultimate limitation would then be the 
residual geometric (monoenergetic) aberrations of the optical system. The magnitude of these. 
aberrations would be a function of the phase space emittance from the linac and the natural 
third-order geometric aberrations of quadrupole focusing systems. Unfortunately the beams 
from microwave linear accelerators are not monoenergetic. They have a finite momentum spread, 
and one is forced to cope with the chromatic distortions caused by this momentum spectrum. 

There are several possible approaches to solving this problem: 

1. A reduction in the momentum spread or the emittance of the beam exiting from the linac 
clearly eases the severity of the problem. 

2. The magnitude of the chromatic distortion is a function of the distance, l’, of the first lens 
from the I.P. The closer the lens system is to the I.P. the smaller the chromatic distortion. 
Hence strong, compact lenses are an asset to solving the problem. 

3. Sextupoles can be introduced into the optical design to cancel the principal second-order 
chromatic aberrations, leaving the residual third-order chromatic and geometric aberra- 
tions as the fundamental limitation to achieving a small spot at the I.P. 

4. Alternatively one might choose to “live with” the small residual second-rder chromatic 
aberrations by choosing small aperture but very strong lenses as the final lenses in the FFS. 
Such systems were studied and considered for the initial SLC design but were ultimately 
rejected in favor of a %extupole corrected” solution. 

* This work WM supported by the U. S. Department of Energy under contract number DGAC03-76SF00515. 

Invited talk presented at the Joint US-CERN School on Particle Accelerators: 
Topical Course on Frontiers on Particle Beams 

South Padre, Texas, October 23-29, 1986 



A 

Unfortunately “sextupole corrected” solutions create other problems that must be minimized 
in order to find a satisfactory solution. Sextupoles require dipoles to be inserted into the 
chromatic correction system in order for the sextupoles to selectively couple to the chromatic 
aberrations that one is trying to eliminate. These dipoles, in turn, introduce emittance growth 
to the beam via the fluctuations in the synchrotron radiation energy losses. This complication 
demands a careful selection of the placement and strength of the dipoles so as to minimize this 
effect. 

Sextupoles create an additional’problem which ultimately limits the smallest spot size that 
can be achieved at the I.P. While sextupole families can be designed such that both the second- 
order geometric and chromatic aberrations vanish!” the cross-coupling of the eextupole families 
generates residual third- and higher-order aberrations. For the SLC case these residual aber- 
rations limit the effective p* at the I.P. to 8 mm. Without the sextupole corrections the SLC 
would have a p* of 7 ems for the same I’. Thus a factor of nine has been gained in thii particular 
application. 

3. Optics Definitions and Notation 

For the theoretical discussion in this report, we use the six dimensional phase space param- 
eters defined by the TRANSPORT’21 notation; namely 

-rc- - 

x= 

z 

2’ 

Y 

Y’ 
1 

6 

(1) 

where 6 = (p - po)/po. The first- and second-order optics is represented by the R and T matrix 
elements as follows: 

zi = 2 RijZj + 2 TijkXjZk + higher-order terms 
j=l j,k=l 

(2) 

where the R matrix is commonly expressed in the form: 

The objective in the design of the final focus system for the SLC was to find a way of 
eliminating all of the second-order aberrations, Tijk, and be left with only the appropriate 
linear terms plus the residual third- and higher-order aberrations. These residual terms then 
determined the ultimate @* that could be achieved at the interaction point of the collider. 
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4. Chromatic Aberrations 

Assuming an upright ellipse, i.e., cyO = 0, at the beginning of the final focus system, then p 
at the I.P. as a function of momentum may be expressed by the equations 

p(6) = R;1(6)Po + y 

or 
-&)&I = R;l(S)p; + R&(6) (4 

where po is the value of @ at the beginning of the FFS, and 6 = Ap/po. R1l and R12 are matrix 
elements of the R transformation matrix measured from the beginning of the FFS to the I.P. 
&l(6) and &2(b) are a function of the chromatic aberrations in the system as follows: 

h(6) = h(0) + T11e.6 + Ul1~66~ + . . . 
R12(6) = R12(0) i- T12s6 i- u12s~6~ + . . . (5) : 

-- 

where R11(0) and R12(0) are the values of the matrix elements for the central momentum PO. 
Substituting Eqs. (5) into (4) and collecting terms, we obtain the result 

-6. - - c 

NW0 = [R:,P,2 + R:,] 

+ 2 [RIIT~P; + RI&~] 6 

+ [(T:l6 + 2%lull66)P: + Tf26 + 2Rl2Ul266)] b2 

+ higher order geometric and chromatic distortions . (6) 

The ideal objective would be to devise an “aberration free” optical system where all terms in 
Eq. (6) vanish except for the first term 

-.--- P(6) = &PO = P*(o) 

where R1l = M is the monoenergetic demagnification of the beam envelope at the I.P. 

As a step in this direction, we now wish to derive some chromatic properties of telescopic 
_ systems which have been useful in solving our problem. We restrict the discussion to the x plane 
for simplicity, but the results and conclusions are applicable to both transverse planes, x and y. 

PROPERTIES OF TELESCOPIC SYSTEMS 

Shown below in Fig. 1 is a representative one-dimensional, telescopic system. For monoener- 
getic trajectories, telescopic systems have point-t-point [R12(0) = 0] and parallel-t-parallel 
[R21(0) = 0] imaging. 

6-67 
5605A3 Ft F2 

Fig. 1. A one-dimensional symmetric telescopic system. 
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In addition, telescopic systems with the symmetry shown in Fig. 1 have some interesting 
chromatic properties. To illustrate this, we define the following quantities 

.AP 1 1-C 1 1-C 
c=-; -=-; -= -; 1 = 11 + 12; 

P Fl 11 F2 12 

12 andM=- 
11 

where Fl and F2 are the focal lengths as a function of momentum of the two lenses comprising 
the system and M is the demagnification of the beam envelope for the central momentum po. 

Note the relationship between c and 6. 

(1 - c) = & 
6 

or 
c=1+6 

c has been used in this derivation so as to avoid a power series expansion in the matrix elements 
and thus simplify the result. 

The transformation matrix R(e) for the telescopic system shown in Fig. 1 is then 

or finally 

R(c) = 
-A4 + (A4 + 1)G lc + 13 

_- 
-& (L - c2) 1 -&+(1+$# * * (7) 

Comparing Eq. (7) with Eq. (5), we observe that, in addition to Rls(O) = 0, TIIS = 0 for this 
telescopic system. To appreciate the importance of this, we substitute the result into Eq. (6) 
and find 

W)Po = R:& 
+ 2 [O] 6 
+ [2RllUl166@: + Tf26] b2 

+ higher-order terms . (8) 

So for telescopic systems having the symmetry shown in Fig. 1, we find that the first derivative 
of p with respect to 6 vanishes and we are left with the 62 term as the first term of importance. 

If now we equate 

2%lul166~: = -T&6 (9) 

then the 62 term also vanishes and the telescope becomes achromatic to second order in (g). 
Note that no sextupoles have been used to obtain this result! While this is an interesting 
theoretical result one finds that for most physically realizable situations .~ - 

%6 >> 2Rdhl66P: . 

At this point one has to decide whether to tolerate the second+rder chromatic distortion gener- 
ated by the quadrupoles via the Tr2s aberration or, alternatively, eliminate Trss by introducing 
sextupoles and defer the optical distortions to higher-order terms. 
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For the moment we consider the first alternative and evaluate the magnitude of the Tr2s 
aberration for an all-quadrupole telescopic FFS. Equation 8 may then be truncated and rewrit- 
ten in the following form: 

/3(S) H R;r(0)po + ‘T1;612 
or 

P(6) = P*(O) + (RIIT~,]~~~ 
P’(O) (10) 

where /3*(O) = RI,(O)/3 o is the monoenergetic p at the interaction point. 

We now wish to calculate the average value p(6) and find its minimum. The result clearly 
depends upon the distribution function representing the momentum spectrum of the linac. We 
shall consider two possible cases: a gaussian and a rectangular distribution. For the gaussian 
distribution, the average value of p(6) is 

B(6) = p*(O) + iR1~;;;2u61 

where ug is the sigma of the gaussian momentum distribution function. 

For a rectangular momen&.n distribution the result is - 

B(6) = P*(O) + t [R;Gd2 .6%zz 
- 3 (12) 

where 6,,, is the maximum value of 6 in a rectangular (constant value) distribution function 
representing the momentum spectrum of the linac. 

If now we wish to find the minimum value of p(6), using /3*(O) as the variable, the result is 
obtained by equating the two terms in each equation. The result is 

&&nin = 2/3’(O) = 2[Rd’m]m (13) 
for the gaussian distribution and 

?(S)min = 2p*(0) = 2[&&26] - % (14) 

for the rectangular distribution. 

The rectangular distribution is more representative of the SLC linac in its present mode of 
operation, so for the remainder of this report we shall assume Eq. (14) to be valid. 

6. The Relationship between Path Length and Chromatic Aberrations 

Using the optics formalism developed in SLAC Report-75:” it can be shown that 

L 

RrlTma = 
/ 

(s’,)2ds (15) 
l 

where Rrr?‘rss is measured from the beginning of the FFS to the interaction point(*), but s: 
is the R22 matrix element measured from the I.P.(*) back through to the beginning of the final 
focus system. 
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Evaluating the integral in Eq. (15), we find 

(16) 

where z’(s) is the angle an arbitrary trajectory makes with respect to the central trajectory at 
a position s. z’(O) is its angle at the interaction point (*) and z(O)=O. Al is the path-length 
difference between this arbitrary trajectory and the central trajectory. 

using TRANSPORT notation, We define Ts22 as fOllOWS: 

then 

& = T622 
-A- - - 

L 

/ 
(s:)2ds = 2T622 

* 
(17) 

Ts22 is the normalized second-order path length difference measured from the interaction point 
(*) back through the system. Similar results may be derived for the y plane optics. 

Note that the integral is proportional to the square of the angle a trajectory makes at any 
position s in the system. Therefore the main contribution to the integral comes from the first 
lens system nearest to the I.P. where the angles are largest. 

This relationship between the transverse chromatic aberrations and the path length of the 
monoenergetic trajectories through a system can be shown to be a general result of Hamiltonian 
Mechanics. It is related to the fact that E and t are conjugate variables in the Hamiltonian 
description of the system. 

EXAMPLES : 

Let’s consider this integral for some representative lens systems. Consider first a simple thin 
lens module of length L, = iF as shown in Fig. 2. 

6-67 
5605A8 

Fig. 2. A thin lens module. 
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The integral for this module may be calculated by observing that 8: = 1, by definition, from 
the interaction point (*) to the input face of the lens. The distance to the lens is F. 8: = 0 after 
passing through the lens. Thus, 

L 

/ 
(s;)2ds = 2T622 = F = $ . 

l 

: 

Thus we learn that short focal length lenses are desirable if one wishes to minimize the chromatic 
distortion in a final focus system. 

Consider now a symmetric triplet lens system as shown in Fig. 3. 

6-67 
5805A7 

Fig-3. A-symmetric triplet lensmodule. . 

If we impose the condition that the chromatic distortion be equal in both transverse planes 
(x and y), i.e., that 

_- 
T622 = T644, 

then in a well designed triplet module the following empirical scaling law has been found to. 
apply: 

[ 1 b ,‘Bo >4 
aBp - 3 (19) 

EQ where I* is the distance to the input face of the first lens in the triplet; a = % is the 
field gradient in each lens (assumed to be the same for all elements of the triplet) and Bp is 
the magnetic rigidity of the beam. For an optimized symmetric triplet system, it has also been 
empirically determined that 

RllTl26 = L(a:)2da = 2Tf,22 fi: LT 
/ * 

and 

LT fi! 41’ . (20) 

Evaluation of the path length integral in Eq. (20) h s ows that approximately one-fourth of the 
total chromatic distortion is generated by 1’ and the remaining three-fourths is generated by 
the path-length excursions within the triplet lens structure itself. 
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If the triplet and singlet lens systems occupy the same physical length, i.e., LT = Ls, then 
we conclude that the total chromatic distortion in the triplet system is approximately twice that 
found in the singlet system! 

Substituting the results of Eq. (20) for the symmetric triplet into Eq. (14) for a rectangular 
momentum distribution, we find for an all quadrupole FFS (no sextupoles) the result 

For a gaussian momentum distribution of the linac, the result is 

(21) 

(22) 

The inequality signs in Eqs. (21) and (22) are included because the path length integral has been 
evaluated only for the triplet lens nearest to the interaction region. Additional contributions to . 
the integral will come from the remaining portions of the telescopic system. The total p will 
be of the order (l+M) times the above values, where M is the demagnification of the telescopic 
system. Since M is normally_yry sm_all, Eqs. (21) and (22) are usually good approximations to 
the final answer. - ., 

BEAM-BEAM DISRUPTION EFFECTS 

If the disrupted beams must pass back through the apertures of the FFS optical elements, 
then the maximum disruption angle, 6D, becomes an important factor in the design. 

The maximum radius of the beam envelope within the quadrupole triplet depends upon 80. 
For an optimized triplet, the result is found empirically from TRANSPORT to be 

abeam g 31’eD . (23) 

For a gaussian beam profile, in the transverse coordinates x and y, 8~ has the form@’ 

e2 where N is the number of particles in a bunch, rc = 3 is the classical electron radius, 

Y = --& and u = m, where p’ = J(S)mi,. c is the beam emittance and Kp is a design 
“safety factor” to allow for the beamstrahlung pinch effect. Kp should be determined from 
computer simulations. In the SLC design a value of Kp = 3 has been used. 

For two intersecting beams having gaussian cross sections, the luminosity is defined as 

t N2f 
=q7TQ2. lo-‘cmW2sec-’ 

where f is the repetition rate and Q is the gaussian sigma beam size at the interaction point 
given in meters. 
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Equations (19), (23), (24) and (25) may be combined for the Uoptimized triplet” to yield 
the inequality 

Bet* 2 9 - lo-“K t 4 
PT 0 

kGauss m . (26) 

This equation applies for a round beam spot at the interaction point. It tells us that for a given 
luminosity there is a minimum product of Bc and 1’ required. This result is independent of 
whether sextupoles are used for the chromatic correction process. As will be seen later for a given 
luminosity, sextupoles allow a larger 1’ than would otherwise be possible with an uncorrected 
system. 

Combining Eqs. (21) and (25), the attainable luminosity for the triplet without sextupole 
corrections is 

f! 5 (g) (&,,J - 10-4cm-2sec-’ (27) ; 

for a beam with a rectangular momentum spectrum. If satisfactory luminosity cannot be 
achieved with just a simple symmetric triplet, then the introduction of sextupoles to elimi- 
nate the quadrupole chromXi?dist&tions, manifested by the Tl26 and 2’34s aberrations, is a 
logical recourse. This is what was done for the present SLC design. 

6. The Final Focus System for the SLAC Linear Collider 

The basic parameters for ‘the initial SLC design were the following: 

l Beam Energy 2 60 GeV. 
(Nominal Design Value = 50 GeV.) 

l Linac Emittance, c = 3 *1O-1o meters. 

o Linac Momentum Spread 6,,, = &. 
(The distribution is assumed to be rectangular.) 

l Required 1’ to accommodate the particle detectors 

For the Mark11 I*= 2.8 meters 
For the SLD 1*= 2.2 meters 

l t& = fi 5 2 pm round spot (including optical distortions). 

l Assumed maximum disruption angle 80 5 2 mrad (for magnet aperture purposes). 

l The maximum number of particles/beam N = 5. lOlo. 

l Beam repetition rate = 180 pps (later reduced to 120 pps). 

The task was to design a final focus system meeting the above specifications which was also 
compatible with physical constraints dictated by the SLAC site. To achieve these specifications, 
it was decided to adopt a “sextupole corrected” solution. 

Several possible FFS systems were studied during the preliminary design studies!“’ Eventu- 
ally the design converged to the basic optical system shown in the block diagram below. Details 
of the completed design have been reported at the 1987 Washington Accelerator 

1st Conference. 
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In the remainder of this report, we discuss the conceptual design considerations leading up 
to the adopted SLC design. 

i 7. Block Diagram of SLC Final Focus System 

SW 5BosAo 

Fig. 4. A block diagram of the SLC final focus system. 

l All segments of the block diagram are telescopic transformers. 

l The final lens system is a symmetric quadrupole-triplet. 

l The chromatic correction section is a modified second-order achromat!‘] Sextupoles and 
dipoles are needed -in this region to eliminate the second-rder chromatic aberrations 
in the x and y transverse planes’which originate in the final lens system nearest to the 
interaction region. 

l The matching section- need&d to match the p and n functions at the exit of the SLC 
arcs. 

FFS BEND 

INITIAL TRANSFORMER 

It---- [:-;I -1 M,=& 

CHROMATIC CORRECTION SECTION 

/----I~ -:l+llb’ -+--j 

A, Jl * A v 

SF SD SF SD SF SD *II SF SD 

FINAL TRANSFORMER 
Soft Bend 

IP 

2-87 569181 

Fig. 5. Detailed schematic diagram of the SLC final focus system. 
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A schematic diagram of the optics is given in Fig. 5 showing the individual optical lenses 
required as taken from SLAC-PUB-4219. The functions of these individual subsystems are as 
follows: 

THE FINAL FOCUS BEND (FFB) 

l Removes dispersion which at the ends of the Arcs is given by t]% = 0.0474m 
andq,=q;=$,=O. 

l Transfers the Arc beams (with pz = 8.70 m, pV = 1.14 m and o=,s = 0) to the next 
subsystem with a transfer matrix equal to the negative identity matrix. 

l Provides a large, achromatic bend needed to satisfy global geometry constraints. 

l Provides quad/skew-quad pairs separated in phase by - r/2 to remove the accumulated 
anomalous dispersion caused by perturbations in the Arcs. 

THE INITIAL TRANSFORMER (IT) 

l Initiates demagnification and provides a round beam, with &, = 0.12 m and (Y%,~ = 0, 
to the next subsystem. 

l Provides trims on the two last quadrupoles to adjust /3& at the I.P. 

l Provides a region where&he e $-;c- path-length difference was adjusted. 

THE CHROMATIC CORRECTION SYSTEM (CCS) 

l Corrects the dominant second-rder chromatic aberrations, Tl2e and T346, at the I.P. 
without introducing other second-order geometric or chromatic aberrations. 

l Provides s bend geometry to reduce synchrotron radiation (SR) background in the particle 
detector. 

l Provides space for a low field soft bend magnet to further reduce SR background. 

THE FINAL TRANSFORMER (FT) 

l Completes the demagnification process. The magnification in this transformer is the same 
in the z and y planes, so that at the I.P. the ideal beam is round, with an optimum 
p:,y = 0.008 m and (Y%,~ = 0. 

l Allows independent adjustment of the axial position of the beam waists to match the 
position of coincidence at the I.P. 

l Provides a skew quad for suppression of cross-plane coupling between z, y’ and z’, y at 
the I.P. 

8. Characteristics of Second-Order Aberrations 

The following optics principles were used in the SLC design so as to avoid or minimize the 
accumulation of second-order aberrations. 

l Separated-function quadrupoles do not introduce second-order geometric aberrations. 

l Identical sextupole pairs separated by a minus unity (-1) transformation matrix can selec- 
tively couple to chromatic aberrations without introducing second-order geometric aber- 
rations. 
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l Identical dipole pairs separated by a  m inus unity (-1) transformation matrix do  not intro- 
duce second-rder geometric aberrations. 

The above principles are the basis of the second+nder achromat ‘I1 which can more generally 
be  stated by the theorems listed below. 

9. The Second-Order Achromat 
: 

THEOREM A 

If one combines four or more identical cells consisting of dipole, quadrupole, and sextupole 
components with the parameters chosen so that the total first-order transfer matrix is unity 
(+I) in both transverse planes, then all geometric (on momentum) second-order aberrations 
will vanish. 

THEOREM B 

If the two sextupole families are adjusted so as to make one second-order chromatic aberra- 
tion vanish in each transverse plane, then all second-order aberrations (geometric, chromatic, 
and path length) will vanish except for those path-length terms which depend only upon the 
momentum of the particles. The non-vanishing terms are Rss and T566. 

If both theorem A and %&em 6 are satisfied, then we-call the resulfig system a Second- 
Order Achromat. An optical lattice having these properties is shown in F ig. 6. 

V” -“A V W -“11 
‘.-- 

OF QD QF OD QF QD QF QD 
6-84 4809A12 

Fig. 6. Optical lattice of a  typical four-cell second-order achromat. 

The optical mode l adopted for the chromatic correction section of the SLC, as shown in 
F ig. 5, is a  mod ified second+rder achromat. The essential difference is that in the chromatic 
correction section the dipoles are posit ioned only in places of low q  so as to m inimize emittance 
growth caused by fluctuations in the synchrotron radiation energy loss. 

In this mod ified achromat, the quadrupoles and sextupoles still satisfy repetitive symmetry 
such that all second-order geometric aberrations cancel. The dipoles are posit ioned so as to m in- 
imize emittance growth from synchrotron radiation quantum fluctuations and the two sextupole 
families are adjusted so as to cancel the Trzs and Ts4e second order chromatic aberrations for 
the entire &al focus system. 

10. Residual Third-Order Aberrations 

Having introduced the above symmetries into the design, all of the second-order aberrations 
will vanish or at least become sufficiently small that they are of no  practical consequence. W e  
are then left with the residual third-order geometric and chromatic aberrations as the lim iting 
factors in the achievable luminosity. 
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In TRANSPORT notation we find that the important residual third-order aberrations in 
the x plane are the following: 

and 
ul266 = (+‘62), Ul446 = (+t26) 

u1222 = (+‘3), Ul244 = (+‘d2) * . 

Similar residual aberrations occur in the y plane optics. 

The design is optimized by observing that U 126s is the dominant residual aberration in 
the x plane. The other three aberrations can be shown to be functions of the magnitude of the 
dipole strengths used in the CCS. The stronger the dipole, the weaker these aberrations become. 
However this has to be balanced against the emittance growth caused by the dipoles. The design 
is adjusted so ss to make the contribution from these three aberrations approximately equal to 
that from the UlZes term. The combination is then folded with the monoenergetic beam size so 
as to achieve the minimum p(S). An approximate equation has been derived representing this 
minimization process; the result is the following: 

(28) 

_- 

where B(S),;, = 2p’(O) is the average beta function at the interaction point. (RrrUr266) is 
evaluated for the entire FFS measured from the input to the interaction point when I’ = 1, i.e., 
Ul26~j is proportional to 1’. Using TRANSPORT to evaluate u12es, the net result for the final 
SLC design is 

P(J)min 1 loo 1’6kaz (29) 

‘.-- 
where as before S,,, is the maximum 4 for a rectangular linac momentum distribution and 1’ 
is the distance to the interaction point from the exit face of the last quadrupole in the symmetric 
triplet lens system nearest to the I.P. (measured in m). 

Combining this result with Eq. (25) for the luminosity, we obtain 

L,,, 5 (z)(k) -10m6cmm2sec-’ . (30) 

These equations are approximate but seem to be valid for S,,, > &. For 6,,, less than &, 
the residual geometric aberrations begin to dominate and the assumptions break down, at least 
for the SLC design. 

It is interesting to compare this equation for luminosity with that for the triplet alone. We 
find that 

so for the SLC specification of 6,,, = &, the gain in luminosity is l6 as a result of using the 
z 

sextupole corrected solution. 
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11. Summary 

As a summary, a “cookbook” solution for designing SLC type systems is given below ss a 
guide to the reader. 

l Use telescopic transformers for the basic optics modules. 

l Design the transformer nearest the interaction region so as to minimize the path lengths 
between the monoenergetic trajectories. 

l Use a modified form of the second-order achromat for the design of the chromatic correc- 
tion section. 

l Choose the location of dipoles in the chromatic correction section so as to minimize emit- 
tance growth. 

l Choose the dipole strength so as to minimize the overall effect of third-order aberrations 
and emittance growth. 
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