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1. INTRODUCTION 

The introduction of isospin by Heisenbergl to describe the two charge states 

of the nucleon, proton and neutron, has proven to be a far-reaching contribu- 

tion to the understanding of the structure of matter, and is still a problem of 

importance in nuclear and particle physics .2 Isospin is the first internal symme- 

try that has been introduced which acts on the particle identity independent of 

space-time. The extension of the SU(2) symmetry to higher internal symmetries 

SU(3), SU(4), . . . is extremely successful in the classification of the hadron spec- 

trum and led to the recognition of more fundamental structures, quarks, from 

which all the hadrons are built.3 Furthermore, the requirement of local gauge 

invariance under SU(2) rotations4 played a central role in building the prototype 

of the modern renormalizable gauge theories which describe the fundamental 

interactions among the basic constituents of matter. 

Isospin is broken by the electromagnetic and weak interactions which are 

flavor-dependent, i.e., they distinguish among the various types of quarks (u, d, 

s, c, . . .). Yet, another source of isospin violation is the quark mass difference 

m, - md. In the limit m, -+ 0 and md --+ 0, the basic Lagrangian of quan- 

tum chromodynamics5 (&CD), th e candidate theory of the strong interactions, 

is SU(2)hx Sum invariant or, invariant under the isospin SU(~)L+R - SU(2)v 

group if mu = md. Although the origin of the masses of quarks and leptons is 

a deep unsolved problem, it is generally believed that the different masses are 

generated by the Higgs mechanism from different Yukawa couplings in the elec- 

troweak sector of the theory. In the standard SU(2) x U(1) model6 there are 

no zeroth-order relations among quark masses, which are thus introduced as free 

parameters. Isospin is not a natural symmetry in this model and, unless addi- 
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tional symmetries7 are introduced in the theory, mu and md are unrelated. The 

observed conservation of isospin to within a few percent would reflect the small- 

ness of the u- and d-quark masses with respect to the hadronic scale (accidental 

symmetry) rather than the degeneracy of m, and ?nd (exact SU(2) symmetry). 

Moreover, it is not likely that the isospin breaking effects would be generated ra- 

diatively within the framework of a broader scheme for the particle interactions.8 

Early evidence of charge asymmetry in the nuclear interaction came from 

the precise measurement of binding energies in mirror nuclei,g which suggested 

a slightly stronger short-range n-n attraction to account for the observed 

differences.lO The construction of ‘So charge asymmetric potentials from p - w 

and no - q mixings11112 has been successful in describing the charge symmetry 

breaking, and accounts for a significant part of the observed effects13j14 in the 

3H -3 He mirror nuclei. At the hadronic level, the particle mixing parameters can 

be obtained from experiment in a model-independent way.15 The particle mix- 

ing is parametrized in terms of a tadpole which depends linearly on the quark 

mass difference. Consequently, any charge asymmetric effect should vanish in the 

iSOSpin limit e --) 0, mu = md. 

. The effect of the isospin corrections at the quark level has been examined 

by Chemtob and Yang16 and by Hwang17 using the resonating group approach 

in a quark cluster model. It is found that the isospin-violating contributions 

are enhanced in the quark description, relative to a mesonic description, due to 

the short-distance quark mass effects. l6 Furthermore, since the effect of quark 

exchange is sensitive to the nucleon radius, one could expect an enhancement of 

the charge symmetry breaking effects17 in a nuclear medium due a change of size 

of the nucleon. This could resolve l7 the anomaly observed in the binding energy 
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of mirror nuclei, the “Nolen-Schiffer” anomaly.g 

The situation concerning the determination of charge-symmetry breakdown 

in low-energy N-N scattering experiments has been rather confusing. Since the 

properties of the neutron-neutron (n-n) interaction cannot be inferred from di- 

rect collision experiments, the extraction of the n-n scattering parameters is tied 

to the analysis of final-state interactions (FSI) where two or more nucleons are 

present in the final state. In the presence of three hadrons in the final state 

the theoretical calculation, which is generally based on the use of the Fadeev 

equations, becomes quite intrincate and the theoretical uncertainties difficult to 

evaluate. To avoid large errors in the extraction of the scattering parameters, the 

analysis is usually restricted to a limited kinematical region where n-n quasi-free 

scattering dominates. The often quoted value of the n-n ‘SO scattering length 

a nn = -16.6 f 0.6 fm l8 based on a straight average of a large number of mea- 

surements, is smaller in absolute value than the Coulomb corrected value of app 

determined from low-energy p-p scattering: a,, = -17.1 f 0.2 fm lg thus sug- 

gesting a stronger p-p force.20 The above value for arm is heavily weighted by 

experiments with three hadrons in the final state and does not include a theoret- 

ical uncertainty. 21 On the other hand, the utilization of the capture reaction 

to study the properties of the n-n interaction is of special interest, since the three 

particles in the final state are detectable and only the two neutrons interact 

strongly. Hence, the extraction of the low-energy n-n scattering parameters is 

free from the theoretical uncertainties inherent to other nuclear reactions and the 
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study is not restricted to a particular kinematical region, thus making it possible 

to obtain also the effective range parameter r,,. 

A recent high-precision determination of unn from r-d --+ 7 nn 22)23 using a 

high statistics photon spectrum gives the value unn = -18.5 f 0.4 fm 24j25 consis- 

tent with the charge asymmetry in the 3H -3 He nuclei, but in contradiction with 

the results obtained from the study of nuclear reactions with three nucleons in the 

final state. 

How to reconcile those contradicting results which differ by almost three 

standard deviations? A discrepancy which is clearly beyond experimental er- 

ror. To find a way out of this dilemna, Slaus, Akaishi and Takaka26 suggest an 

ingenious mechanism to explain the difference between the radiative pion cap- 

ture results and the results from the neutron-induced deuteron breakup reaction 

nd + pnn, which in turn differ according to the distinct kinematical region stud- 

ied: a nn(nd + pnn, knock out) = -20.7 f 2.0 fm and a,,(nd + pnn, pick-up) = 

-16.7 f 0.5 fm. The mechanism is based on a specific model for the three-body 

forces and operates differently for neutron pickup and proton knockon processes, 

hence removing the apparent discrepencies. It has also been pointed out27 that 

a detailed study of the extended electromagnetic structure of the pnn state in 

the deuteron breakup reaction is relevant to the comparison with the scattering 

parameters obtained from (1.1). 

Coon and Scadron have examined the charge asymmetric and charge depen- 

dent effects in the N-N interaction including two pion exchange contributions.28 

The calculated effect on the charge asymmetry in the scatttering length 

I arm 1 - 1 a,, I= 1.2 fm from p - w, K - v - Q’, 27r and 77r" boson exchange, is 

in good agreement with the experimental value of arm obtained from (1.1) and 
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the 3H-3He mass difference. The short distance quark mass effects calculated in 

Refs. 16 and 17 gives a contribution of the same sign and even still larger. How- 

ever, a recent calculation including QCD charge dependent corrections2’ finds 

a small effect of the quark mass difference on the asymmetry of the low-energy 

scattering parameters, due to a partial cancellation of the quark kinetic energy 

and the color magnetic interaction. 

In view of the new developments discussed above, spurred by the interest 

in understanding the properties of the nuclear interaction in terms of the basic 

degrees of freedom, we will reexamine some of the theoretical calculations and 

assumptions used to analyze the energy spectra of reaction (1.1). This is of 

importance to make a precise determination of the n-n scattering parameters 

from the strong enhancement in the energy spectrum of (1.1) due to the n-n 

interaction in the final state, as originally proposed by Watson and Stuart30 to 

test the charge symmetry of the nuclear forces. 

We should mention here that subsequent theoretical developments of the 

reaction (1.1) 31-36 have shown that the approximations used in Ref. 30 are indeed 

remarkably good, and the extraction of a nn using the different theories gives 

essentially the same results within 0.4 fm. We can understand this result as 

follows: the value of unn depends mainly on the asymptotic behavior of the n-n 

wave function, and is largely independent of the short-range description of the 

nuclear force. The scattering length is determined at low energies of the n-n 

system, where the normalized spectrum is insensitive to the secondary effects 

calculated here and elsewhere. For this reason, we should consider the recent 

measurement of Unn from ( 1.1)22j23 as a serious indication of a departure from 

charge symmetry. 
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i Indeed, a completely different experimental technique has been used recently37 

to detect the neutrons in coincidence with the photon. The analysis of the time- 

of-flight neutron spectrum is much less dependent on theoretical assumptions, 

since the value of the scattering length is determined in this experiment from 

the low-energy n-n spectrum where the theoretical uncertainty is negligible. The 

neutron spectrum gives Unn = -18.7 f 0.6 fm.37 This new determination of arm 

rules out a possible systematic error in the previous experiment22123 based on the 

photon spectrum analysis. 

In this paper we discuss the methods utilized previously23 in the description 

of the FSI in the lSo n-n scattering state, and develop a convenient formalism 

to include the FSI in the higher partial waves. The latter calculation has not 

been carried out in detail before due to the rather complex spin structure present 

in this reaction, which is manifest in the large number of independent invariant 

amplitudes. 

Let us resume briefly the contents of this article. After discussing the eigen- 

amplitude and multipole expansion in Section 2, we describe the FSI in the lS0 

channel in Section 3 and in higher waves in Section 4. The discussion of the results 

and some concluding remarks are-given in Section 5. Some useful formulas are 

given in the Appendix. 



2. MULTIPOLE EXPANSION OF EIGENAMPLITUDES 

Since the neutron-neutron interaction acts differently for each transition from 

a given orbital momentum, the scattering amplitude has to be projected in par- 

tial waves by a multipole expansion to describe the n-n FSI in each scattering 

state of (1.1). In practice, this is a difficult task due to the presence of three 

particles in the final state and the rich spin structure present in this reaction. 

Each multipole has to be coupled with the spin of the deuteron and expanded 

into singlet or triplet n-n amplitudes of given total angular momentum. To avoid 

unnecessary complications in our discussion we shall follow here a rather sim- 

ple approach in constructing the eigenamplitudes, by decomposing the orbital 

angular momentum states into their tensor representation. The nucleon spin is 

taken into account by contracting the spin variables with the components of the 

orbital angular momentum tensor, according to the transformation properties 

corresponding to the total angular momentum of the n-n system. The multipole 

amplitudes are eigenvalues of angular momentum and parity rather than linear 

momentum. 

We shall follow in this paper the notation and conventions of Refs. 35 and 

36, henceforth referred to as I and II, respectively. The electric and magnetic 

multipole transitions are denoted by EX(aS’lL~) and MX(2S+1L~), where X is 

the total angular momentum of the photon, X 2 1, and J, L and S are the 

total angular momentum, the orbital momentum and the total spin of the two 

neutrons in the final state. The dipole, quadrupole and octopole states for the 

allowed transitions from the S state of the pionic-deuterium atom are listed for 

reference in Table 1. 

8 
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A state of orbital angular momentum L will be described by an irreducible 

tensor representation of the rotation group, with components TiI,i2,...,iL symmet- 

ric and traceless in each pair of indices 

L = 0, 

L= 1, 

L = 2, 

L = 3, 

L = 4, 

T=l , 

Ti = jji , 

Tij = ~ (3~i~j - h;j) , 

where p’= $(pi - $2) is the relative n-n momentum. The tensor components of 

the representation are normalized in each state L according to 

PL(x) = Tili2 . ..Qiiliii2 ..A&, , x = fiGi , (2.2) 

where fi is a unit vector along some arbitrary direction, and PL(x) is a Legendre 

polynomial. 

We have indicated in Table 2 the tensor decomposition of total angular mo- 

mentum eigenamplitudes of the n-n system for the lower transitions. The singlet 

states are invariant under rotations, whereas the triplet states transform as a 

vector and are thus linear in the spin variable ai. The coupling of the orbital 

eigentensor T with the spin functions is determined by the total angular momen- 

tum J of a given n-n state. For example, the 3P~ state with J = 0, is described 

by the scalar product of a’ and p’which is invariant under rotations. The 3P~ 
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state with J = 1, is obtained from the vector product of a’ and p’, and the 3P2 

state corresponding to J = 2 transforms as a traceless symmetric tensor. The 

3F2 state is obtained by contracting the spin component ok with the tensor Tijk, 

which represents the orbital state F. Finally, the amplitude components of Ta- 

ble 2 are contracted with the deuteron polarization vector f and with a tensor 

representing a given electric or magnetic multipole transition, with components 

written in terms of the photon direction i and the photon polarization E’: 

El ci = Ei , 

M2 (L X Z)ikj + (L X Z)jki = Mij . . . , 

We shall neglect correction terms which are smaller by a factor p2/m2, k2/m2 

and kp/m, which are of the same order of magnitude as the relativistic con- 

tributions. To this approximation, we shall keep the electric dipole amplitudes 

E1(lSo), El(lDz), th e magnetic dipole M1(3Po), M1(3Pl), M1(3P2), the electric 

quadrupole E2(3P~) and E2(3P2), and neglect the higher multipole amplitudes 

given in Table 1. For completeness, we also include the magnetic dipole amplitude 

M1(3Fz), although its contribution is very small. 

In terms of the 2 x 2 matrices given in Table 2 and the multipole compo- 

nents (2.3), the electric and magnetic dipole and electric quadrupole transition 

amplitudes are given by 

3~1 = X+ {El(‘So)Z* $+ El(1D2)EiqjTij} Xc 7 
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SM1 = x+ Ml(3Po)+?. l;)rl’. (I x 2) 

+ M1(3PI)i(a’ x fi) - [fj’x (I x 7)] 

+ Ml(3P2)a~ijkUkm7],~i~j 

+ M1(3Fz)iEijkVk,q,~i~j Xc 3 > 

P-5) 

SE2 = X+ {E2(3P~)i~ijk~jBkEi,rlm 

+ E2(3Pz)i~jjkUjmEk,qi) Xc , 

(2.6) 

with xc = icrzx*. The transition matrix can also be expanded in terms of 12 

rotational invariant independent forms Ati), i = 1,. . . ,12, constructed from the 

indepedent vectors and the Pauli spin matrices as follows35 

s = x+~x(‘)f,(p2,+0 , 
i=l 

P-7) 

where z = fi . i, and the scalar amplitudes fi are functions of the kinematic 

variables. The Aci) are listed in Table 1 of I. The number of invariants correspond 

to the number of independent helicity amplitudes for the capture of the pion from 

rest. We can express the scalar amplitudes fi in terms of the multipole amplitudes 

as follows: 

fl = El(%) - ;El(‘D2) , (2.8a) 

f2 = M1(3PO) - M1(3P2) - ;M1(3F2) - 3E2(3P2) , (2.8b) 

j-3 = M1(3PI) + ;M1(3P2) - ;Ml(3F2) - E2(3PI) - ;E2(3P2) , (2.8~) 

f4 = -M1(3PI) + ;M1(3P2) - ;Ml(3Fz) - E2(3PI) + ;E2(3P2) , (2.8d) 

f5 = +(92) , (2.8e) 
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f6 = ;M1(3F,) , (=f) 

f7 = 6~E2(~Pz) , . (2-Q) 

f8 = 2E2(3P~) + 3E2(3P2) , (2.8h) 

f9 = fl0 = fll = f12 = 0 , (2.8i) 

It is not difficult to construct the invariant amplitudes in higher waves or extend 

the procedure introduced here to other particle reactions. 
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3. FINAL-STATE INTERACTIONS IN THE ISo STATE 

The large scattering length of the almost bound lS’0 N-N state dominates 

the low-energy scattering which is largely independent of the specific form of 

the nuclear potential. To first approximation, it is expected that the energy 

spectrum of (1.1) will show little sensitivity to the model-dependent features of 

the theoretical analysis, since the force between the two neutrons at low energies 

have a large effect on the photon spectrum. Nonetheless, to improve the bounds 

of theoretical uncertainty to a limit where the determination of charge symmetry 

breaking is meaningful, a careful analysis is needed even if the scattering length is 

known to be very sensitive to any charge-dependent effect. Indeed, using the first 

order perturbation formula for the scattering length differences,2 6a = arm - aPP, 

6a 
- = am 
a J 

dr u;(r)SV(r) , (3-l) 

where me is the ‘So asymptotic wave function normalized by uc(r) = 

sin (kr + 6)/ sin 6, it follows that 

6a a6V -N-- 
a bV ’ (3.2) 

with b the radius of the potential. Since the coefficient a/b in (3.2) is a factor 

of order 10, the charge dependent effects are largely magnified. Typically a 1% 

change in the potential produces a change of 3 fm in the scattering length. The 

contribution from nonelectromagnetic terms are of the order of (m, - md)/b, 

with A the QCD scale (taken here as the nucleon mass). Since this effect is at 

the 0.5% level, we could expect a 1.5 fm different for 6a. Consequently, we should 

maintain our theoretical uncertainties well below: 0.15-0.20 fm. In this section 
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we discuss the different approaches used in the description of the FSI in the lS0 

state of the neutron pair and present a method for evaluating some integrals 

appearing in the calculations. 

Let us discuss first the problems encountered in the treatment of the FSI 

based on a specific nuclear potentia1.30~31~34 Le aving apart the computational 

complexity, the main obstacle encountered in this approach is a problem of sen- 

sitivity of the theoretical analysis to the scattering parameters. The standard 

N-N potentials are constructed to reproduce the proton-proton data, and thus 

correspond to a fixed set of values for the scattering length and effective range. 

A model based on such potential, has only asymptotic sensitivity; i.e., only sen- 

sitivity to a variation of the low-energy parameters appearing in the n-n phase 

shift: 

p Cot 60(p) = -l/Unn + i rnnp2 + . . . . (3.3) 

As we mentioned above, such lack of flexibility for a given nuclear potential is 

of little importance in the extraction of the scattering length arm, which depends 

largely on the properties of the wave function outside the range of the nuclear 

forces, but should be taken into account in a serious attempt to determine the 

effective range r,,. The effective range parameter represents the zero-energy 

variation of the actual wave function with respect to the asymptotic wave function 

within the range of the nuclear interaction, and is thus dependent on the model 

used to describe the nuclear forces. To give a specific example, a model based on a 

wave function obtained from a Reid soft-core potential (RSC),38 has a sensitivity 

to rnn lowered by a third,23 as compared with the methods discussed below. 

An alternative model-independent description of the FSI in the reaction (1.1) 
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is based on dispersion relations.32j35j36 The d’ aspersion relations were solved to first 

order in Ref. 32, and an exact solution in closed from was found in I (Ref. 35) 

by studying the analytic properties of the Omnes-Muskhelishvili equation in 

the complex energy plane. The analytic solution was extended in II (Ref. 36) 

to describe the pion rescattering effects including the energy dependence of the 

pion-nucleon amplitude. 

In the usual treatment of final-state interactions based on dispersion 

relations,32’35 only the singularities from the Born term are considered in the an- 

alytical structure of the transition amplitude. Elastic unitary gives the enhance- 

ment to the Born amplitude in the form of an Omnes-Muskhelishvili solution to 

the dispersion problem. This corresponds to the neglect of all the singularities 

not included in the amplitude constructed from the model-independent part of 

the n-n wave function, sin (pr)/pr. To neglect the remaining singularities it is ar- 

gued that, due to the short range of the final-state interaction, they are far away 

from the physical region in the energy plane .3g This approximation is justified 

in a calculation aimed at the determination of the scattering length,35 which is 

independent of finite range effects, but is insufficient to determine the effective 

range parameter, since the model-dependent part of the wave function is very 

sensitive to the finite range of the interaction. The singularities arising from the 

model-dependent part of the wave function cannot be ignored in the latter case. 

In fact, this approximation which amounts to neglect left-hand cuts from crossed 

channels in the dispersion integrals is responsible for an overestimate of 50% in 

the effect of the finite range of the interaction. 23 This result clearly contradicts 

the common wisdom, which ignores the effects from left-hand cuts at low ener- 

gies. Similar results were obtained some time ago by TruhlLk40 related to the 
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spectrum normalization of the negative muon capture in deuterium. 

How shall we describe the nuclear interaction? A suitable approach to this 

problem is to follow the inverse scattering method of Gelfand-Levitan4r to gener- 

ate the n-n wave function from a given set of phase shifts, leaving arm and r,, as 

free parameters. Other parameters are varied within a reasonable range, and the 

effect on arm and rnn is evaluated. A most convenient form of parameterization 

of the phase shift, which presents great advantage for simplifying the actual cal- 

culations, is either in terms of Bargmann potentials42 for which the Jost function 

f(p) is a rational function 

f(P) = fi(P - aPk)/(p - iak) > (3.4 
k=l 

with the phase determined by 

e2i60(p) = f (P)/f (-P) , 

or by separable potentials of the Yamaguchi type43 given by 

(a I v I P> = -dd g(P) 7 

with 

g(P) = eAk,(P’ + ai) * 
k=l 

The phase shift is determined for the separable potential by 

P cot SO(P) = (I+ G(p))/s2(p) > 

16 

(34 

(3.6) 

(3.7) 

P-8) 



with 

N A; 
G(P) = c - 

ai - p2 

kzl 2ak (p2 + ai)” 

ak 

p2 + ai 
. (3.9) 

For N = 1 we have 

al = (I+ 2mn/ann)1/2 + 1 [ 1 /r,, , (3.10) 

(1 + 16rnn/9ann)1’2 + 1 1 /r,, . (3.11) 

For N = 2 the Bargmann or Yamaguchi potentials depends on four adjustable 

parameters which are related to a nn, rnn, the energy where the phase goes through 

zero, and the coefficient of the asymptotic expansion of the phase shift44, t&(p) + 

A/p when p + co. The transition amplitude corresponding to the Yamaguchi 

potentials have the same analytical structure in the complex energy plane as 

the closed-form solutions given in I and II, and the formulas in those references 

can be used with a simple resealing of the range parameters. For example, for 

N = 1 we make the replacement ~1 + al. It is a relatively simple exercise to 

extend the analytical formalism expound in I and II to include more elaborate 

separable potentials, as the recently proposed separable representation45 of the 

Paris nucleon-nucleon potential.46 

Finally, we would like to have a convenient method for dealing with any 

n-n wave function, obtained from an arbitrary potential. This will allow us, in 

particular, to compare the result obtained from simple parameterizations with 

the shape of the spectrum obtained from realistic potentials38p46 for determined 
# 

values of the scattering parameters. To this purpose, we obtain a closed-form 
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solution for the asymptotic n-n wave function, and integrate the difference with 

the exact wave function within. the range of the nuclear interaction where the 

scattering wave function is modified. 

Writing the transition amplitude as 

MS = #-)(p,r) rf(r)d3r J , (3.12) 

where $$ (-1 (p,~) denotes the S-wave of the outgoing neutrons with relative 

momentum p 

&)(p, r) = ei60(p)ws (p, r)/pr , (3.13) 

and f(r) all the other factors which are given explicitly in I. Asymtotically 

W(P7) - ?&(p, r) = sin(pr + SO) . 
1-m 

(3.14) 

We can express (3.12) as follows 

,i60 (P> 
MS = ~ 

P 
[/ d3r Aw(~,r)f(r) + / d3r w;(~,r)f(r)] , (3.15) 

where Aws(p, T) is the difference of the actual wave function with the asymptotic 

wave function at relative momentum p 

Aw(P, 4 = WS(P, r) - w; (P, 4 , (3.16) 

and the second integral above is the transition amplitude in the zero range ap- 

’ proximation, that we shall label by Ms. A closed form solution for M!j! can be 

obtained if the deuteron wave function is written in the convenient form given 
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by Gourdin, et al. 47 Furthermore, a quite accurate parametrization has been ob- 

tained from the Paris potential,.which reproduces very well the deuteron static 

properties and form factors. 48 Using the expressions of I for the deuteron wave 

function and the transition operator for the radiative pion capture by the proton, 

we can express all the integrals which appear in Mi in terms of spherical Bessel 

functions 
co 

&(7,P, q) = 
J 

e’Prje(qr)hL(irr)yrdr , (3.17) 

0 

where 7 is a deuteron range parameter. To evaluate this integral, we use the 

Gegenbauer addition theorem of Bessel functions 

eiw/iw = 532, + l)j,(z)h,(Z)P,(cost9) , (3.18) 
n=O 

where 

w = (Z2 + z2 - 2ZZCOSB)‘/2 , and Izl<lZI . (3.19) 

Using the orthogonality of the Legendre polynomials and integrating over r we 

obtain 
1 

/ 

fi(x) 

t(x) [t(x) + p + iE] 
dx , (3.20) 

-1 

with t(x) = (q2 + r2 - 2i7~) / . 1 2 The integral has been evaluated at p + ie to 

ensure convergence at infinite T, but this procedure corresponds precisely to fix 

the variable p at physical values of the energy. In terms of the variable t 

b(7,PA) = & 
J 

dt ‘t(q2 - r2 - t2/2i7q) 

P-t 
-q-i7 

(3.21) 

It follows from the above equation that there is a branch cut from -q - i7 
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to q - i7 in the complex t-plane, with a discontinuity given by 

disc -b(r,zwd = -;P,(q2 - r2 - p2/2i7q) , (3.22) 

and thus 

-t.n 
7 - i(P + Q) 
7 _ qp _ q) + w-1 (7, P, 4 , (3.23) 

where We-1 (7, p, q) is a polymonial of degree e- 1 in the variable (p2 +r2 -q2)/7q, 

and is determined by the condition that the function Il(7, p, q) is not singular 

near q = 0. In practice Wt-r is obtained after taking real and imaginary parts 

of (3.23) for a given L For an S-wave transition we need to consider only e = 0 

and 2, and we obtain 

Mi = z sin&oeibO F CA { [c (,A,,, $9 + cot 60s (,A,,, 3)] TA(P2,k) 

+ 4> ‘k” (P’+ykl)) , (3.24) 

which corresponds to the result obtained in I in the zero range limit. In the above 

expression, the sum is over the number of poles 7~ of the deuteron wave function 

with residues CA, p is the asymptotic D- to S-ratio, and 

2 
n(p2,k) =I++ $+2Jz r” * p2 (1 - xi) ) 

with 

xx = (p2 + k2 + -y;)/pk . 
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The functions S(7,p, q) and C(7,p, q) are defined by 

S(7,zu) = i en 
r2 + (P + qJ2 

r2 + (P - q’)2 ’ 

and 

C(7,p, q) = t tan-l 
[ ( 

27!l 

r2 + P2 - q2) > 1 +E7r , 

(3.27) 

(3.28) 

with 

15 = 0 if r2 + p2 - q2 2 0 , 

e = 1 if r2 + p2 - q2 < 0 . 

The calculation of the transition amplitude for an arbitrary nuclear potential 

is reduced to the numerical evaluation of the first integral in (3.15) in terms of 

Aws(p, r) within the range of the nuclear forces. We show in Fig. 1 the difference 

function Aws (p, r) for various interesting examples discussed here. For practical 

purposes the integral vanishes beyond 3-4 fermis. We have indicated in Fig. 2 the 

effect in the shape of the normalized energy spectrum of different approximations 

used in the description of the final-state interactions in the ‘Se state of the 

outgoing neutrons. The effect is almost indistinguishable at the level of the 

drawing for the various models considered. However, a significant departure is 

observed for the zero-range approximation and the dispersion relation solution. 

We have not performed a systematic evaluation of the nonlocal effects on 

the low-energy scattering parameters, due to our present ignorance of the impor- 

tance of the presence of short-range nonlocality in the nuclear forces. We know, 

however, from the work of Gibbs, Gibson, and Stephenson34 that if the nonlocal 

behavior near the origin is similar for the initial np and final nn systems, the 

effects on the spectrum are cancelled nearly completely. 
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4. FINAL-STATE INTERACTIONS IN HIGHER WAVES 

To include the effect of the ‘n-n FSI in higher waves, we perform a partial 

wave expansion of the n-n scattering wave function. Pauli exclusion principle is 

taken into account by decomposing the transition amplitude into the rotational 

invariants given in Table 1 of I corresponding to the 12 amplitudes ji, which are 

in turn expanded into multipole eigenamplitudes using (2.8). At low relative n-n 

momentum, only the P-waves are of some importance. The dominant contribu- 

tion corresponds to the 3Po state of the neutron pair. However, the probability 

amplitude to find the neutrons in the final state of r-d + ynn in a 3Po state 

is zero in the impulse approximation. This is clear from Eq. (2.8), since the 3P~ 

amplitude contributes only to jz and, as shown previously in I, this amplitude is 

identically zero. Since we are computing a small correction, we shall use the dis- 

torted plane wave approximation to describe the higher n-n outgoing waves, and 

compute the higher wave enhancement keeping only the S-wave of the deuteron 

in the initial state (p = 0.0265). Going back to I, and looking at Eq. (2.11) of 

that reference, we see that only jr and j7 contribute to this approximation. Also, 

neglecting D and higher partial wave enhancement in the final state, we obtain 

from (2.8) the following result: 

fl = El(‘So) , j7 = ~zE~(~P~) , (4.1) 

and only the 3P2 enhancement survives. The effect from the 3 PI wave would have 

been three times bigger, and from the 3Po five times more important than the 

3 P2 enhance ment. Let us now perform the explicit calculation. For a P-wave: 

$$‘(p, r) = 6ieib1(P)wp(p, r)j . P/pr , P-2) 
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with 

wp(p,r),=sin pr-;+61 
( > 

. (4.3) 

Making use of recurrence relations for the spherical Bessel functions, all the 

integrals appearing in the calculation are amenable to the form 

ccl 

Je(7,P, q) = 
J 

eiP’jl(qr)ho(i7r)7rdr . 

0 

This integral is solved by using the expression 

and integrating over r. The result is 

(44 

(4.5) 

(44 

where the Q e z are Legendre functions of the second kind. The following result ( ) 

is obtained for the P-wave amplitude: 

Mp=Te is (“P4 toss (“P4 cod 

- x F” [SP (7,,,+) + tina (3P2) Cp (m,p, ak)] , 

where the functions Sp(7, p, q) and Cp(7, p, q) are defined by 

Sp(7,p, q) = (P/q)S(r,P, q) + (7lq)C(7, p, q) ’ 

and 

Cp(7, p, q) = (p/q)C(7, P, q) - (rlq)S(7, p, q) . 

(4.7) 

(44 

(44 
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Only the 3P2 enhancement is relevant under the approximations discussed above. 

The amplitude corresponds to an electric quadrupole transition E2(3P2). 

The amplitudes ji are obtained by removing a given n-n partial wave from 

the symmetric or antisymmetric combination of plane waves for the spin sin- 

glet or triplet states, and adding the scattering eigenfunction $(-I (p, r) in the 

corresponding partial wave for specified boundary conditions. To fix our signs 

and normalization conventions, we indicate the modification on the scalar am- 

plitudes ji [Eq. (2.11) of I] f rom S- and P-wave enhancement in the zero range 

approximation, and for a deuteron wave function r$(r) = e-‘Yrlr. The result is 

f1=47r ’ +q2 :,--$++) 
8 +r2 + 

+ 4 sin&oeibo pk [C (7&k) +cotbo S (w+)]} , 

’ 
q: +r2 

- 2 cod SP (7, P, fL) 

+ 12 case cosc51ei61 pk [G (w&) +tanb Cp (w,ik)]} , 

(4.10) 

with & = p’f !$ and 61 = 6(3P2j. Th e explicit formulas for the modifications 

of jr and j7 from the pion rescattering contributions is given in II. 
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5. DISCUSSION AND OUTLOOK 

We have presented evidence for charge symmetry breaking from the study 

of mirror nuclei and low-energy scattering experiments with nucleons. In our 

opinion, a consistent picture is emerging which suggests that the strong interac- 

tion is slightly more attractive for the n-n interaction than for the p-p system. 

Some theoretical implications were discussed as well as the inconsistency with 

the “world average” value l8 for the n-n scattering length, unn, which implies a 

stronger p-p force. It is not clear at the present time, however, if this significant 

difference would be explained by the three-body forces for the pick-up and knock- 

on reactions by the mechanism proposed by Slaus, Akaishi and Tanaka,26 since no 

conclusive evidence of three-body forces on scattering processes has been found 

yet4’ Furthermore, the distinction between three-body forces and two-body off- 

shell effects is still an open problem. 5o Further theoretical and experimental ef- 

fort is needed to ascertain the validity of the proposed mechanism.51 The “world 

average” value is a straight average over some 40 measurements, most of them 

with three strongly interacting particles in the final state and with large uncer- 

tainties. There is no reason to give too much relevance to this value. 

In the absence of colliding neutron beam experiments, the most unambiguous 

results from low-energy scattering reactions comes from the study of r-d + ynn. 

We have made a careful analysis of the methods used in the calculation of the 

final-state interactions in this reaction. We have also developed a simplified ap- 

proach for dealing with the n-n interaction in higher partial waves which, other- 

wise, is a cumbersome task due to the number of independent helicity amplitudes. 

Our study shows that the relevant contribution from the triplet P-waves comes 

only from the 3P2 state, being itself a small effect. The contribution from the 3Po 
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state is zero in the impulse approximation, and the effect from the 3P~ state is 

absent if we do not include the n state of the deuteron in the higher partial wave 

enhancement, this having a negligible effect. It is now clear why the previous 

calculations, without including a proper P-wave enhancement, gave a very good 

agreement with the photon spectrum of (1.1) at relatively high n-n momentum: 

the dominant n-n P-waves are suppressed in the radiative pion capture from rest 

in deuterium. Although unimportant for the extraction of unn, the inclusion of 

higher n-n partial waves is relevant for the extraction of r,,. We have developed 

a simple and coherent theory with all the important elements, valid in the en- 

ergy range relevant to the Lausanne-Munich-Zurich experiment22j23 (for relative 

n-n momenta up to 100 MeV/c). The present analysis of final-state interactions 

for the outgoing neutrons in the capture reaction (1.1) confirms our previous 

results23 for the n-n scattering length and effective range: arm = -18.5 f 0.4 fm 

and rnn = 2.80 f 0.11 fm. 

The corrections to the production mechanism of r-d + ynn were calculated 

in the framework of a covariant theory,52 without recourse to the impulse ap- 

proximation, by studying all the relevant Feynman diagrams and treating the 

deuteron as a composite object in -quantum field theory. The deuteron structure 

was introduced by means of neutron-proton-deuteron vertex functions depending 

on the momentum transfer, and the effect of meson-exchange currents was eval- 

uated by making use of the gauge invariance of the theory.52 The results from 

this elaborate theory do not modify our present conclusions regarding the charge 

symmetry breaking of the nuclear forces. 

It is important to understand qualitatively the origin of the charge symme- 

try breakdown in the N-N interaction, where QCD and the quark substructure 
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of the nucleon could play a significant role. 16J7,2g In particular, the quark mass 

difference and the-exchange process of the quark degrees of freedom would be 

expected to give an important contribution to the charge asymmetry. The lat- 

ter effect is reminiscent of the exchange force which arises in the study of the 

hydrogen molecule due to the symmetry properties of the wave function of two 

identical electrons. Similarly, the exchange properties of the wave function of 

the p-p or n-n system, due to the Pauli exclusion principle for quarks, gives 

rise to an exchange interaction which explains the short-range repulsion between 

nucleons.53 The symmetry properties of the wave function are different for the 

p-p or n-n systems due to the distinct identity of the quark content. The role 

of the nucleon substructure in determining the intermediate-range attraction of 

the nuclear interaction is still an open problem,54 and further investigation on 

the effect of the quark exchange in the charge symmetry breaking is needed to 

further elucidate this problem. 

A most interesting effect would originate from the modification of the nucleon 

properties in a nuclear medium, were a size increase in the nucleon could be 

expected. 53 Since the quark exchange effects depend on the overlap of the nucleon 

wave function, an increase in the nucleon size would enhance the effects from 

the charge asymmetry of the nuclear interactions. For a 10% increase in the 

nucleon size, as suggested by the EMC (E uro ean Muon Collaboration) effect,55 a p 

difference of -1.2 fm in the scattering length difference 6u = enn-app will increase 

to -1.6 fm in nuclear matter. l7 The discrepancy of binding energy differences of 

mirror nuclei, or Nolen-Schiffer anomaly, exists throughout the periodic table and 

increases significantly with the mass number A. 56 Although it is still premature 

to determine if the mechansim proposed in Ref. 17 could account for all the 

27 



observed binding energy differences, it is certainly important to investigate this 

point thoroughly. _ 

Finally, with our present knowledge of the proton from elastic and inelastic 

processes at low and high momentum transfer, it should be possible to reduce the 

theoretical uncertainty in the Coulomb correction of the p-p scattering length. 

A theoretical effort in this direction is worth attempting to have a completely 

unambiguous comparison with onn. 

Note Added: 

After finishing this work, we learned of a proposal by a Los Alamos-Oak 

Ridge collaboration for a direct n-n collision experiment from two simultaneous 

fusion-fision sources [D.W. Glasgow et al., Proc. Int. Conf. on Nucl. Data for 

Basic and Applied Science, Santa Fe (1985); D.W. Glasgow, private communi- 

cation]. The neutron beams transported through evacuated lines-of-sight collide 

at 3.8’, and the pulse of scattered events is confined within a kinematic forward 

cone. Center-of-mass (CM) energies of 2-38 keV are obtained for a 1-14 MeV 

fusion-fision spectrum. This has the advantage of having very slow (S-wave) 

colliding neutrons in the CM, but involving the detection of scattered neutrons 

at high laboratory energies, which outrace the background neutrons. The first 

stage of this experiment, necessarily carried out under extreme conditions, has 

been performed. It is expected that the experiment will be repeated and data 

obtained in the near future. 
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APPENDIX 

We give in this appendix various useful formulas related to the trace calcula- 

tions of the transition probabilities used in the evaluation of the energy spectrum. 

The transition probability is proportional to 

CIS12N (A-1) 

where N is the appropriate phase space factor and c indicates the average of 

polarizations for the initial state and the sum of spin in the final state. The 

photon polarization vector C(x) satisfies the following conditions 

,‘@ I .&() , (A-2) 

,-*PI . ,-@ ‘I = 6xX, , (A-3) 

The analogous condition for the deuteron polarization vector f(p) are: 

11’*(P) . 11’ b-J’) = &j PP’ ’ (A.5) 

3 

c 
,*($.p) = bij 

i 3 , (A-6) 
p=l 

since the pionic capture in (1.1) occurs from rest in the laboratory frame. Using 

the above equations and the explicit form of S given in Table 1 of I (Ref. 35) we 
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I 

obtain the following result 

=~~+bcos8+csin~tJ+dcos9sin~tJ , 

where 8 is the angle between the relative momentum of the two outgoing neutrons 

and the photon direction and 

a = ; [I fl I2 + l f2 I2 + l f4 I2 + 2 1 f7 I2 + 1 fll I2 + I fl2 I2 

- 2Re (f7f;l + f7f;z - fllf;z)] , 

. 

b= ~Re(fif;-f4f;+frf;l+faf;z) , 

’ = ; L3 1 f3 I2 + 1 f5 I2 + 1 f6 I2 + 2 1 j8 I2 + 1 jg I2 + 2 1 flo I2 - 1 fll I2 

+ 2Re (jl ji + f2 fi + f2f4* + f2f6 + f3f4 -i- f3fi 

+ j3 j; + j4 j; - j4 j; - 2 f7f;o + f7f;l + hof;2 - 2fllf;2)1 

d= $ Re(fsf; + f6f;2+f8f;o-- ft&) . 

(A-8) 
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Table 1. Dipole, quadrupole and octopole transition 

amplitudes to a 2s+1L~ n - n final state from 

an S state of the pionic deuterium atom. 

I Dipole Quadrupole Octopole I 

40 



Table 2. Tensor decomposition of total angular momentum 

eigenstates of the n-n system. 

Final n-n State J 2 x 2 Matrix 

lso 0 I 

3po 0 a-+ 

3pl 1 5x6 

3p2 2 % (aifij + ajfii ) - (a ’ 3) 6ij = U;j 

'D2 2 f (3$i#j - bij) = Tij 

3F2 2 + (5ai~j (3 ’ fi) - Oifij - Ojl;i - (G ’ fi) &j) = Kj 

3F3 3 0 

3F4 4 k (35pipjpkOt s - s s s s s a -) 
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FIGURE CAPTIONS 

Fig. 1. Radial n-n difference function AWS (p, r) for p = 10 MeV/c. The 

dotted line corresponds to a Yamaguchi rank-one potential, the 

dot-dot-dashed line to a Bargmann rank-two potential, and the 

solid line to a Reid Soft Core potential. The n-n scattering param- 

eters are fixed in this example to arm = -17.1 fm and r,, = 2.8 

fm. 

Fig. 2. Effect of final-state interactions on the shape of the spectrum. The 

solid and dotted lines correspond to the models described in Fig. 1. 

The dash-dot line is the zero range approximation, and the dashed 

line represents the dispersion relation solution. 
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