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ABSTRACT 

We study the electrodynamics of a PbTe-type bulk semiconductor with a 

domain wall. We show the existence of states bound to the wall. In the presence 

of static electric and magnetic field a current with abnormal parity and a non- 

zero induced electric charge are shown to exist. These systems are a physical 

realization of the parity anomaly of 2+1 dimensional QED. 



1. Introduction 

In relativistic‘field theories of Fermi systems it is quite common to find sit- 

uations in which classical symmetries are not respected at the quantum level. 

Such a situation is generally called an anomaly. The result is typically that a 

classically conserved current is found not to be conserved quantum mechanically. 

Another milder form of anomaly is found, for example, in electrodynamics in two 

space dimensions. In this case the electromagnetic current, although perfectly 

conserved, is found to violate parity (or rather CP).“’ 

In condensed matter physics one very rarely finds an anomaly of any of these 

types. The electrons in metals and semiconductors are non-relativistic and the 

chiral symmetry involved in the anomaly do not exist in that case. One might 

want to argue that the electrons are truly relativistic but one is observing a 

system at finite density. For instance an attempt has been made to explain the 

Quantum Hall EffectL2’ observed in two dimensional systems such as MOSFETS 

in terms of the parity anomaly’3’41 of 2+1 dimensional electrodynamics. This 

attempt failed for rather subtle reasons i5’61 (see Chapter 4). Alternatively one 

might want to consider lattice systems in which the band structure is such that 

the spectrum is effectively relativistic. For example, Semenoff17’ has proposed 

the study of “two-dimensional graphite”. However, he found that the odd parity 

current is cancelled due to the pervasive doubling properties of lattice relativistic 

systems. 

The purpose of this paper is twofold. On the one hand we want to show how 

bulk systems always fail to exhibit the parity anomaly. On the other hand, we 

also show that certain lattice systems, such as PbTe, whose bulk states can be 

described in terms of massive relativistic fermions (with a mass of the order of 

the gap) do exhibit the parity anomaly of 2+1 dimensional electrodynamics if a 

structural domain wall (or stacking fault) is included in the system: a shorter 

version of this paper is to be published elsewhere. Ia1 In fact the states bound to the 

wall are responsible for the anomaly. This idea, inspired by a seminal paper by 
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Callan and Harvey,[O’ points towards the rather important changes in the physics 

of the electronic states of systems with defects. For instance it is quite likely that 

dislocations and other forms of topological disorder may produce similar effects. 

To the best of our knowledge, apart from our proposal, the only other suc- 

cessful use of anomalies in condensed matter physics has only been achieved in 

the study of mass currents in superfluid He3 - A with chiral textures.[10-121 Our 

study also points to a close analogy with the physics of fractional charge in one- 

dimensional systems with solitons. 113’141 In addition our analysis shows a possible 

way to study lattice systems with chiral fermions by considering a lattice gauge 

theory in higher dimensions (say five) in the background of a soliton. 

The paper is organized as follows. In Chapter 2 a simple tight-binding model 

for PbTe type system is introduced and the equivalence with lattice Dirac (Kogut- 

Susskind) fermions is shown. A domain wall is introduced and the system is 

shown to be equivalent to relativistic fermions coupled to a soliton. In Chapter 

3 the electrodynamics of fermions in a soliton background is studied. It is shown 

that the electromagnetic current has an abnormal parity contribution equal to 

4e2 1 
(l-1) 

where p = 0, 1,2 (time, 5 and y) and s is a sign that depends on the way the 

ground state is filled. In Chapter -4 we show why is it that in very general terms 

a system on a two dimensional Bravais lattice does not exhibit the anomaly and 

neither would continuum massive relativistic fermions constrained to move on a 

surface. In Chapter 5 we consider the effects of a Zeeman interaction and of a 

Peierls distortion. We also discuss the behavior of the magnetic susceptibility. 

Chapter 6 is devoted to the conclusions. 
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2. The Model 

In Ref. 8 we introduced a phenomenological tight-binding model for the 

electronic states of PbTe in the background of a domain wall. We now proceed 

to briefly summarize its properties. We first discuss the pure system and later 

consider two types of defects: (a) a domain wall, and (b) an open surface. 

PbTe is a narrow-gap-semiconductor (NGS) ‘15’ in which the minimum of the 

conduction band and the maximum of the valence band are closest at the L 

points of the Brillouin zone, i.e. (5 % , f $ , f t). This effect appears to be due 

mainly to the strength of the spin-orbit interaction. Since other bands are unim- 

portant to the physics of the states close to the Fermi energy we can introduce 

a simple phenomenological tight-binding Hamiltonian which has essentially the 

same properties for states close to the L points. Let us then consider a system 

on a rock-salt structure. The Pb atoms sit on one cubic sublattice and the Te 

atoms on the other one. Consider two states per site (up and down spins). Let 

d:(T) denote the operator which creates an electron of spin cx at site 7. We 

now mimic the effects of a strong spin-orbit interaction by a spin-dependent hop- 

ping amplitude of the form Tai (for hopping in the i-th direction) where ai is 

the i-the Pauli matrix and T is the strength. In addition there is a site diagonal 

(spin-independent) term which equals M for Pb sites and -M for Te sites. The 

Hamiltonian is 

H = c [T(j;(?)cpf$p(t + 4 + h-c.] 
7,; = 1,2,3 

%P =t, 1 (2.1) 

where {ei} are nearest-neighbor lattice vectors. The states created by $2(-s’) 
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are linear combinations of p-like Wannier states which participate in the near- 

crossing phenomenon. 

It is a matter of elementary algebra to verify that the spectrum of this Hamil- 

tonian is 

E(-jE)) =f 
\i 

M2+T2xcoski. (2.2) 
i 

Thus, at the L points of the BZ, the energy gap is minimum with magnitude 

2M. For the NGS system like PbTe the gap is typically[‘51 of the order of 0.1 

eV. Thus the spectrum of states near the Fermi energy is similar to the spectrum 

of massive relativistic fermions with mass m - M/T. In fact by means of a 

simple change of variables it is possible to show that Eq. (2.1) is equivalent to a 

discrete versions of the Dirac Hamiltonian. This is shown most simply by spin 

diagonalizing the system. We write 

&Y(7) = P+y-l): y’“+l)(alza:a3z)ap~P(~) (2.3) 

where x, y, z are integers and CX, p label the spin components. The Hamiltonian 

now is 

H = C T J4Wli [&(7 +Zl) - Gap+ -q] 
j { r ,a 

- ti,+(?‘)(-ly+y [&(T+ + ;;;) - &(T+ - iT2)] 

(24 
+ ti,+(+);(-l)z+Y [$a(?+ + 23) - &(T+ - z-3) 

11 
+ c w-l)“+y+“ti,+(qfkY(T+) . 

-+ r ,a 
This is the form of the Hamiltonian for Kogut-Susskind fermions[‘61 (with two 

species of fermions, up and down) which is a discretization of the Dirac Hamil- 

tonian. We follow Ref. 16 and identify the behavior of the states near the Fermi 
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energy with that of the Dirac theory in a continuum. As shown by Susskind,[“] , 

Eq. (2.4) describes two species (four including spin) of Dirac fermions. Roughly 

speaking there are two sets of independent linear combinations of the eight am- 

plitudes on an elementary cube which constitute the two Dirac fermionic species 

(four including spin). In terms of these fields we can write an effective continuum 

Hamiltonian of the form 

rla - x:iz - $xa + mdPqa + mxzPxa} (2.5) 

where X?,p are the Dirac matrices, Q and x are the two species of fermions 

and m = M/T is the mass. For details, see the Appendix. Furthermore, the 

current and charges of the semiconductor problem have a simple representation 

in terms of the Dirac fermion. In particular, the electromagnetic current of 

the semiconductor is the sum of the electromagnetic current of the four Dirac 

species. Thus, it suffices to study the properties of continuum Dirac fermions in 

an electromagnetic field. The current we are interested in is simply four times 

larger. This is a crucial point for our study. From studies in lattice gauge 

theory it is known that the doubled species normally lead to a local cancellation 

of anomalies. [“I Thus one might expect that the parity anomaly should not be 

present here. As it is discussed in Chapter 4 this is indeed the case for a two- 

dimensional version of this model. The introduction of defects radically alters 

this picture. As we show below (and in the next chapter) in the presence of 

a domain wall or, in certain cases, of an open surface, an anomaly may still be 

present due to the existence of zero-modes. This phenomenon was first discovered 

within the framework of continuum field theory by Callan and Harvey.[‘l What 

we show here is that the Callan-Harvey mechanism works also in lattice systems. 

Thus we now proceed to discuss the physics in the presence of defects. As it 

will become clear immediately, there is a very close analogy between our problem 

and the problem of one-dimensional lattice systems with solitons, e.g. polyacety- 
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lene. In particular the Callan-Harvey-type modes are the analogs of the midgap 

states. 

2.1 DOMAIN WALL 

Consider a system with a domain wall (or stacking fault) (see Fig. 1). Such 

defects are suppressed since their energy grows like the area of the defect. How- 

ever they can arise in the course of crystal growth under specially prepared 

circumstances. At the level of the phenomenological Hamiltonian Eq. (2.1) this 

can be implemented by replacing M by-M on half of the system or, what is the 

same, exchange all Pb and Te atoms to the right of a plane half way through the 

system. Thus the mass becomes position dependent with a profile (for a sharp 

wall) M(r’) = ME(Z), h w ere z is the (integer) coordinate along the z direction. 

As shown in the Appendix, the system now has, in addition to the extended bulk 

states, “zero-modes” localized on the wall. The energy of these modes is 

E(p1 ,p2) = f 2T 

with l~ll,l~2l L z. The wave functions decay on both sides 

where K is given by 

M 
- = sinh 
2T- 

(2.6) 

of the wall like eeKlzl 

P-7) 

The amplitude of the “zero-mode” wave functions are different on each of the 

eight sublattices (see Appendix). Formally, the “zero-modes” correspond to a 

lattice version of the massless Dirac spectrum without additional doubling. In 

the continuum limit, the domain wall becomes a varying mass m(z) = M(z)/T. 

Since m(z) varies between the values +M/T and -M/T we identify this defect 

with a soliton. Thus, in the continuum limit, we get an effective Hamiltonian of 

the form Eq. (2.5) in a soliton background. What is crucial for our discussion is 

that all doubled species (i.e. the Q’S and x’s with both spin orientations) couple to 

the soliton in the same way, i.e. with the same sign of the mass. As it is discussed 
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in Chapter 4, while this is possible in three dimensions, this is not the case in 

two dimensions (i.e. a single plane of atoms) where different species couple with 

opposite signs of the mass. 

2.2 FREE SURFACE 

Consider now a system without soliton, but with an odd number of lattice 

planes in one direction. If we now imagine building up the system periodically, 

it is then clear that the extra plane is equivalent to the insertion of a soliton. 

Thus a system without a soliton but with an open surface must have the very 

same “zero-mode” states present in systems with solitons. Notice, however, that 

if the number of planes is even, no such states will be present. A very similar 

situation takes place in one dimensional systems, as is shown in the work by Bell 

and Rajaraman. 114 

3. Parity Anomaly and Bound States on the Domain Wall 

In the previous chapters we have shown that the physics of the low-lying 

excitations in a PbTe-type semiconductor can be modeled by a relativistic theory 

of massive fermions. 

This chapter is devoted to the understanding of the ground state properties of 

the theory at the level of the effective Dirac equation. In the real system we have 

effectively four species of the Dirac fermions, two originating from lattice doubling 

and another two from the spin degrees of freedom. In absence of interactions or 

for static background fields, these species decouple yielding induced charge and 

currents four times larger than in a single-species theory. In this chapter we will 

work with a continuum Dirac theory with only one species. 

As is familiar from the situation in charge density waves systems in one 

dimension, we will invoke the Born-Oppenheimer approximations. This amounts 

to neglecting the back-reaction of the fermionic degrees of freedom onto the 
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bosonic ones. Therefore in this approximation, the fermions interact with an 

external background field assumed to be static. In this problem this approach is 

essentially exact since the energy of the soliton being proportional to the area in 

the x-y plane is very large. 

3.1 THE SOLITON IN ZERO ELECTROMAGNETIC FIELD 

As described before, after linearizing the fermion spectrum near the L-degen- 

eracy points on the Fermi surface, we are led to the following Dirac-type Hamil- 

tonian 

H=-id.T+/3M(z) (34 

where we have introduced the effect of an antiphase boundary (domain-wall) in 

the direction (OOl), through the position dependent mass term M(z). 

We will assume that M(z = f co) = f M (M > 0). The topology of this 

domain wall ensures the existence of fermionic states localized (near z = 0) within 

a distance e N M-l. These states are solutions of Hz& = 0 with 

Hz = -ia,d, + PM(z) . (3.2) 

Choosing the representation in which r3 = ,Ba, = ias 8 as, the solutions of Eq. 

(3.2) are eigenstates of r3 with eigenvalues f i. They are given by 

e- J’M(z’)dz’ (3.3) 



i IfM(z=foo)=fM(M>O) only the state given by Eq. (3.3) is normal- 

izable, the state-given by Eq. ,(3.4) is normalizable for M < 0. These solutions 

are eigenstates of 

This is so because H_L and Hz anticommute. Therefore the solutions localized 

near the domain wall (along the z-direction) are of the form 

1 

0 
X= il ,-J’M(z’)dd 

, 
0 

tan8=: (3.5) z 

,*ie 

with energy E = f &-Y- k2 + k2 Therefore, these localized states act like massless 

fermions moving on the z-y plane near z = 0 (compare E to Eq. (2.6)). In fact 

since they only have two non-zero components, they behave as two-dimensional 

massless Dirac fermions. The spectrum of H also has a positive and negative 

energy continuum (conduction and valence bands) starting at E = f[MI. 

The Hamiltonian H in Eq. (3.1) has particle-hole symmetry. In fact the 

operator /~c.Y~(x~(Y~ anticommutes with H ensuring that the spectrum is symmetric 

around E = 0. Hence if there are other bound states at E # 0 these appear in 

. pairs of opposite energies. In one-dimensional charge density waves systems the 

existence of the midgap bound states is responsible for induced fractional charges 

in the ground state.[13’ Therefore we are led to the question of whether there is 

a charge induced by these localized modes. 

The ground state charge is defined as 

0- 

& = 
J 

[PWW - PO(E)] cm (3.6) 

--CO 

where PW (E)(Po@) is the density of states in the presence (absence) of the 

11 



domain wall. The definition in Eq. (3.6) amounts to subtracting the charge of 

the (fill d) 1 e va ence band without the domain wall. It corresponds to a particular _ 

normal ordering of the charge operator. 

As usual, using completeness it can be written as 

Q = -; J [PW@) - PW(-E)] cm . 
0 

P-7) 

The integral on the right-hand side of Eq. (3.7) measures the asymmetry between 

the positive and negative energy parts of the spectrum. In the case when there 

is particle-hole symmetry only the normalizable E = 0 states contribute to the 

charge. 

However, in our case the midgap states given by Eq. (3.5) correspond to 

massless two-dimensional relativistic particles which have a continuum spectrum. 

Hence the density of states pw(E) cx E (near E = 0). Therefore the continuity 

of the spectrum precludes the existence of any induced charge. In contrast in one 

dimensional systems with solitons, the spectrum has a discrete component and 

the charge is non-zero. 

In fact we can prove quite generally that more than just domain walls are 

needed in three space dimensions to induce an asymmetry in the spectrum [see 

Eq. (3.6), (3.7)]. 

For this we generalize the Hamiltonian Eq. (3.1) to read 

Here r5 = LY,CY~CY,. The last term in g breaks the particle-hole symmetry and 

corresponds to introducing a “Chiral kink”. In Chapter 5 we present a physical 

realization of this term. However, the case of the scalar soliton can be recovered 

setting K(z) = K = constant and K + O*. From now on we set K(z) = K. 

12 



The virtue of this term is that now the localized states given by Eq. (3.5) have 

energy E = f 47. Writing k, + k, + K 

&f(z) + iy5K = p(z) c-~T~‘(‘) , (3-g) 

and performing a chiral change of variables on the single particle wave functions* 

$qq = e~7sw/2 X(2) . (3.10) 

The spinors x obey 

-ia’ * $ + p&z> + f r5z . ?b(z) 1 x = Ex - (3.11) 

In Eq. (3.11) we recognize the combination r5Z? = 2, where 5 is the Dirac 

spin. This Dirac spin should not be confused with the spin of the lattice states 

of the previous chapters. The spinors q and x in Eq. (2.5) are obtained after 

formal manipulations (linear combinations and spin diagonalization [Eq. (2.3)] 

on the original orbitals in the valence and conduction bands of Eq. (2.1)). 

As usual the way to understand the origin of the spectral asymmetry is to 

square the Dirac Eq. (3.11). We obtain 

-i+2+p2+E~.&+)-$(%?8)2 x=E2x 1 (3.12) 

where we dropped derivatives of p(z) as they are not important (independent of 

El* 

* This chiral rotation is performed at the level of the single particle wave functions, not on 
the second quantized field operators. In the path integral quantization, there is a Jacobian 
associated with this change of variables. However, this Jacobian does not involve the fermion 
degrees of freedom and is of no interest for the present discussion.‘l” 
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In the one dimensional case the term Ez . ?fl is replaced by E g, i.e. 

particles with opposite energy scatter-off opposite “potentials”. This is the origin 

of the asymmetry in one space dimension. 

For a kink in the z-direction, the term in Eq. (3.12) that would be responsible 

for the asymmetry is E XZq. Now the “potential” is “spin” dependent. In 

fact the “spin” is responsible for the vanishing asymmetry. “Spin” up (along the 

z-direction) positive energy particles interact with the same potential as “spin” 

down negative energy particles. (The quotes on “spin” refer to the fact that it 

shouId not be confused with the spin of the physical, original fermions. This 

“spin” involves a combination of orbital fermions.) 

For “spin’‘-up particles the asymmetry is minus that of the “spin’‘-down par- 

ticles. Hence we see that the “spin” degree of freedom conceals the total asym- 

metry thereby yielding zero total charge in the ground state. Strictly speaking 

the above analysis is not very rigorous since for a domain wall in the z-direction 

the total angular momentum Jz = L, + f C, is a good asymmetry, but not C, 

separately. 

However for K # 0 in (3.8) and (3.9) the states localized near the domain 

wall are massive and have a rest frame. In their rest frame C, is a good quantum 

number and the arguments given above apply. Clearly for the rest of the spectrum 

the argument is valid since these are all massive states. The fact that the two 

allowed values of spin prevents any asymmetry in the spectrum (and ground state 

charge) has also been noticed in Ref. 6. There the same argument was used to 

show that four-component spinors do not have parity anomalous properties in 

2+1 dimensions. 

Now we see that the domain wall produces a dimensional reduction. The 

states bound to the wall are in fact two dimensional and have all the properties 

of the 2+1 dimensional theories. From Eqs. (3.2), (3.3),(3.4) we see that they 

have only two non-zero components. For K > 0 (with K = constant) we see 
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from (3.8) that positive and negative energy spinors are of the form 

$+E>o QC 
e- J” M(z’)dz’ 

++ E<o 0~ 
e- J” M(z’)dz’ . 

(3.13) 

Therefore they only have one spin projection and E > 0 have spin up and E < 0 

spin down in the rest frame. For K < 0 there is the opposite spin assignment. 

3.2 THE SYSTEM IN A NON-ZERO STATIC UNIFORM MAGNETIC FIELD 

From the discussion above, and the results of 2+1 dimensional theories we 

now see that an external magnetic field with a component perpendicular to the 

domain wall (i.e. parallel to 2) will induce a charge in the ground state. In fact 

this magnetic field lifts the spin degeneracy, thereby producing an asymmetry in 

the spectrum. We then study the. system in an external constant magnetic field 

in the z^ direction. In the Landau gauge A, = (O,O,BX,O) the Hamiltonian is 

H = HO + HI with 

Ho = -iadz + ay (-iay - BX) 
(3.14) 

HI = -iadz + PM(z) - @y5K . 

In what follows we assume that B > 0. Notice that HO and HI anticommute. 

This means that the “zero modes” of the HO can be chosen to be eigenstates of 

HI. 
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The eigenstates of Ho are the familiar relativistic Landau levels. The “zero 

modes” (lowest Landau branch) are of the form 

1 0 0 
xo cx c(A) ( > e -$ (z-zo)2eikyy (3.15) 

with zo = k,/B the center of the Landau orbit. Therefore we see that in the 

lowest Landau branch, the problem is effectively one dimensional (i.e. along the 

z axis). The (normalizable) states localized on the wall are of the form 

1 

0 
ft-?o = N !i e- J=w’)dz’e-~ (z-zo)2eikyy (3.16) 

0 

0 

with energy E = +K. For the lowest Landau branch we can use the results of 

one dimension. Since the number of states per unit are area (on the z-y plane) 

in the lowest Landau branch is B/27r we have (A = area) 

Q -=- 
A 

Ae = fl(z = +oo) - 0(z = -00) (3.17) 

&here 0(z) is given in Eq. (3.9) and we have restored standard units and the 

extra factor of 4 (species doubling and spin). As K -+ Of (A8 -+ r7r) 

(3.18) 

This is the right answer when there is particle hole symmetry (K = 0). In this 

case the total charge is given by & = +i No where No is the number of zero 

energy states of H. The sign ambiguity in (3.18) is because as K -+ O+(O-) 

these states are empty (occupied). 

16 



The fact that only the lowest Landau level contributes to the asymmetry 

and therefore to the charge can be seen as follows. As was argued before an 

asymmetry in the spectrum can only be introduced by producing an asymmetry 

in“spin”. It is easy to see that the spectrum of Ho in Eq. (3.14) is given by (for 

B > 0) 

E -&\/(2n+l)B-C,B n- n#O 
(3.19) 

Eo = 0 n=O I&=+1 

where the lowest Landau level corresponds to ~0. From Eq. (3.19) we see that 

for n # 0 (higher) Landau levels e(n, C, = +l) = c(n - 1, C, = -1). Therefore 

for n # 0 all the levels are “spin” paired and only the lowest level is asymmetric 

in spin. 

Hence the total charge induced is given by Eq. (3.17), this expression can be 

written as 

Q = - 
s 

d3z --& coijk&eFj, x $$ . 

By Lorentz covariance, we find the induced currents 

(Jp) = -& ~~~~~ a,,8 Fpo X g f . - . 

(3.20) 

(3.21) 

where the dots stand for terms higher in derivatives that do not contribute to the 

integrated charge. Equation (3.21) is the result obtained by Callan and Harvey[‘l 

for fermionic theories with axion strings. This is the main result of this paper. 

However our analysis clarifies the relationship of the current (3.21) to the 

parity anomaly in 2+1 dimensions and fractional charges in one dimension. Fur- 

thermore notice that the sign ambiguity in Eq. (3.18) is given by the sign of K, 

i.e. the sign of the mass of the fermions that live on the two-dimensional domain 

wall. Equation (3.21) predicts that when there is an external electric field there 

are currents perpendicular to it given in the absence of a magnetic field (Fig. 2). 

See the discussion at the end of this section. This can be understood in several 
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ways. Lorentz covariance implies that in a frame moving with velocity E/B along 

the x direction, there is an electric field 2 = Ee^,. However by Eq. (3.17) there 

is a current in the x-direction. The integral of this current is 

(3.22) 

However as was mentioned in Refs. 5 and 6 these are not Hall currents, their 

physical origin is quite different. 

In fact these currents have their origin in a type of spin-orbit effect. Consider 

an electric field parallel to the domain wall. The states bound to the wall have 

“spin” up for E > 0 and “spin” down for E < 0 (see Eq. (3.13)). Those particles 

moving perpendicular to the electric field (in the two-dimensional subspace) will 

feel a magnetic field in the 2 direction (in their rest frame). This magnetic field 

will attract particles with “spin” parallel and repel those with “spin” antiparallel. 

The currents described by (3.22) are “spin” currents unlike the Hall currents. In 

fact these are the Chern-Simmons currents that arise in 2+l dimensional models. 

In fact one may think that in the Hall Effect, the lowest Landau level completely 

filled gives a charge per unit area QH/A = 9 since the total number of states 

if q. This is to be contrasted with the result Q/A - B, including the sign 

of B, since it is the sign of B that determines whether the normalizable states 

given by (3.16) h ave energy E = fK. Hence the sign of B determines whether 

these states are empty or occupied, therefore & changes sign with B. Again this 

is because for opposite sign of B the opposite spin is polarized parallel to B.[61 

Then moving to a frame with velocity ??d = -, in this frame there is zg22? 

a current Ji CC 18j f$ x (B) cx ci’Ej. Again unlike the Hall currents J& 0: 

&E&n(B). Th is in fact suggests that the currents given by Eq. (3.22) can 

be measured in a Hall experiment by changing the direction of the magnetic 

field. The currents Eq. (3.22) do not change sign. Our discussion leading to 

Eqs. (3.17), (3.18) and (3.22) is restricted to E2 - B2 < 0 (magnetic-like static 

fields). For E2 - B2 > 0 or for pure electric-like effects we cannot consider a 
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constant electric field because of pair-production. However one can consider a 

weak, localized electric field (like a charged impurity) and use perturbation theory 

to compute the induced currents. This was the approach of Ref. 6 leading to a 

contribution given by Eq. (3.22). W e h ave only looked at the parity odd terms, 

but it is very easy to see (for example using linear-response and perturbation 

theory), that there is another contribution to the current besides (3.22). It is 

longitudinal and hence dissipative but does not present the odd properties of the 

above currents, and do not depend on the structural defects. 

4. Problems in Two-Space Dimensions 

As described in Chapter 1, our purpose is to find out a physical realization 

of the parity “anomaly” in two spatial dimensions. For this reason we have 

introduced the domain wall in the PbTe semiconductor. 

Although one may think that there are more straightforward approaches to 

two dimensional physics, it can be proved that in many cases there are subtle 

cancellations leading to a zero anomalous current. Let us discuss this point in 

detail. 

. The simplest method to generate a 2+1 dimensional theory is to constrain a 

system of these dimensional Dirac particles to move in a plane using some kind 

of external potential. To describe this situation, one can roughly say that in the 

Dirac equation 

[+‘(a, - ieAp) + VI]+ = 0 (p = 0, I, 2,3) (4-l) 

we consider p3 = -ia - 0 (and fix the gauge A3 = 0). II, is still a four com- 

ponent object. It is convenient to work in the following representation of Dirac 
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I 

matrices [201 

and r5 = i 

where op are Pauli matrices. Under the assumption P3 = 0 and writing $ 

$1 
as 

( ) $2 
it is obvious that Eq. (4.1) can be written as the sum of the two 

independent equations for $1 and $9, 

[iyp(ap - ieA,) + m]q!q = o 

[iy”(a, - ieAp -ml@;! = 0 
(P = o,w) (4.3) 

where 7 are the gamma matrices in 2+1 dimensions. 

Then the original Dirac equation does not reduce to one Dirac particle in one 

less dimension but to two particles with opposite sign for the masses.* From 

the general formula (4.1) one can see that the anomalous current is cancelled 

between the two species. 

In other words the mass term m&b = rn(@crg$q - T+!I:o~&) as invariant 

under the generalized parity transformation $1 + al&. and $3 -+ ar+r. In the 

two component formulation the mass term m&q!q, for example, is odd under a 

parity transformation where $1 + gr+r. 

This simple example teaches us that one must be very careful in the search 

for a physical realization of the parity anomaly (by the way, the above described 

model shows that the Quantum Hall effect cannot be described by theories with 

Chern-Simmons terms because the effect would be cancelled). For other criticisms 

to this possible connection, see Refs. 5 and 6. 

* Since there is no matrix that anticommutes with all the Pauli matrices 7” we cannot solve 
the problem by a change of representation. 
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To continue our search for two dimensional models with anomalous proper- 

ties, we may try to work with some phenomenological Hamiltonian on a lattice 

presenting degeneracy points where relativistic electrons emerge (in the same 

spirit as in our example of Chapter 1, but directly in 2 dimensions. For example, 

in Ref. 7 a planar honeycomb lattice describing graphite was studied. However 

again a doubling problem is present: in the tight-binding approximation the sep- 

aration between the valence and conduction band is minimal in two inequivalent 

points. The relativistic equation recovered around these points is again Eq. (4.3) 

and the anomaly is cancelled. The reason for this cancellation can be found 

in the symmetries of the original Hamiltonian. (There are other problems re- 

lated with interplanar interactions that may even ruin the relativistic spectrum 

in graphite. [‘I ) 

Also in the context of lattice gauge theories it has been provenLa” recently 

that the continuum flavors of the staggered formulation1161 in odd dimensions, 

are divided into two equal groups with opposite signs in the mass term lead- 

ing again to a zero current. In mathematical words, the representations of the 

Clifford algebra in even space-time dimensions are all equivalent while in odd 

dimensions there are two inequivalent representations differing in sign.[221 Then 

the construction of a thin layer of PbTe would not help (remember the relation 

between PbTe and the Kogut-Susskind formulation of lattice fermions). 

We believe that all these examples are just consequences of a general result. 

In two space dimensions all the Bravais lattices have inversion symmetry. If a 

degeneracy point occurs at momentum d # 3, another degenerate point will 

be present at (-2) leading to Dirac equations 

(* 7 - Z + m)$q = 0 

inducing anomaly cancellations (for the special case $! = d, see Ref. 23). 

(4.4 

However there is a way out of this problem; we have shown in Chapter 3 that 

the solution is to work in three spatial dimensions and reduce the dimensionality 
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by using a domain wall. As we have proved in the Appendix, the degenerate 

flavors coming from the KogutSusskind Hamiltonian, Eq. (2.4), have all the 

same mass terms. They are all coupled to a soliton (s) or antisoliton (s) but not 

one to s and another to s (which would have implied also a cancellation of the 

current after a 75 term is introduced in the theory to move the levels from 0. 

We have also shown that each of these 4 components flavors are reduced on the 

plane where the wall is to a two component spinor due to the constraint 73$ = it). 

Then our model in the presence of appropriate external fields develops a current 

of abnormal parity. 

In the next Chapter we discuss the experimental conditions in which this 

current should appear. 

5. Symmetry Breaking Terms and Relation to Physical Systems 

In the previous chapters we have shown that the PbTe-type semiconductor 

with a domain wall or, in certain cases, with an open surface, represent a phys- 

ical realization of the parity anomaly discussed in Chapter 3. We reached this 

conclusion after considering a very simplified model of these substances. One 

of the major approximations has been the neglect of the Zeeman term (i.e. the 

electron’s magnetic moment). The other is the fact that some of these materials 

undergo a Peierls distortion [15’ which can play an important role. We will now 

discuss both cases. Naturally we are still neglecting other interactions like the 

Coulombic one. These studies will be reported elsewhere. Both perturbations, 

Zeeman and Peierls, have a very important effect on the properties of a half-filled 

system. For this reason we should also consider the effects of a classical potential 

(i.e. different filling fractions). 
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5.1 ZEEMAN TERM 

The Zeeman term has the form 

(54 

where cx and ,0 run over both spin orientations. For the sake of simplicity we will 

assume that 3 is perpendicular to the domain wall. The main effect of this term 

is to lift the spin degeneracy. Thus the zero-mode discussed in Chapter 3 is now 

split between up and down spins. The system thus develops a magnetic moment 

(by filling up the spin up states which are lower in energy than the spin down 

states). However at the same time we have restored the spectral symmetry and 

thus charge conjugation. The result is that there is no induced charge and no 

anomalous current. Thus the Zeeman term can have an overwhelming effect even 

though it is very small in magnitude (of the order of 10m3 eV). Alternatively we 

may consider systems other than half-filled and vary the chemical potential by 

doping the system. Once the chemical potential is larger than PB, we will have 

a vanishing magnetic moment (the ground state is a singlet) and a net charge 

and thus an anomaly. The informed reader will notice the close analogy between 

our problem and polyacetylene-type systems in which a similar dichotomy is 

found-fractional charge and zero spin or zero charge and integer spin. 

5.2 P EIERLS PERTURBATIONS 

If the electron-phonon coupling constant is sufficiently strong a three dimen- 

sional PbTe-type system can undergo a Peierls distortion. PbTe itself appears 

not to have a Peierls distortion down to low temperatures (N 4OK). For systems 

with a rock-salt structure the main Peierls mode is a distortion along the major 

diagonals. The final result is a staggered hopping term along the major diagonals. 
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The extra term in the Hamiltonian is 

HP = $ 2 (-l)z+Y+z (5.2) + 7 >ff 
where si = fl and i = 1,2,3. Using the techniques summarized in the Appendix 

we can show that the Peierls term is equivalent to a 75 mass term of the type 

used in Chapter 3; c.f. Eq. (3.9), with a constant amplitude K = 21’c8)/T. As 

pointed out in Chapter 3 this term breaks particle-hole symmetry and thus acts 

like an effective mass term for the “zero-modes”. The result is now that the 

sign of the anomalous current is the same as the sign of the Peierls term. Since 

the Peierls ground state is two fold degenerate both sign are possible. As far as 

orders of magnitude are concerned the Peierls gap is 10m2 eV (the regular gap 

is 10-l eV) while the Zeeman term is lo- 3 eV. Thus a Peierls gap will always 

make the Zeeman term unimportant. We then conclude that in the presence of 

a Peierls distortion the ground state is a singlet (i.e. the magnetic suceptiblity 

is zero) and that there are both an induced charge and an anomalous current in 

the presence of electromagnetic fields. 

It is worthwhile to observe that a non-Peierls (i.e. non-staggered hopping 

term along the major diagonals does break particle-hole symmetry but yields a 

term of the form ip7sV2 in the -effective continuum Hamiltonian. Thus such 

hopping terms do not affect the physics of the low lying states. 

5.3 MAGNETIC SUSCEPTIBILITY 

From the previous discussion we can conclude that the bound states on the 

wall in a (finite) magnetic field will have either zero magnetic moment and non- 

zero induced charge or non-zero magnetic moment and zero induced charge. In 

the first case, the situation for half-filled PbTe in a non-zero magnetic field, we 

expect a Curie-type susceptibility at high temperatures crossing over to zero sus- 

ceptibility at zero field. For other filling fractions a net magnetic susceptibility 
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will remain resulting in a Curie-like magnetic susceptibility down to zero tem- 

perature. In fact Volkov and Pankratov’25’ have carried out a calculation that 

applies for this case. The applicability of their work (and ours) for PbTe - SnTe 

junctions is quite unclear due to the different nature of the electronic states in 

SnTe. On the other hand, if a Peierls distortion is present the system will be in 

a spin singlet state. For magnetic fields weaker than the Peierls gap there is no 

moment and, hence, zero susceptibility. 

6. Conclusions 

In this paper we propose that a semiconductor of the PbTe type with a do- 

main wall is a physical realization of the parity anomaly of 2+l dimensional 

electrodynamics. We found that the electronic states of this system can be de- 

scribed in terms of a simple tight-binding-model which in turn was shown to be 

equivalent to Kogut-Susskind fermions, a particular discretization of the Dirac 

equation. We have shown that, in the continuum limit, the problem reduces to 

the study of the electrodynamics of massive Dirac particles in the background of 

a soliton. Our study shows that either by doping the system or in the presence 

of a Peierls distortion a current of anomalous parity is present. It is proposed 

that these currents can be measured in a Hall-type experiment by reversing the 

magnetic fields. These anomalous currents do not change sign with the magnetic 

field unlike the Hall currents. Various symmetry breaking terms were also con- 

sidered. In this paper Coulomb interactions have not been taken into account. 

It is quite likely that they will lead to interesting ground states with physical 

properties possibly analogous to those of the fractional Hall effect. These effects, 

as well as the presence of dislocations, are currently under study. 
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APPENDIX 

In this appendix we show that the continuum limit of the Hamiltonian, Eq. 

(2.4), corresponds to two particles satisfying the Dirac equation with equal mass 

terms. We also show that this Hamiltonian on the lattice has bound states 

localized over the wall as in the continuum limit. We will closely follow the 

original paper of Susskind where the reader is referred to for more details. 

Our derivation is based on the equation of motion of the K-S Hamiltonian. 

By making adequate linear combinations of fields, the equations will decouple 

into two independent sets exhausting the low frequency spectrum of the theory. 

The equation of motion of the Hamiltonian, Eq. (2.4), are: 

4(r) = 2 [Icl(f + ez) - G(r - ez)](-l)“+y + & [$(r + e,) - do( - e,)] 
(A4 

+ & [$(r + ey) - $(r - eY)](-l)“+Y + m(~)(-l)~+~+~~(r) . 

It can be easily shown that there is a periodicity in the Hamiltonian such 

that a cube plays the role of a unit cell. Then it is natural to relabel the field $J 

as shown in Fig. 3. The 8 new fields will form the 2 x 4 Dirac components of the 

two continuum flavors. They satisfy the equations, 

fl = Azf3 + AJ4 - iAYg4 + im(,~)j~ 

it2 = -bf4 + A, j3 + iA,gs + im(z) f2 

f3 = A,fl + AZ jz - iA,gz - im(z) j3 

where 

$4 = -&f2 + A, fl + iA,gl - im(x) j4 

Ajfi(r) = $ [ji(r + ei) - ji(r - ej)] . 

Interchanging gi and ji we obtain the equations for ii. Now note that by intro- 
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ducing the linear combinations: 

- - ~ = ~ = 
, d= , d= 

f2 - 92 

91 - fl 

Q4 - f4 

f3 - g3 1 

(A-3) 

we can rewrite Eq. (A.2) into two independent set of equations. In fact defining 

q = ($) it can be easily proved that it satisfies the eigenvalue equation 

[-is? - -2 + m(z)P]q = Eq (A.4 
where 

z=(G z) and p=(10 :I). (A4 

Equation (A.4) is a lattice version of the Dirac equation in 3 spatial dimensions 

for the two flavors /..L and d. Note the important detail that the mass term in Eq. 

(A.4) is equal for both flavors as remarked in Chapter 4.‘271 This is a crucial result 

of our model. On the other hand, repeating the steps leading from (A.l) to (A.5) 

in two spatial dimensions one again obtains two continuum flavors (now with 

spinors of two components) but with different signs in the mass terms leading to 

cancellations of the anomalous current as discussed in Chapter 4. 

Now let us try to solve Eq. (A;4) w h en m(z) is a step function at 2 = 0. We 

will concentrate on the “zero-energy” bound state (for step function mass there 

is only one bound state). Following the similar calculation in the continuum 

(Chapter 3) it is natural to look for solutions of the form, 

fib4 Y, 4 = e iEtei(p,y+p,z)e-Kz + fi (A4 

where (pZ,pY) is the transverse momentum, E is the energy, K and ft? are con- 

stants to be determined. For z < 0 we propose a similar Ansatz but changing 

K -+ -K and ftT -+ g:. Also the solution for gi is equal in form to Eq. (A.6) 

introducing the new constants gi*. 
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After some algebra we arrive to the 8 x 8 system of equations for f:, g:: 

Efi+ = P3& + Sf,’ - iP2g4+ + mfi+ 

Efz = -P3 fz + Plfz + iP2g$ + mfz 

Efz = P3fT + Plfc - iP2gl- mf3f 

Efz = -P3fz + Plfc + iP2gT - mfz 

Eg[ = P3g$ + PIga - iP2 fz + mg: 

Egz = -P3ga + Plgz + iP3f$ + mgl 

Egz = P3gc + Plgl - iP2 fc - ms3+ 

Ega = -P3gl + Plg[ + iPzf[ - mg$ 

(A-7) 

where PI = sinp,, P2 = sinpy, P3 = i shK. The equations for fzr,gi are the 

same replacing K, m -+ -K, -m. 

Now it is convenient again to define fields u+ and d+ as in Eq. (A.3). Using 

the matrices defined in Eq. (A.5) it can be proved that 

Eut = (X’ . ? + mp)u+ (A4 

(the same equation is satisfied by d+). 

The spectrum is given by E = f dp. In fact we are interested in the 

case pi + m2 = 0 i.e. 

sh(K) = m . (A-9) 

From Eq. (A-8) the spinor u+ satisfy the equations 

73u+ = iu+ (A.lOa) 
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where 73 = po3, and 

(a&+ cQP2)u-t = Eu+ . (A.lOb) 

A solution of these equations is 

where a= qP1 + iP2) 
E - 

(A.ll) 

In terms of the site variables f+, g’ the solution (A.11) can be written as shown 

in Fig. 4 where 

fr=l-a, gl=l+a (A.12a) 

and the exponential factor at every site is 

4(vw) = e i(p,~y+p,.s)e--arcsh rn.2 . (A.12b) 

The solution for z < 0 is obtained from Eq. (A.12) by reflection. Defining the 

4 X 4 unitary transformation 

(A.13) 

it can easily be proved that (see Eq. (3.4)) 

lC’lattice = uU++(z, Y9 z, - ticontinuum * 
a+0 

Then all the conclusions of Chapter 3 about the existence of localized bound 

states over the wall, induced charge, etc., can also be obtained in the lattice 

formulation. 
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FIGURE CAPTIONS 

1. Two dimensional view of the PbTe system with a domain wall (dotted 

line) on the (001) axis. Note that the phase to the right of the wall can be 

obtained from the phase to the left by a lattice displacement of half a unit. 

2. An external electric field 3 along the wall induces a current 3 perpen- 

dicular to 2. The current decreases away from the wall because the wave 

function is exponentially small at 121 > 1. 

3. Redefinition of the field $J in a unit cell. 

4. Lattice wavefunction of the modes localized over the wall. 
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