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ABSTRACT 

A status report is given of an attempt, using staggered fermions, to 
calculate the real and imaginary parts of the amplitudes for K -+ XT. Semi- 
quantitative results are found for the imaginary parts, and these suggest that 
c’ might be smaller than previously expected in the standard model. 

INTRODUCTION 

This talk describes a calculation of weak interaction matrix elements 
done in collaboration with Rajan Gupta, Gerry Guralnik, Greg Kilcup and 
Apoorva Pate1 (the Los Alamos Advanced Computing Group). Theoretical 
details can be found in reference [l]; detailed numerical results will appear 
elsewhere [Z]. 

Present lattice measurements incorporate physics from the range of 
scales 7r/L = .5GeV < J.L 5 l/a ti 2GeV. Here a is the lattice spacing, and 
L = N,a is the physical size of the spatial box. At the ultraviolet end of this 
range we hope to match onto perturbative calculations: for weak interaction 
calculations we use the Renormalization Group machinery to scale down 
from Mw to l/a. This is reliable for small enough a, roughly l/a > 2GeV, 
corresponding to g < 1 on the Wilson axis. 

The lower limit to ~1 is the infrared cut-off provided by the physical 
_ size of the lattice. Clearly we cannot simulate processes involving real pions 
until the smallest non-zero momentum is less than m,. Further, as stressed 
here by Ken Wilson, we cannot look in detail at the wavefunctions of hadrons 
until the smallest momentum is less than the typical transverse momentum 
of quarks in these particles, i.e. N 200MeV. However, we can overcome the 
first of these problems using the chiral Lagrangian to extrapolate from the 
lattice world with m,, N r/L to the real world with light pions. To do this 
we have to match our lattice results onto the forms expected for small m,. 
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Combining these two matchings, we are almost in a position to eval- 
uate those matrix elements of the weak interaction Hamiltonian which are 
relevant to Kaon decays, though only in the quenched approximation. This 
talk will explain what “almost” means for staggered fermions. I will first 
discuss the state of the theory, then present our results, and close with some 
conclusions. . . 

THEORY 

We transcribe fermions onto the lattice using the staggered formula- 
tion rather than that of Wilson. The pros and cons of staggered, relative to 
Wilson are: 

PRO staggered 
u( 1)~ symmetry for m + 0 

CON staggered 
4 staggered species per continuum flavor 

+ Ward Identities 3 Continuum theory has 
=+ Restricted Operator mixing u(4Nf)v x su(4Nf),4 symmetry 

=+ Extra factors of Nf = 4 
Operators with up to 4 links 
+ Noisier results 
+ Possibly large O(g2) corrections (?) 

One other possible CON - the inability to project onto states of definite 
parity - should not be a problem for lattice pions (though see below). We 
have chosen to live with the CONS in order to make use of the PROS; 
this talk will show how this choice has worked out so far. The only part I 
will not comment on below is the possible CON of large O(g”) corrections; 
these have not been calculated yet for staggered fermions, although simpler 
calculations give some cause for worry [3]. The absence of these calculations 
also means that the short distance matching cannot be done in detail, and 
so only qualitative results can be given. 

I will concentrate on the matrix elements (ME) (K]Uw]zz). Our aim 
is to calculate their real and imaginary parts, for both charged and neutral 
kaons. Experimentally, the real part of the K” amplitude is 20 times larger 
than that of the K*; this is the long-standing puzzle of the AI = l/2 rule. As 
for the imaginary parts, it is the relative phase between I = l/2 and I = 3/2 
amplitudes that determines the magnitude of 8. In the standard model both 
amplitudes get phases from penguin diagrams (strong and electromagnetic) 
with t and 6 quarks in the loops. 

The direct measurement of K + zz amplitudes is beyond present lat- 
tice technology. Instead, the standard trick [4] is to use the chiral Lagrangian 
to relate the amplitudes to those of (K(Uw’Ubtrac*ed~~). Aside from the fact 
that this is an approximation, to which I will return later, this trick brings 
with it a nasty problem - the fact that subtractions have to be done. This 
is the worst problem to be overcome in order to extract numbers. It might 
be thought that, given this problem, it is worth putting a lot of effort into a 
direct calculation of the K -+ zz amplitude, for which no subtractions are 
needed. This is far from clear. To avoid subtractions, one must calculate 
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on-shell matrix elements. This is hard on the lattice because of the discrete 
momenta. Furthermore, one has to understand final state interactions; these 
take a complicated form in Euclidean space since one cannot have a phase. 

So we proceed by calculating (K~N~‘Ubtracted~?r). In the continuum 
NW contains a slew of operators multiplied by coefficients. When transcribed 
to the lattice, a lot more operators are needed. For staggered fermions this is 
because the flavor and spin degrees of freedom are spread out over 24 points 
[l]. The operators thus contain varying numbers of gauge links, up to four 
in each bilinear. We know how this works at O(g’), but not yet at O(g2). 
However, we do know the general features of the operators to all orders. As 
in the continuum, there is a natural division of the operators into four types: 
(1) I = 3/2, LL operators; (2) (8~., lo), I = l/2, LL operators; (3) (8~, lo), 
I = l/2 LR operators; (4) (8~,8~) LR operators. As the scale is changed 
these operators mix; at mw one has only operators of the first two types, 
but strong interaction “penguin” diagrams (with t and 6 loops) produce type 
(3) operators as the scale is reduced, and electromagnetic penguins produce 
operators of type (4). At a scale corresponding to about m,, the real parts 
of the coefficients are largest for the LL operators, and thus these dominate 
the K decay rates. Conversely, the imaginary parts are larger for the LR 
operators, and these probably dominate the contributions to e’. 

Before proceeding I want to make a comment about the scale of the 
lattice calculation. We will be working at a scale l/a k: m,, for which the 
charm quark can be ignored, to first approximation. By this I mean that the 
coefficients are calculated by running down to m,, but then the charm quark 
is dropped from the operators. This implies that the usual penguin solution 
of the AI = l/2 puzzle cannot be tested directly. In this solution, it is the 
RG scaling below m, that induces the real part of the coefficient of operators 
of type (3), and then the enhanced matrix elements of these operators give 
the AI = l/2 rule. In fact, this idea can never really be tested, because if 
one runs much below m, one is outside the range of perturbation theory. 

The four types of operator yield four classes of contraction. The first 
is the eight contraction of the LL operators - known below as LL8. Type (1) 
operators have only these contractions, and so these are the only contrac- 
tions contributing to K* decays. They also give the main contribution to 
the imaginary part of K” c) F mixing, i.e. to c. They are straightforward 
to calculate, partly because they are eights rather than eyes, and partly be- 
cause they do not require subtractions. However, because of their simplicity, 
one can make reasonable estimates of them using various continuum approx- 
imations, e.g. vacuum saturation. For the lattice to improve upon these 
estimates, it must give a result accurate to better than a factor of two. 

The second class is the eye contractions of the LL operators of type 
(2), which I call LLI. These are purely I = l/2. At the charm quark scale 
these are the only possible source of the AI = l/2 rule within the standard 
model. To the extent that it makes sense to discuss lower scales, these 
contractions may also be dominant, a view emphasized by Donoghue [5]. 
These contractions are harder to evaluate for two reasons. First, they require 



the use of source techniques, which reduces the statistics. Second, they 
require subtractions. These contractions are also harder to estimate in the 
continuum: e.g. they vanish in vacuum saturation. 

The third contractions are those of the LR octet operators. Unlike 
the LL operators, these do not retain their spinor structure upon Fierz trans- 
formation. For the most important such operator, one has: 

Ka7p(l + 7&a %rcI(l - 75)qa = -2 a,(1 - 7&a q*(1 + 7s)da 

Here, a and b are color indices, and q is summed over u, d and s. These 
operators have both eight and eye contractions, so I refer to them as LRSI. 
Source methods are again needed, as are subtractions. 

The appearance of densities, rather than currents, in the Fierzed form 
leads one to expect an enhancement over LL operators by m$/ (mzA2), where 
A B 1GeV is the cut-off in the chiral Lagrangian [6]. The factors can be 
explicitly worked out in the large NC limit [7][8]. It is this enhancement which 
has led to all the speculation about the role of penguins in the AI = l/2 
rule. However, here I am interested in the penguins as the source of 6’. 

The final contraction is that of the LR singlet operators. The domi- 
nant contribution comes from eight contractions, so I refer to them as LR8. 
Compared to LL operators, one expects an enhancement of m&/m: due to 
the LR structure. They are straightforward to calculate, needing no sources, 
and no subtractions (at least for the dominant part). They are also easy to 
estimate in the continuum. 

The great advantage of staggered fermions is that these 4 types of 
contractions separately satisfy exact lattice Ward Identities (WI) (91. This 
is true separately for each of the many operators that appear, and is true 
configuration by configuration. These WI are precise lattice analogues of 
the continuum WI of PCAC. They constrain the behavior of the ME as one 
varies mq. For a general operator 0 in UW: 

where f is the value of fr extrapolated to m, = 0, and cy, /3, 7 and 6 are 
dimensionless. The WI imply that for the LL8 (Y = /3 = 7 = 0, for the 
LLI and LR81 that CY = p = 0, but no relations for the LR8. For the LR81 
(which are made up of contractions like the LR8 together with eyes) it is the 
addition of eights to eyes that cancels the Q and ,0 terms. 

One can show [4](9] that, to O(m,), the subtraction needed for the 
LLI and LR81 will remove the 7 term. After subtraction, then, the LLI and 
LR81 have the same form as the LL8 contractions. One can further show 
that, to the same order, one can measure 7 using 

WIW) = 7~f3mk(md - m,)/(md + m,) 



where lVf = 1 in the continuum, but Nf = 4 for staggered fermions. This 
shows how the subtraction removes the effect of s t+ d mixing. 

This can all be phrased equivalently in the language of operator mix- 
ing [lo] 91. All the operators in Uw mix with other operators of d=6, con- 
straine d by the lattice symmetries. In addition, operators of types (2) and 
(3) mix with the d=4 operator. 

S = (md + m,)Sd -I- (ma - rn,)scyEd 

which is also a sum octet, I = l/2 operator. It is exactly this operator 
which gives the 7 terms in the above equations. This suggests the following 
method to remove the 7 terms. Choose p such that 

VW subtracted~O) z (K/O - pS)O) = 0 

and then 
WP eubtracted17r) = 6 j2m,mK + O(m,2) 

This method allows a time by time subtraction, and we use it below. 

As stressed by the CERN/Rome group [lo], the coefficients of the 
mixing with S are non-perturbative, i.e. of 0 l/a2). Thus one should use a 

6 non-perturbative method of calculating 7, sue as that outlined above. But 
for Wilson fermions this method is not available [lo]. One can proceed by 
performing a perturbative evaluation of 7, as suggested by the UCLA group 
11 
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. However, this is suspect, because non-leading terms will be of O(g”/a2), 

an thus diverge as a --3 0. Nevertheless, they claim that for g NN 1 their 
method might be viable. It seems to me to be important to check first on 
simpler quantities such as (&!J). 

Whatever method of subtraction one uses, the entire procedure rests 
upon an expansion in meson masses. This has two consequences. First, as 
emphasized by Martinelli, the output is only the 0 m”) term in the K decay 
amplitude; higher order terms cannot be obtaine 6 . Second, it is essential 
that one finds the advertised chiral behavior. Without this, the low energy 
matching cannot be done. One can also check this in other ways, e.g. by 
looking at the variation of jr with m,. 

RESULTS 

After a trial run on an 83 x 16 lattice [l], we have now completed 
an analysis on a 123 x 30 lattice [2]. This is long enough to unambiguously 
expose the lightest states. We use an improved action, that of ref [12 with 
KF = 10.5. This corresponds to p = 5.96 on the Wilson axis, and t h us is 
nearly in the scaling region. We have used 25 lattices, and have attempted 
to address the issue of low energy matching by using small quark masses. 
To do this, we have calculated with mp = .040 and .005. The larger mass 
corresponds quite closely to the physical strange quark mass, so I refer to 
it S. The lighter mass is as close as we can get to a realistic u or d quark, 
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and I call it the U quark. This allows us to consider three psued+Goldstone 
bosons: SS (m w 700MeV), US (m = 500MeV), and UU m ~zr 300MeV . 
Using these we have measured three ME: (K(SS) 8 labelled S s 
wwww IGW, called US; and (K(UU) I UW 

)), ; 
named UU. All 

our propagators have been calculated with antiperiodic boundary conditions 
(APBC). _ 

First I comment on the chiral behavior of quantities derived from 
two point correlators. For UU, US and SS respectively, we have mrr = 
.180,.358,.469, jr = .056,.072,.088, and 2, = .264,.325,.43. The 2 factor 
is defined through the two point psuedoscalar correlator C(t) 

C(t) = e -ItIm= 2,/N,; N, - 2 sinh m, 

One expects jr and 2, to have the form a + by (m is the average quark 
mass), while rnz = cm. If we are to be in the region where O(m 
are valid, as we must be to do the low energy matching, the 8 

) expansions 
terms must 

be small for m = m,. We are clearly at the limit of this region with the SS 
states. Extrapolating our numbers to mq = 0, we find for the physical 7r and 
K that j~/j~ = 1.35, compared to the experimental 1.25. Thus the O(m) 
terms are in rough agreement with those in the continuum. 

I now turn to the correlators from which we extract the ME. I denote 
these by C(&,tK). H ere the operator is at t = 0 (or t = 0,l for two 
timeslice operators), and the r and K are respectively at &,tK. All the 
figures have t, = 7, a distance large enough to remove heavier states, yet 
small enough to retain a reasonable signal. For eight contractions we have 
data for all t,, but for the eyes, what you see is all we’ve got. The region 
for tK > 15 has the r and K on opposite sides of Uw, and so corresponds 
to the ME we want to measure. For tK < 15 we are measuring the off-shell 
ME (0 l/w IKr), together with final state interaction effects. If one ignores 
such e B ects, then the chiral behavior we desire corresponds to the correlator 
being antisymmetric about the midpoint. 

The correlator is related to the ME M, for tK > 15, by 

If the ME has the correct chiral behavior M cc mrmK, and we ignore varia- 
tions in Z,, etc., then the coefficient of the exponentials should be constant. 
In the figures this means that the extrapolation of the exponential decay to 
t = 30 (30.5 for two timeslice operators) should not depend on m,, ?nK. But 
this is not a fair test for our range of mp. A better approach is to compare 
the lattice correlators to those calculated in the vacuum insertion approx- 
imation (VIA) directly on the lattice. The VIA correlators automatically 
have the correct chiral behavior, apart from the variation of & etc. with 
mq. Comparison of the data with VIA removes this spurious variation. It 
also makes for simpler comparison between different calculations. 
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Finally I come to the pictures. In all of them, the y-axis is logarithmic, 
but I do not show the scale, as it is not relevant here. I should also stress that 
I am using the O(g”) transcription of continuum operators onto the lattice. 
Figure 1 shows the results for the lattice equivalent of the eight contraction 
in the ME: 

(r+ 10 1 IK+) E (‘lr+ l%747.5~, %wysd@+) -. 

This LL8 contraction is shown for masses UU and SS, along with the VIA 
results. The bump evident for t, % tK is mainly due to wrap-around effects 
allowed by the APBC, to which I will return. I note the following: 1. the 
exponential decays are clear; 2. the correlators are roughly antisymmetric; 
3. VIA works well for SS; 4. VIA works poorly for UU. Since the VIA results 
correspond to the correct chiral behavior, the data appear to be growing too 
fast as m, --) 0. 

In Figure 2 the LL8 results for the operator 02 = &747521g Eb7475dn 
are compared to those of 0 1. In continuum VIA the ME of 02 are 3 times 
smaller. For SS this is roughly true, but for UU it is clearly false. The growth 
of the 02 ME at small mp is completely inconsistent with the required chiral 
behavior. In fact, it is consistent with M independent of m,, mK. 

Though I don’t have space to show it here, all other LL8 channels show 
similar violations of VIA and, consequently, the wrong chiral behaviour. A 
typical example is Sa74& ri;b’yddb. This operator has three links in each 
bilinear, and is zero in VIA, yet yields a clear signal. This signal is small for 
SS, but for UU it is k: l/5 of that for 0 1. This violation of chiral behavior 

: uu [3+ 
- VIA UU x lr 

ss x0 
VIA SS x BE x 

I I I I a 
O\ 

1 I I I 
\ 10 

I 
20 

OPERATOR t, tK 

Fig 1. LL8 data for (K 10 1 n). The errors in the VIA data have been re- 
moved for clarity. I! hey are comparable to those on the data they 
approximate. Of the two symbols, the first is for positive data, the 
second for negative. 
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E 01 uu xGr9 

- 02 ss 0 0 

TO, ss x+ 

O\ 
I I 
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I 0 

tK 

-I- 
20 

Fig 2. Comparison of 0 1 and 0 2 LL8 data. Error bars for SS data are about 
the size of the symbols. 

and VIA is both good and bad. It is good because VIA gives a poor descrip- 
tion of Kaon decays [7]. It is bad since the wrong chiral behavior can mean 
only two things: (a) we do not yet have small enough m,; (b) the APBC 
effects are dominant. These wrap-around effects do not violate the WI, but 
do affect the argument leading from the WI to the chiral behavior. 

E 01 us 0+ 
- op us x 0 

I I 
O\ “\ 10 

OPERATOR t, 

I 
20 

tK 

Fig 3. LLI data for Or and 02 after subtraction. 
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Next I turn to the LLI contractions. Here we must make the subtrac- 
tion, and this can only be done for the masses US. Figure 3 show the results 
‘for the eye contractions of operators 0 1 and 02, after subtraction. We want 
the correlator to be antisymmetric, and there are signs of this. However, the 
02 data is too poor to extract a number, and the 01 data shows a dominant 
oscillatory behavior. This, we think, is due to wrap-around effects. So one 
of the staggered fermion CONS has really come home to roost. For what it 
is worth, the typical magnitude of the 02 ME is large enough to yield the 
AI= l/2 rule. 

So much for the bad news. For the LR81 contractions we can extract 
some useful conclusions. Here we can do the subtraction for all mp. We show 
results for the dominant part of the operators: 

&i = ~(1 +7&a &(I- 7&a ; 0s = &x(1 + 7s)da qb(l - r&a 

Figure 4 shows the SS results for (K~O~O) with operators 05, 06, S, and the 
VIA to 06. It is apparent that (a) VIA does very well; (b) the continuumVIA 
expectation that 0s = 305 works extremely well; and (c) the determination 
of the subtraction coefficient p can be done easily. 

Figure 5 shows the SS results for (KlOsl~), (KIO$“b(r) and their VIA 
values. This shows how the subtraction removes a large symmetric part to 
expose the antisymmetric residue. The data, however, agrees extremely well 
with VIA, and, though not shown, it remains true that the Oe = 305. 

For the UU LL81 results VIA does less well. It falls above the data 
for (KlO,lO) by 10 - 20%. The (KlO~lr) data are shown in Figure 6. Here 
the VIA result is much cleaner than the actual data, the latter showing signs 

oe, ss 
VIA SS 

o-1 
OPERATOR t, tK 

Fig 4. (KIO (0) data for LRSI contractions. 



OPERATOR ‘t, 
-- 

tK 

Fig 5. (Kl0l~) data for LR81, with and without subtractions. 

of oscillations again. Nevertheless, the data are much better than the LLI, 
with the antisymmetry being clear. Because of the oscillations, it is hard 
to extract quantitative conclusions, but it is clear that the data gives a ME 
substantially smaller than that in VIA. This is in striking contrast to the LL8 
(and the LR8) data. Furthermore, the chiral behavior is fine, if anything a 
little to soft. 

06 
Oe subt 

X 

00 

VIA rubt + x 

01 
I I 

“\ 10 
I I 1 I 

OPERATOR t, 
20 

tK 

Fig 6. Same as Fig 5, but for UU. 
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The final result I want to discuss is for the LR8 contractions, though 
I have no space for pictures. These are dominated by a symmetric part 
corresponding to M being independent of the meson masses. We find that 
the relation 305 = Oe works well for all masses. VIA works very well for 
SS, but lies significantly below the UU data. 

CONCLUSIONS. 

The two major problems with our study, in purely numerical terms, 
are poor statistics and wrap-around contributions. The latter occur for all 
types of lattice fermion, but are exacerbated by the use of staggered fermions. 
These two problems conspire to make an extraction of even a qualitative 
result on the AI = l/2 rule impossible. Together with the lack of a per- 
turbative operator mixing calculation, they also do not allow even a semi- 
quantitative result for the B parameter of K” - F mixing. This last point 
is true for both LL and LR operators. 

We can, however, make some general comments. For both LL8 and 
LR8, the data agree with VIA at large mq, but exceed VIA for small mp. 
Clearly, fluctuations are damped at large mp (recall that VIA is exact on a 
single configuration). An optimistic interpretation is that there is region for 
small m where VIA is violated, but in such a way that the data has the 
correct c K iral behavior. We need more low mass data to check this. A more 
pessimistic possibility is that the bad chiral behavior is intrinsically related 
to our use of APBC. The wrap-around contributions cannot invalidate the 
WI, but can remove the connection between the WI and the chiral behaviour 
of the ME. Even assuming the optimistic scenario, one should not forget the 
caveat raised here by Miitter. Some of the fluctuations at small mp are 
artifacts of the quenched approximation. They will be damped out by the 
fermion determinant in the full theory. 

I have placed much stress on the utility of a comparison with VIA. 
Of course, VIA cannot work for all values of the lattice spacing, because the 
anomalous dimensions of the true operators and their approximants differ. 
Nevertheless, at the present stage, when the calculations are not quantita- 
tive, this is a small effect. The usefulness of VIA is most clear for the LR8 
contractions. One expects these to be enhanced by factors cc l/m: relative 
to LL8. But what is m,? In this calculation, and in other calculations in 
the quenched approximation, one finds m, k! 50MeV. This is at least a 
factor of 3 smaller than the continuum m,(p = 1GeV). This discrepancy 
cannot be explained by saying that the appropriate scale is not p = l/a 
but ~1 = (Am,,/Al,t) (l/u) [13 . 

1 
The logarithmic scaling of masses is too 

slow. The only reasonable exp anation is that the small m, is due to the 
quenched approximation. In essence, one fixes the combination m,(&,!J) to 
be correct. Since (qti) is too large in the quenched approximation, m, must 
be too small. Returning to the LR81, this means that naively extracted ME 
are = 10 times too large. The correct approach is to compare the calculation 
to the VIA, which can then be evaluated in the continuum with the correct 
m,. The same comments apply to the LR8. 
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The continuum VIA to the LR81 has been worked out in references 
[7] and 
.002 (-& \ 

81. Using m, (p M m,) = 125MeV, one finds roughly that C’/E = 
.l). Here, Fe is the imaginary part of the Wilson coefficient evaluated 

at P w m,. Its value is controversial, but is not likely to be much larger than 
.l, though it could be smaller. The electromagnetic penguins also contribute 
to E’, and in VIA reduce it by about 20%. There are also isospin violating 
effects which combine to reduce’ E’ by another 30 - 40% [14]. These numbers 
should be compared to a present experimental limit of M .005, and a future 
sensitivity of .OOl. Our results suggest that a bad situation may be worse 
still. If the penguin contribution is smaller than VIA, yet the electromagnetic 
penguin is larger than VIA, c’ will be further reduced. A more detailed 
discussion will be given in [2]. 

In summary, progress has been made towards the calculation of E’. For 
this the use of staggered fermions is essential. To improve this calculation, 
and to extract values for the decay rates of Kaons, E and the B parameter, 
we need to do the following. (1) Replace APBC with fixed BC; (2) Increase 
the number of small quark masses used; (3) I ncrease the statistical sample; 
(4) Check asymptotic scaling; 
Include dynamical fermions; an 

Increase the size of the infrared cut-off; (6) 
, last but not least, (7) Do the perturbative 

operator mixing calculation. 

We thank the Department of Energy for a grant of time at the MFE 
computing center. I thank Greg Kilcup for reading the manuscript. 
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