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1. INTRODUCTION 

In these lectures I shall discuss the connection between a-models and string 

theories, and show how the a-models can be used as important tools to prove 

various results in string theories. [l-21] Section 2 contains a very brief introduc- 

tion to closed bosonic string theory in the light cone gauge. In sec. 3 I discuss 

closed bosonic string theory in the presence of massless background fields. I use 

the light-cone gauge and show that in order to obtain a Lorentz invariant theory, 

the string theory in the presence of background fields must be described by a two- 

dimensional conformally invariant theory. This in turn gives some constraints on 

the background fields which turn out to be the equations of motion of the string 

theory. Section 4 contains the extension of this analysis to the case of the het- 

erotic string theory and the superstring theory in the presence of the massless 

background fields. In sec. 5 I show how to use these results to obtain nontrivial 

solutions to the string field equations. Section 6 contains another application 

of these results, namely to prove that the effective cosmological constant after 

compactification vanishes as a consequence of the classical equations of motion 

of the string theory. 
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2. CLOSED BOSONIC STRING IN THE LIGHT-CONE GAUGE 

Free bosonic string in the light-cone gauge is described by 24 bosonic variables 

Xi(a, r) (i=1,...24) h w ere u, r are the two-dimensional variables describing the 

string world-sheet. [221 Besides these there are other independent variables z*(r), 

which are functions of r only. (The light-cone gauge constraints and the Virasoro 

constraints determine the a-dependence of the variables X* in terms of the fields 

X”.) The action for the string.is given by 

7r 
s=1 

2a!’ 
drx+x- + L 

27r 
da&XidaXi 1 , (2-l) 

0 

where I* (a=O,l) d enote the string coordinates ~7 and r, respectively. From now 

on we shall set the inverse string tension cy’ to be l/2, unless it is displayed 

explicitly. The various fields have the mode expansion 

Xi(u,r) = xg + pi7 $: f c ; pe-2in(‘+4 + &;e-2in(w4] 
, 

n#O 
x*(r) = x; +p*r , (24 

with the standard commutation relations between the oscillators 

[x’,pi] = i&j , 

[&, ai,] = [&,&i,] = mf5m,-n6ii m # 0 

[x+$-l = [x-,p+] = i , P-3) 

all other commutators being zero. 
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. 
Not all the states described by the action (eq. 2.1) are physical states. The 

physical states are defined by the constraints 

P+P- -4(L~-1)=p+p--4(&1)=0 , (2.4 

where 

Lo = c ai,ai, + iPiPi , 
m>O 

i. = c &‘_,&‘, + ;pipi . 
m>O 

(2.5) 

Generally, we define the operators 

L, = ; c: a;-,a$ ) 
m 

P-6) 

where in the above equation we must interpret ari, Zr& as 

(y’o = &$ = $.+ . (2.7) 

Using the commutation relations (eq. 2.3) we may derive the commutation rela- 

tions among the Lbs. They are 

[Lm,-L] = (m - n)Lm+78 + f(m3 - m)bm,-n , (2.8) 

where 

c=4 . (2.9) 
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Thus, the LAS satisfy a Virasoro algebra with central charge c=l2. &g 

satisfy a similar commutation relation. 

The action (eq. 2.1) has manifest SO(24) L orentz invariance, which generates 
rotation among the 24 X”W. However, in order to get a sensible theory, we need 

full SO(25,l) L orentz invariance. This is ensured by constructing the full set 

of SO(25,l) L orentz generators in the theory in terms of the variables Xi, and 

verifying that they satisfy the correct commutation relations. These generators 

are given by 

Ji+ = ,$.,+ _ ,+# 

(2.10) 
J+- = x+p- - x-p+ 

O"l. Ji- = zip- - x-pi - i(p+)-’ 2 --(a:, Ln - L-,0$ + &‘_,i!in - .iC-n&h> . 

Using the commutation relations (eqs. 2.3 and 2.8) and the physical state 

condition (eq. 2.4), one can show that the Lorentz algebra closes on-shell. This 

shows that the theory has full SO(25,l) L orentz invariance, although only the 

SO(24) subgroup of the full Lorentz group in manifest. 

The spectrum of the theory described by the action (eq. 2.1) contains a whole 

tower of massive states, as well as a few massless states. For future discussions, 

we shall list here the massless states of the theory. They contain a symmetric rank 

2 tensor, an antisymmetric rank 2 tensor, and a scalar, which we shall identify 

with the states created by a graviton field Gij(x), an antisymmetric tensor field 

Bij (z) , and a dilaton field @  (x) , respectively. In the next section we shall show 

how to describe the propagation of the string in a background where the massless 

fields develop vacuum expectation values. 
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3. BOSONIC STRING IN MASSLESS BACKGROUND FIELDS 

In this section we shall describe the propagation of the closed bosonic string 

in massless background fields. 11-12] The discussion will be carried out completely 

in the first quantized formulation. The situation is analogous to the motion of a 

first quantized Dirac particle in background classical electromagnetic field, where 

the background field is treated as a purely classical field, only the Dirac particle 

is treated quantum mechanically. However, unlike the point particle case, the 

propagation of a string in a given background field can be described consistently 

only if the background satisfies certain constraints. These constraints turn out 

to be equivalent to the dynamical equations of motion of the background fields, 

as we shall see shortly. 

The first step in our study is to generalize the action (eq. 2.1) in the presence 

of background fields. In order to do this we again turn to the example of the 

motion of a point particle in background fields. The hamiltonian derived from 

the action in this case has two parts, the free part, and the interaction part. 

Of this the interaction part has the property that if we replace the classical 

background by a plane wave, then the interaction hamiltonian reduces to the 

vertex operator for the emission of a photon from a Dirac particle. (The vertex 

operator V for a state 7 of the photon is defined to be the operator such that 

< m 1 V 1 n > gives the amplitude m + n + 7, where m, n are any two 

first quantized states of the electron.) In the case of a string theory, the vertex 

operators for various massless states of the string are well-known. WI The action 

of the string in massless background fields must satisfy the constraint that the 

interaction hamiltonian derived from this action reduces to the vertex operator 

upon replacing the background fields by plane waves. An action which satisfy 

these relations is 
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R 
SC1 

2cu’ 
drx+x- + L dr 

27r / / 
0 

da Gij(X)a,XidaXj + Bij(X)Ph3,X’dpXj , (3.1) 

where Gii (X) and Bij (X) are background gravitational and antisymmetric tensor 

fields, respectively. Here we have assumed that both Gii and Bij have nontrivial 

components in transverse directions only, and depends only on the transverse 

coordinates. Also we have set the background dilaton field vev to be zero. It 

turns out that the dilaton couples via a more complicated mechanism, which we 

shall discuss at the end of the section. 

We shall now study the theory described by the action (eq. 3.1). Let us study 

a case where Gij (X) and Bii(X) acquire vev only along d of the 24 directions, 

and have nontrivial dependence only on these d directions (ds23). We may take 

these extra directions to be compact, but this is not necessary for our discussion, 

If we denote these directions by XP (p=l,...d), and the free directions by XM 

(M=d+l,... 24), the action (eq. 3.1) may be split into two parts, So and Sr, as 

follows, 
5f 

so = 1 
/ 

drx+x- + & 
/ I 

dr dac? X”daXM 
2a’ a 1 , 0 

S1 = --& /- d7 j da [G,,(X)i?,XPiPX + Bpq(X)&nX%3pXq] , 
0 

(3.2) 

(3.3) 

where sum over repeated indices is understood. Only SO(24-d) Lorentz symme- 

try is manifest in this formalism, which consists of rotation of the (24-d) X”s. 
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However, in order to get a consistent theory, we must get full SO(25-d,l) Lorentz 

invariance. (The rest of the Lorentz group is broken spontaneously by the 2rezl of 

the background G,, and B,, fields.) Hence we must be able to construct the full 

set of Lorentz generators, and verify that they satisfy the correct commutation 

relations, as in sec. 2. It turns out that it is possible to do this if the nonlinear 

a-model described by the action (eq. 3.3) describes a conformally invariant two- 

dimensional field theory with the central charge of the Virasoro algebra equal 

to d/6. To see how this can be done, note that the conformal invariance of the 

a-model guarantees the existence of a set of Virasoro generators L, , Cl) it) with 

the commutation relations: 

[i$),i~)] = (m - n)iL!, + $(m3 - m)bm,+ , 

[Lt), LC,] = (m - n)L$+, + q(m3 - m)b,,-, , 

[L$&iP] = 0 , (3.4) - 

where c(l) is the central charge of the Virasoro algebra, which must take the value 

d/6 to make our construction work. 

The theory described by the action So is a free field theory and hence is 

also a conformally invariant theory. Its conformal generators L, , (O) Zp) satisfy 

commutation relations identical to those given by eq. 3.4 with c(l) replaced by 

JOI. Lp, j$y) c an be explicitly constructed as in eqs. 2.5 and 2.6, with the sum 

over i replaced by sum over M. From this we may also calculate c(O) explicitly, 

which turn out to be (24 - d)/6. 

We may now write down the generators of the S0(25-d,l) Lorentz group 

in terms of the generators Lm , (1) g) m , Lg), if?, and the free oscillators oz. 

They are 
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JMI’L~M~N --z P N M--i O”l 
C( 

- a!MaN-aNaM 
n n n n n + ii!$iq - iPniift”) , 

n=l 

J”+ = xMp+ _ x+pM , 

J”- = z”p- - -9 
--z P M - ;(p+)-l c; QFn(LIP) + Lp) - (L?i + LI_1!, cxf 

n=l 1 

J+- = x+p- - x-p+ . 
(3.5) 

Notice that the Lorentz generators involve the free field oscillators x”, p”, 

C$ and &F explicitly, but the oscillators of the interacting fields XP appear only 

through the Virasoro generators L(l), i(l). As a result, we can calculate the 

commutators of the Lorentz generators knowing only the free field commutators, 

and the commutation relations (eq. 3.4). The algebra may be shown to close 

acting on the physical states satisfying 

p+p-=4 @+$I-1 
( > ( 

=4 Lr)+$)-l 
> - (3.6) 

Thus, we see that the conformal invariance of the theory given by the action 

(eq. 3.3) is a sufficient condition for guaranteeing the Lorentz invariance of the 

corresponding string theory. Although classically the action (eq. 3.3) is invariant 

under the conformal transformation 

xQ+, I-) + x’(f+(E+)J-(r-)) 3 (3.7) 

where j+ and j- are arbitrary functions, this symmetry is generally broken in 

the quantum theory. If we demand that this theory remains a symmetry of the 

full quantum theory, we get certain set of constraints on the background fields. 

These are the constraints we shall study now. 
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Let us first continue the time r to the imaginary axis in the action (eq. 3.3), 

and define complex coordinates 

z  = e2(7+iQ) 
,  

2 = e2(P-ia) . (3.8) 

Equation 3.3 may then be written as 

‘1 = i + Bmn(X) azXrn,ZXn . 1 (3-g) 
There are various ways for checking the conformal invariance of the action 

(eq. 3.9). W e s a mention each of them briefly. h 11 

a) Conformal invariance of a theory demands vanishing of all the ,&functions 

of the theory. Equation 3.9 is the most general renormalizable action in two di- 

mensions constructed out of the fields Xm. Gmn(X) and Bmn(X) are the coupling 

constants of the theory. Ultraviolet divergences of the theory will renormalize 

the coupling constants of the theory, from which we may define the p-functions 

pi7 and p,:. In order to get a conformally invariant theory, both &$ and /?,$ must 

vanish, which, in turn, gives. us some constraints on G;i(X) and Q(X). The 

constraint c(l) = d/2 cannot be implemented directly in this method. 

b) Equation 3.9 gives us the following expression for the energy-momentum 

tensor: 

Tap = Gmn 
[ 
a,xmapxn - &ja7xma7x” 

I 
, (3.10) 

where (Y, ,B, 7 denote z or Z. Conformal invariance of the theory tells us that the 

energy-momentum tensor must be traceless, i.e., T,* f T,, = 0. This condition 

is satisfied by the classical expression (eq. 3.10). However, because of ultraviolet 

divergences, we must regularize our theory, which, in general, spoils the trace- 

lessness of the energy-momentum tensor. If, for example, we use dimensional 

regularization, working in the (2-c) dimensions, T,* computed from eq. 3.10 will 

be proportional to c/2Gmn a a XmPXn. The explicit power of E may be cancelled 
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by the $ poles coming from ultraviolet divergences, and give us a finite answer. 

The theory will be conformally invariant only when these terms vanish, which, 

in turn, will give us some constraints on the background fields. 

As it stands, this prescription also does not tell us anything about the central 

charge of the theory. However, a generalization of this method may be used 

to compute the central charge. In this scheme we couple the a-model to a 

background two-dimensional gravitational field. As a result, the trace anomaly 

now contains a new term proportional to the two-dimensional curvature. It can 

be shown that the coefficient of this term is precisely the central charge of the 

theory. Constraining this central charge to have the value d/2 gives further 

constraints on the background fields. 

c) We may try to directly verify the 

are given by: 

Virasoro algebra (eq. 3.4). The LE), ii) 

where f denotes integration along a contour around the origin. It can be shown 

that verifying the algebra (eq. 3.4) is equivalent to verifying the following operator 

product relation 

dwTzz(w) + finite terms 
(2 - 4 

, (3.12) 

and a similar operator product relation involving Tzr. These operator products 

may be computed explicitly in the perturbation theory. Generally, the operator 

product will contain terms in addition to those on the right-hand side of eq. 3.12. 

Demanding that these terms should vanish gives us some constraints on the 

background fields. Furthermore, we can also calculate c(l) directly from this 

operator product, and get an extra constraint on the background fields by setting 

e(l) to d/2. 
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I shall not give the details of the calculation here, but only state the final 

result. The constraint equations on various fields to lowest order in: CY’ turn out 

to be 

Rpq + Sp,,sqrs = o , 

D’Spqr = 0 , 

R + ;Spqr SPqr = 0 , (3.13) 

where 

S pqr = f(apBqr + a,&, + &BP,) - (3.14) 

Let us now turn our attention to a somewhat different aspect of the string 

theory. As we have already mentioned, the massless states of the string theory 

may be described by states created by the fields Gij (x), Bij(x) and a(x). The 

three point functions, as well as the scattering amplitudes involving various mass- 

less states may be calculated using string perturbation theory. We may then try 

to write down an effective action involving these massless fields which reproduce 

the same scattering amplitude as calculated from the string theory. This action 

will be nonrenormalizable, but that will not bother us since we shall restrict our 

attention to the tree level of the string theory. The effective action will involve 

terms with arbitrary number of derivatives and arbitrary number of fields, each 

extra power of mass coming with the derivatives or the fields being compensated 

by a power of (II ‘112 . Thus, in the low energy limit only the terms containing low- 

est power of cy’ will be important. For closed-oriented bosonic string the action 

is given by 

S eff = 
/ 

& d26x e-2@ R + &,,S”P + 4(DG92 - 4D2@ 1 , (3.15) 

where p runs from 0 to 25. If we now derive the equations of motion of various 

fields from this effective action, and restrict ourselves to the background where 
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G,, and B,, takes ueu only along the d transverse directions and depend only on 

these directions, and the dilaton field ip is zero, these equations become identical 

to eq. 3.13. This correspondence has been shown to be true beyond the lowest 

order in (Y ‘. O(a’) corrections to the effective action (eq. 3.15), coming from 

higher derivative terms seem to agree with the O(cr’) corrections to eq. 3.13 

coming from higher loop corrections in the a-model. 

Finally, we shall indicate how we can couple background dilaton field to 

the string and recover the equations of motion derived from S,ff by demanding 

conformal invariance of the a-model. It can be done in all the three schemes for 

studying conformal invariance of the a-model, but we shall restrict ourselves to 

the scheme (c) here. The energy-momentum tensor given in eq. 3.10 is the one 

calculated from the a-model action (eq. 3.9) by Noether prescription. However, 

we may define a new energy-momentum tensor 

(3.16) 

where a(X) is an arbitrary scalar function of X. The extra term that we have 

added is conserved (cY?~, = 8V’,p = 0) and does not contribute to the total 

energy or the total momentum ($d[l?‘Oo = JdE’T,o). Hence 2! is as good a 

definition of the stress tensor as T. a(X) may then be interpreted as a new 

coupling constant in the theory, which does not appear in the Lagrangian, but 

appears in the expression for the stress tensor. If we now calculate the operator 

product of fZZ(z) with fZZ(w), the terms involving <p will also contribute to the 

singular parts of this operator product, and change the equations (eq. 3.13). The 

new equations to the lowest order in (Y’ are 
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Rpq + Spdqr8 - ZD,D,<p = 0 , 

DrSPqr - 2Spq,Df@ = 0 , 

R + ;SpqrSP” - 4D2cP + 4(D@)2 = 0 . (3.17) 

These are precisely the equations derived from the effective action (eq. 3.15). 

Thus we see that there is a one-to-one correspondence between the equations 

of motion in the string theory, and conformal invariance of the two-dimensional 

a-models. As we shall see in the next section, this correspondence also holds 

for the superstring and the heterotic string theories, and can be used to obtain 

nontrivial solutions to the string field equations. 
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4. THE HETEROTIC STRING AND THE SUPERSTRING 
IN ARBITRARY BACKGROUND FIELDS 

In this section I shall extend the analysis of the previous section to the het- 

erotic string theory. The extension to the superstring theory is straightforward, 

and so I shall only mention it briefly at the end of the section. The free heterotic 

string in the light-cone gauge is described by the usual bosonic coordinates x*(r), 

Xi(a, T) (i=1,...8), as well as eight right-handed Majorana-Weyl fermions Xi and 

32 left-handed Majorana-Weyl fermions +“. The free string action is given by[231 

r 
so = 1 

2a’ [/ 
drx+x- + A 

27r J / 
dr du[i-I,Xi13aXi 

0 

+ ixia-A’ + ill”a+$“] , (4.1) 

where t* = -$( co f El) are the light-cone coordinates on the world-sheet, and 

a* denote derivatives with respect to E*. The fermion fields Xi and @  can 

have either periodic and anti-periodic boundary conditions under u + tr + z. 

The massless bosonic states in this theory consists of a symmetric tensor, an 

antisymmetric tensor, a scalar and 496 vectors. We shall associate them with 

the fields GQ(x), Bii(x), Q(x), and AM(x), respectively. AM(x) are 496 gauge 

fields, the gauge group being either &3 x &3 or SO(32), depending on the choice 

of possible boundary conditions on the left-handed fermions $“. For the het- 

erotic string theory with SO(32) gauge group, the fields $’ transform in the 

fundamental (32) representation of the gauge group. For the J?& x &3 theory, 

only an SO(16)xSO(16) subg roup of the gauge group is realized linearly, and the 

fermions belong to the (16,1)+(1,16) re p resentation of this group. While study- 

ing this theory in arbitrary background fields, we shall restrict the background 

gauge field for the Es x Es heterotic string to lie in the SO(16) x SO(16) subgroup. 
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The action for the heterotic string in arbitrary background fields G;j(X), 

Q(X) and AM(X) may again be written down by studying the vertex operators 

for various massless fields in the theory. The result is 

s=L 
Zo!’ / 

dTx+x- + $ J d7 i da[Gij(X)a,PPX’ 
0 

+ E*‘Bij(X)daXidpX’ + iG,(X)(x’a-ii’ + X”(I’~~(X) - Ski,(X))XLa-Xk} 

where TM is the generator of the gauge group and F,? is the field strength con- 

structed from the gauge field AM(X). Ag ain we have taken the various fields to 

lie in the transverse directions only, and depend only on the transverse directions. 

The action (eq. 4.2) h as a (1,0) supersymmetry 

6X’ = id , 

6Xi F -&Lx’ , 

h,b” = -EX’A~(X)(T~)~~~,~~ . (4.3) 

In order to formulate a consistent string theory in such a background the ac- 

tion (eq. 4.2) must again be conformally invariant. To understand the reason for 

this we restrict the background fields to take vev only in d of the eight directions 

(which we denote by XP (p=l,...d), and depend only on these directions. Let 

XM (M=d+1,...8) d enote the free directions. The action (eq. 4.1) then may be 

split into two parts, SO and Sr, as follows: 
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r 
so r 1 

Zck!' 
drx+x- + L 

27r J J 
dr dad,X”daXM + AM&AM 1 , 0 

S = & / dT/ dcr[Gpq(X)i3,XPaaXq + 8@Bpq(X)daXPdpXq 
0 

+ iGpq(X){XP~-Aq + Xp(I’,Qn(X) - Sm(I,(X))Xna2P} 

+ qY(ia++” + A~(X)(T”)&td+Xi) 

+ ;Ff (X)+’ (T”),&‘Xi 
I 

. (4.4) 

From now on, we shall again set cr’ = l/2. The action (eq. 4.4) possesses 

a (1,O) supersymmetry, WI given by replacing Xi, Xi by XP, XP in eq. 4.3. It 

turns out that if the action (eq. 4.4) also posseses conformal invariance with the 

correct central charge, then it is possible to write down the full set of SO(%d,l) 

Lorentz generators, and verify that their commutator closes on-shell. To see how 

this can be done, note that conformal invariance and supersymmetry implies 

that the action (eq. 4.4) h as a full (1,0) superconformal symmetry. Although the 

theory contains sectors with periodic as well as antiperiodic boundary conditions 

on the Xi’s, we shall restrict our discussion to the Ramond sector with periodic 

boundary conditions on the X%. The extension of this analysis to the other sector 

would be straightforward. In the Ramond sector the superconformal symmetry 

is generated by the generators L, , - (1) LOJ, (1) G, satisfying the (anti-)commutation 

relations: 
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. 

[jfk),Lc)] = (m - n)i(l) 
m+n 

+ c”(l) 
4( 

m3 - m)b-n,-n 9 

[Lk), Lt)] = (m - n)L(‘) 
c(l) 

m+n + $m3 - m)L,-n , 

[Lc),Gp)] = (y - n)G(l) 
2 m+n 3 

[G$A),&)] = ZLm+, + J1)(m2 - A)s,,-, 4 
, 

[z$‘,L(,‘)] = [j#&)] = 0 . (4.5) 

In order to construct the Lorentz generators we also need the oscillators of 

the free fields X”, AM. He rice, we write down their mode expansion: 

XM = # + pMT + ; c [a;e-2in(r+u) + &;e-2in(r-c)] , 

n#O 

z*=3$+p*7 , 

AM = 2 bfe2in(r+a) . 

n=--00 

The various oscillators satisfy the commutation relations: 

[z”,pN] = i , 

[a?, *r] = [GE, &f] = mbm,-n6MN 3 

{bz, br} = bMN6,,-n . 

(4.6) 

(4.7) 
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From these oscillators we can construct the superconformal generators for 

the free field theory described by the action So. They are 

satisfying the commutation relations: 

[LE’, Lf)] = (m - n)L$$, + $(77x3 - m)6,,-, , 

where 

c”(o) - 8 - d -- 
3 

, 

Jo) = 8-d . 
2 

(4.10) 
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The SO(9-d,l) L orentz generators may now be expressed as 

JMN=~M~N-~N~M-~ aMaN-aNaM n n n n +&Fnii;-Gfl,ii~ 
n=l 

co 

-i bM&-bMbM 
-n n -n n bfbf - bfby) , 

n=l 

JM+=,M~+-,+~M , 

J”- = xMp- 
O"l 

- --z P M - i(p+)-’ c ; [a!!$(LC) + Lp) - (Lpi + Lpi)&? 
n=l 

- i(p+)-’ c bynG;) , 
n=-co 

J+- = x’p- - x-p+ . (4.11) 

The commutators of these generators may be calculated by knowing the su- 

perconformal algebra (eq. 4.5) and the free field commutators. They reduce to 

the standard commutation relations among the Lorentz generators acting on the 

physical states defined by 

(p+p-) 1 phys >= 4 LF) + Lp’) ( phys >= 4 (i!) + if)‘) 1 phys > , (4.12) 

if the central charges c(l) and c”(l) take values, 

Jl) = d 
2 ’ 

c”(1) = d + l6 
3 ’ 

(4.13) 

respectively. 
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Thus, we see that in order to get a Lorentz invariant string theory we need 

a supersymmetric conformally invariant two-dimensional field theory, with cor- 

rect values of the central charge. The conformal invariance of the theory given 

by the action (eq. 4.4) may be checked in the perturbation theory by any of the 

three methods mentioned in the previous section. Equation 4.13 seems to contain 

two equations. But c(l) - c”(l) may be identified to the two-dimensional gravita- 

tional anomaly when we couple the a-model to a background two-dimensional 

gravitational field, and hence ‘is expected to remain unrenormalized from the 

free field value (which is the one loop result) due to Adler-Bardeen theorem. 

Hence the equation for c(l) - c”(l) is automatically satisfied, and we need only to 

check that c(l) + c”(l) has the proper value given by eq. 4.13. To the lowest order 

the constraints on the background fields obtained by demanding superconformal 

invariance are given by 

Rpq + sp,,sqr* = 0 , 

DrSPqr = 0 , 

DQFM - S PQ P 
qrFM = 0 

qr , 

R+;S’=O , (4.14) 

in the absence of the the background dilaton field. The dilaton field may be 

coupled to the string exactly in the same way as in the bosonic string theory. 

These equations are derivable from an effective action 

S,ff =/d1’xem2’ [,, fS2 -4D2Q! 

+4(~9)~ + ~FE(F~)“Y 

+;SpYP(n3(4),,, , 1 (4.15) 
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to lowest order in cy’. Here f&(A) is the Chern-Simons three form for the gauge 

field Af. Again, this is the same action which reproduces the scattering ampli- 

tude for massless particles in the string theory at the tree level to lowest order 

in (Y’. Higher loop corrections in the a-model correspond to including higher 

derivative terms in the string effective action. The correspondence between the 

string effective action and the equations describing the conformal invariance of 

the a-model has been verified beyond one loop order. In the next section we shall 

assume that this correspondence holds to all orders in the perturbation theory, 

and show how we may obtain nontrivial solution to the string field equations 

using this result. 

The analysis for the type II.closed superstring theory may be done exactly 

in the same way. In this case the 32 left-handed Majorana-Weyl fermions are 

replaced by eight left-handed Majorana-Weyl fermions transforming as a vector 

under the SO(8) L orentz group. In the presence of general massless background 

fields the theory reduces to a nonlinear a-model with (1,l) supersymmetry. Again 

we can show that the theory is Lorentz invariant if the corresponding a-model has 

(1,l) superconformal invariance with the correct central charge. The constraints 

imposed on the background fields by demanding (1,l) superconformal invariance 

again turns out to be identical to the equations of motion derived from the 

effective action in the string theory. 
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5. COMPACTIFICATION ON CALABI-YAU MANIFOLDS 

In this section we shall show how the results obtained in the previous sections 

may be used to obtain nontrivial solutions to the string equations of motion. We 

shall be interested in the solutions where six of the ten dimensions are compact- 

ified to form an internal space K, and the other directions remain flat. We shall 

also restrict ourselves to the case where the background Bij(x) vanishes, and the 

background gauge field takes ueu in a particular SO(6) subgroup of SO(32) or 

SO(16) xSO(16). A s a result only six of the 32 left-handed fermions become in- 

teracting, others remain free. The action for the resulting two-dimensional field 

theory then splits into a free part and an interacting part. The interacting part 

of the theory is given by 

1 
47rCY’ / [ 

dadr G,n(X)d,XmdaXn + i{Xaa-X” + Xa~ab(X)Xbd-Xm} 

+ {$“a+$” + A:(X)(T”)d”#a+Xm} 

(5.1) 

where a, b are the tangent space indices, introduced through the vielbeins e&(X) 

satisfying 

eh(X>et(X) = Grnn(X) , (5.2) 

Aa = ek(X)Xm , P-3) 
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and w:(X) is the spin connection constructed from the Christoffel symbol I?$ b. 

In eq. 5.1 the sum over m as well as s runs from 1 to 6. We shall now further 

restrict the background gauge fields in such a way that when written down as 

a 6 x 6 matrix it is equal to the spin connection at every point x. The index 

s may then be identified with the index a, Az(X)(T”)ab with ;wg(X) and 

Fa$f(TMh with %bca, where R is the Riemann tensor. If we further define the 

two-component spinor 

X m = E,m(X)p , (5.5) 

where Ep is the inverse of the vielbein, then eq. 5.1 may be written as 

1 
47ra' J 

dadTG,n(X) [a,X”PXn + ixrn ,8X” 

+ ~~“r~np~a~p~aXL - ~R,npq~m~aXnRPPaxq] 3 

where pa (o = 0,l) are the two-dimensional 7 matrice 

o- 01 
P-lo ’ ( > 

/)A= O1 

( > -10 * 

F-6) 

(5.7) 

The action (eq. 5.6) is the action for an (1,l) supersymmetric nonlinear 

a-model. Thus we see that by restricting the background fields to have some 

specific form we may get extra supersymmetries in the model. In fact, for our 

purpose we need to restrict the background fields further in order to get a (2,2) 

supersymmetric model. This is done by taking the internal manifold to be com- 

plex and Kahler. We may then introduce complex coordinates on the internal 

manifold. Let us denote them by .P and ffi, respectively. In this coordinate 

system the various components of the metric are given by 
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G mn=Gaii=O , 

GmLi = d,&K , 
(5.8) 

where K is a function of the internal coordinates, and known as the Kahler 

potential. K is only defined locally, as we go from one coordinate patch to 

another K does not remain invariant, but changes as 

K’(z’,z’) = K(q) + f(z) + g(z) , F-9 

where f and g are holomorphic and anti-holomorphic functions of the internal 

coordinates, respectively. Neither f nor g contribute to GAS calculated from 

eq. 5.8 and hence Gms transforms as a tensor field as we go from one coordinate 

patch to the other. 

Under these restrictions on the internal manifold, the a-model described by 

eq. 5.6 has a (2,2) supersymmetry. The easiest way to see this is to use the 

superfield notation. We introduce four Grassman parameters OR, $R, OL, #L and 

define 

DL = 

DR= -& + i&-$- , 
R 

@m = Zm + BLxg + eRx,” + OLBRF~ + Higher 0 terms , 

(5.10) 

6,” = 2% + #LX: + ~RX? + ~?L~RF~ + Higher 9 terms , (5.11) 
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where x; = Am and XT = $J” are the right and left moving components of xm, 

respectively. Fm is an auxiliary field, and higher 8 terms are determined in terms 

of the lower 6 terms by solving the constraint equations: 

The action (eq. 5.6) may then be written as 

1 
- 
47rcY’ J 

d8LdORd$Ld8RdadrK(‘& iii) . 

(5.12) 

(5.13) 

This may be verified by expanding K(@, &) in terms of the component fields, and 

performing the 0, 8 integrals explicitly using the rules of Grassman integration, 

and using expression eq. 5.8 for the metric. The (2,2) superfield formulation 

(there are two left-handed and two right-handed Grassman coordinates) clearly 

shows that the action has (2,2) supersymmetry. Furthermore, eq. 5.13 is the 

most general dimension 2 operator in the theory consistent with (2,2) supersym- 

metry. Hence, if we regularize the theory maintaining N=2 supersymmetry (for 

example, by using N=2 superfields) the most general divergent counterterm has 

the same form as the action (eq. 5.13). The effect of renormalization may then 

be summarized into a single p-function PK. 

On the other hand, we may regard the model (eq. 5.13) as a (1,l) supersym- 

metric model with coupling constants G,,(= 0), Ges(= 0) and G,s. Hence, 

we may also describe the effect of renormalization by the /?-function of these 

coupling constants. These are of course related to PK. The relationship is the 

same as that between G and K, namely, 

p = pG- = 0 
mn mn , pG- = amaiipK , 

mn (5.14) 
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We shall now see that there exists a special class of internal manifolds for 

which pzfi vanishes identically. First we shall investigate the one loop result. 

At this order PK is given by cu’cTr 1nG where c is a numerical constant and 

the trace is taken over the indices m,ti, taking G as a 3 x 3 complex matrix. 

/?g, calculated from ,OK is proportional to CRmR where Rmfi is the Ricci tensor. PI 

Thus, the vanishing of the one loop p-function requires a Ricci flat metric. There 

is a special class of manifolds admitting such metric, known as Calabi-Yau man- 

ifolds. Thus, to one loop order we may get a supersymmetric a-model with 

vanishing P-function by choosing the internal manifold to be a Calabi-Yau man- 

ifold with Ricci flat metric. 

What about the higher loop corrections ? I shall now give a general proof 

that on a Calabi-Yau manifold we may always choose a metric which gives us 

vanishing ,&function to a given loop order. To see how this can be done, let us 

assume that (Y’~A/~~(G) is the total contribution to PK from beyond one loop 

order. Then we need to solve the equation: 

&am&Jr In G + o’2dm&&3K(G) = 6 . (5.15) - 

We shall look for a solution where the metric is Kahler, i.e., 

Gm~=dma~K . (5.16) 

Let Gmn be the Ricci flat metric on the Calabi-Yau manifold, satisfying 

R,%(G)=0 3 (5.17) 

and k be the corresponding Kahler potential 

Grnii = a,&$ . (5.18) 

27 



. 
Finally, let us define 

6K = K - k, 6GmR = Gm% - ernn = amafi6K . (5.19) 

Equation 5.15 is satisfied by a G which satisfies 

a’cTr In G + CU’~A~~(G) = a’cTr In G . (5.20) 

This equation may be written as 

@amafi6K = -cY’c-‘A/~~(G) + 2 +‘&!jG)n . (5.21) 
n=2 

We shall now show that there always exists a solution to the above equation on 

a Calabi-Yau manifold to any given order in (Y’. For this we need to use a special 

property of ApK(G), namely that it is a globally-defined scalar function on the 

manifold if G is a globally-defined tensor. Note that the one loop contribution to 

PK does not satisfy this property, since Tr In G changes by a term proportional 

t0 [Td1+32'~/a2'i) + 23 ln(&‘+z’~)] as we go from the coordinate system z 

to z’. However, a direct examination of Feynman graphs show that beyond one 

loop order APK(G) is always a scalar function of G.126’271 In fact, APK vanishes 

at the two and three loop order, and is proportional to the Euler density at the 

four loop order. [28-301 

We may now solve eq. 5.21 iteratively. P61 Since 6K is expected to be of order 

o’, we may replace ApK(G) by ApK(G), and ignore the Tr(GGG)n (n 2 2) terms 

on the right-hand side of (eq. 5.21) in the lowest order. The equation then reduces 

to 

fic5K = -~‘c-‘A/~~(G) , (5.22) 
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where ii is the Laplacian operator with metric G. Since ApK(G) is a globally- 

defined scalar function, it can be split into two parts, one proportional to the 

zero mode of fi (a constant) and the other orthogonal to the zero mode, on which 

I? is invertible. In other words, 

APK(G) = a0 + fib0 , (5.23) 

where a0 is a constant, and be is another globally-defined scalar function. Now 

note that, 

for a manifold of complex dimension 3. Hence a solution to eq. 5.22 is given by 

6K = -cx’~-~($k + bo) . (5.25) 

Note that k is not a globally-defined scalar function on the manifold. How- 

ever, 

6GmE = ama& = -d~-~($%~~ + amaiibo) (5.26) 

is a globally-defined tensor, since be is a globally-defined scalar field. Thus, the 

new metric Gmz = GrnB + 6Gms is an admissible metric on the Calabi-Yau 

manifold. 

We may now substitute the value of 6G on the right-hand side of eq. 5.21. 

Since GGmR is a globally-defined tensor field, the right-hand side of eq. 5.21 

remains a globally-defined scalar field. Since this is the only constraint that we 

needed to arrive at the solution (eq. 5.26), the new equations may also be solved 

as before. This process may be repeated indefinitely until we get the solution to 

the desired order in Q’. 
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This shows that we can formulate a (2,2) supersymmetric field theory on a 

Calabi-Yau manifold, at least perturbatively. What about the central charge of 

the Virasoro algebra ? Unfortunately, no direct proof of the nonrenormalization 

of the central charge has been given. Another way to study this problem is to 

study the equations of motion of the graviton and the dilaton fields derived from 

the string effective action and trying to see if one can find solutions of these 

equations on Calabi-Yau manifolds. This has been shown to be true to order 

(Y’~, but again, no general result exists beyond this order.1311 However, there are 

indirect arguments showing that this must be the case. [=I 
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6. VANISHING OF THE COSMOLOGICAL CONSTANT 

In this section we shall show how the results obtained in sets. 3 and 4 may 

be used to prove another important result in string theory, namely, that at the 

tree level of the string theory, the four-dimensional cosmological constant always 

vanishes after compactification. WI A more precise statement is the following: 

Let us look for a solution of the string field equations where the ten- (or 26-) 

dimensional manifold is of the form M4 x K, M4 being a maximally symmetric 

four-dimensional space and K an internal six-dimensional space. The fields Gii, 

Bii and AM are allowed to take nontrivial ueu only in the internal directions and 

are allowed to depend only on the internal coordinates. Then we shall show that 

as long as the classical equations of motion of the string theory are satisfied, M4 

is always the Minkowski space (as opposed to di Sitter or anti-di Sitter space). 

This is equivalent to the vanishing of the four-dimensional cosmological constant. 

The proof of this statement goes as follows. If we write down the string the- 

ory in the background field of the type mentioned above, the two-dimensional 

field theory splits into two parts, one involving the internal coordinates corre- 

sponding to the compactified dimensions, and the other involving the coordinates 

of the maximally symmetric space M4. In order for the theory to be conformally 

invariant each of these two theories must be separately conformally invariant. 

The theory involving the coordinates of M4 describe an O(4) (or more precisely 

O(3,l)) a-model with d ra ius proportional to the inverse of the cosmological con- 

stant. This theory becomes a conformally invariant free field theory in the limit 

of infinite radius, i.e., for zero cosmological constant. This shows the vanishing 

of the cosmological constant as a consequence of the string field equations.* 

* We should note that the metric that appears in the u-model is not the physical ten- 
dimensional metric, but is related to the physical metric through multiplication by eb where 
q5 is the dilaton field. Thus a flat four-dimensional metric qPV in the u-model will correspond 
to a ueu of the physical metric of the form e+qrv. This has been called the warp factor in 
ref. 34. However, since C# does not depend on the four-dimensional coordinates, the effective 
cosmological constant in four dimensions still vanishes. 
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