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ABSTRACT 

A method derived’ for calculation of electromagnetic fields 
of a point charge moving along an axis of cylindrically symmet- 
ric structures is applied here to cavities and collimators with 
side tubes. The longitudinal impedance for such structures 
is calculated. In particular, the impedance for a pipe loaded 
with a thin washer is also calculated. It is shown that for 
large particle energy and for high frequencies the longitudinal 
impedance of a collimator can be found analytically and that 
it is a constant in a broad range of frequencies. 

1. INTRODUCTION 

A method of calculating electromagnetic (EM) fields ex- 
cited by a point charge Q moving with a constant velocity u 
along the axis of a cylindrical perfectly conducting pipe with an 
abrupt change in its cross section was developed and published 
recent1y.l This method can be generalized to make it applica- 
ble to any cylindrically symmetric metallic structures that can 
be cut orthogonal to the axis of symmetry into a number of re+ 
gions such that within each region cross sections are identical. 
Regions supposed to be electrically connected to each other. 
Each region can be bounded by one or several coaxial metallic 
cylindrical surfaces. 

In essence, the generalised method consists of three steps. 
First, the Fourier components of the EM fields in each r+ 
gion are expanded into seria of cylindrical waves. Each wave 
satisfies the boundary conditions on the cylindrical metallic 
surfaces. The seria still contain an infinite number of yet 
unknown coefficients. Second, continuity and additional bound- 
ary conditions are imposed on the EM field at each cross sec- 
tional interface between different regions (field matching). 
Third, the resulting transcendental equations are trwformed 
into an infinite set of linear algebraic equations for the expan- 
sion coefficients. The approximate solution of the algebraic 
set of equations is then obtained numerically by truncating it. 
Physically interesting quantities, for example, the fields and 
the longitudinal coupling impedance, are expressed in terms of 
these coefl’icients. 

In the present paper this method is applied to a case of a 
point charge moving along the axis of either of the two struc- 
tures sketched in Figs. la (a cylindrical cavity with side pipes) 
and lb (a cylindrical collimator). The longitudinal impedances 
for such structures are calculated. The results found here for a 
cavity with the side pipes of equal cross sections are compared 
with calculations performed by another method of matching 
Eelds on the cylindrical surface r = a.s This comparison shows 
good agreement. 

There is a certain advantage in matching fields on the inter- 
faces P = constant rather than on the interfaces r = constant. 
First, it lets one consider structures with indentations. Next, 
the two side pipes can have different radii. The method pre- 
sented allows one to take this case into account practically 
without any additional complications. It is also straightfor- 
ward to extend the method to the case of a charge moving off 
the axis to find the transverse impedance. 

Some other practically interesting structures areparticular 
cases of geometries considered here. One example is a cylin- 
drical pipe loaded with a washer. Another example considered 
here is a flange connection of two tubes which in the pres- 
ence of a vacuum edge may form a very thin cylindrical cavity, 
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Fig. 1. Cylindrically symmetric structures considered 
in the present work: a) Cavity and b) Collimator of the 
radius b and the length p with side pipes of the radii ai 
and as. 

Two geometries considered in Ref. 1 (a pipe with a sudden 
increase or decresse of its cross section) are also particular 
cases of geometries considered in the present paper. 

Of particular interest is the question of the behavior of 
the impedance for very high frequencies. For the case of a 
collimator the asymptotic behavior of the impedance can be 
calculated analytically. This calculation can be found in the 
Appendix. Under the assumptions made in the present work, 
the impedance is independent of the frequency and is equal to 
120 ln(a/b) B, where a is the cross section radius of the pipe 
at the exit of the indentation. 

The equations derived here are valid for any particle veloc- 
ity p = u/c, with c the speed of light. Thus one can solve for 
fields radiated by a charge with an arbitrary energy. A note 
of caution is appropriate here. For very low /I the assumption 
that velocity is constant does not hold. In that case the prob- 
lem should be solved self-consistently, M was done for example 
in the paper-s A relativbtic case can be easily obtained by as- 
suming 7 >> 1, where 7 is the Lorentc factor of the charge. 
Most results obtained here are pertinent for large 7. 

Throughout this paper the right-hand cylindrical coordi- 
nate system r, B, t is used. The current density of a point charge 
moving along the wis of the pipe is 

J = e,O + es0 + e, 2 6(r) a(2 - ut) ) (1.1) 

where d(z) is Dirac’s L-function. If one defines the Fourier com- 
ponents of any vector V for the angular frequency w 
by expression 

+OO 
+=& I dtv exp{iwt} ) (1.2) 

-00 

then the Fourier components of the current density is 

j=e,O+e~O+e, QW yg- exPjiu+) * (1.3) 

3. Field Expansions 

Using well-known expressions for the EM fields of a point 
charge moving along the axis of a cylindrical pipe’ and for 
eigenfunctions of a pipe,5 it is easy to represent the EM field 
components for any region shown in Fig. 1 as an expansion into 
seria of the cylindrical waves with unknown coefficients (see, 
e.g., Ref. 1). Let us introduce the following notation: 
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k=w/c , (2.1) 

7 = k/h , W) 

M = Qk/acy2P2 , (2.3) 

Gl(r,d) = Kl(rr) + Il(rr)Ko(rd)/Io(rd) , (2.4) 

Go(r,d) = Ko(rr) - Io(rr)Ko(rd)/Io(rd) , (2.5) - 
where d = al, a2 or b, Ko, Kr, lo and 11 are modified Bessel 
functions of the second and the first kind, and the zeroth and 
the first order, respectively. 

Then for the diffraction region z > g/2 (Region III in 
Fig. 1) we have: 

,i~?;,’ =+yMGl (r, az) exp{ikz/fi} - iC,Bz(&,/az) 

J1(unr/a2)Xa-h exp(izL2,) , P-6) 

@  = - iMGe(r,az) exp{ikz/P} + C&(Y~/~$ 

Jo(u,r/az) exp(izL2,) , (2.7) 

@  =rPMGr(r,az)exp{ikz/P} - ikC,Bz(v,/az) 

31 (hr/az) exp{izb2n) , (2.8) 

where Xozn = If k2 - ~:/a: and Jo, .7r are Bessel functions of 
the first kind, of the zeroth and the first order, respectively. 

Similarly, for the reflection region z < -g/2 (Region I in 
Fig. 1) we have: 

E; =rMGl(r,al)ezp{ikz/P} + iC,B,(v,/al) 

J1(unr/al)X.in exp{-izX,1,} , (2.9) 

E; = - iMGo(r, al) exp{ikz/P} + C,B, (~:/a:) 

Jo(ud/al) exp{-izhn) , (2.10) 

& =-yPMGl(r,al) exp{ikz/a} - ikC,B~(v,/a~) 

Jl(hr/al) exp{-izhh) , (2.11) 

where Xarn = diG$ij. 

Finally, for the intermediate region -g/2 < z < g/2 
(Region II in Fig. 1) we have: 

g:,” = yMGl (r, b)ezp{ik%/B} - iCn(vn/b) 

J~(~,r/b)X~,,(C+exp{izX~,} - C-exp{-ii+,,}) ,(2.12) 

i,” = -iMGo(r, b) exp{ikz/P} + C,(vi/b2) 

Jo(v,r/b)(C+exp{i%Xb,} + C-exp{-i%Xb,}) , (2.13) 

@  = 7/3MGr(r, b) exp(ikz/P) - ikC,(v,,/b) 

.T~(vnr/b)(C+exp{i%Xb,} + C-exp{-i%Ab,}) , (2.14) 

where &,, = dm. 

All the other field components are zero due to cylindrical 
symmetry of the problem. 

The eigenvalues V, are defined by the boundary condition 
E,(z) = 0 for r = d which gives the following formula for v,,: 

Jo(b%) = 0, n = 1,2...oo . (2.15) 

They are assumed to be arranged in ascending order: ur < 
Il.2 < . . . . < 00. In all field expansions above, I3f and C* 
are unknown coefficients to be defined by the boundary and 
continuity conditions on the interfaces %  = constant between 
adjacent cylindrical regions. 

To ascertain the proper asymptotic behavior of the diffrac- 
ted field for z -+ oo and the reflected field for z -+ -oo the 
imaginary parts of the propagation constants should be chosen 
positive (such a choice is known as the radiation condition): 

ImX aln > 0 , (2.16) 

ImX,2* > 0 . 2.17) 

The same sign is chosen for the propagation constant in 
the Region II: 

Im&, > 0 . (2.18) 

Each term in expressions (2.6-2.8) for the diffracted field de- 
scribes either the nth wave propagating in the positive z di- 
rection, if k > u,,/az, or an evanescent wave, if k < u,/az. 
Similarly, each term in expressions (2.9-2.11) for the reflected 
field describes either the nth wave propagating in the negative 
z direction, if k > v,/Q~, or an evanescent wave, if k < u,,/QI. 
For any given k there are a finite number of propagating and 
an infinite number of evanescent waves. 

3. Boundary and Continuity Conditions 

The expansions of the EM fields given in the previous sec- 
tion are constructed in such a way as to fulfill the boundary 
conditions on the wall of the pipe in any region with a constant 
pipe radius. For example, for r = az and for all z > g/2, 

E;(r)=0 . (3.1) 

Consider now an interface between two regions. In the 
plane of the interface: 

u) the radial component of the electric field on the inner 
side of the wall should be equal to zero for all r, 

b) all three components of the field should be continuous 
across the opening. 

For example, for a cavity at z = g/2, 

if(r)=0 forall az<r<b , 

and for all r < az, 

(3.2) 

i:(r) = i:(r) , 

ii,+(r) = i@(r) , 

E:(r) = if(r) . 

(3.3) 

(3.4) 

(3.5) 

Analogous expressions can be written for another cavity 
interface z = -g/2 and for a collimator. It is well-known that 
one of the three conditions (3.3-3.5) is always fulfilled as soon 
as two others of them are fulfilled. In what follows continuity 
conditions for E, and Ez are chosen to determine unknown 
expansion coefficients. 

We introduce now the dimensionless variables: 

n=kb , (3.6) 

~1 = l/g1 = al/b , (3.7) 

PZ = l/q2 = azlb , (3.8) 

i i=gPb , (3.9) 

p = r/b . (3.10) 



Let us introduce a vector of coefficients In these variables the propagation constants are 

Lln = hd = da , (3.11) 

I o2n = Ad = dn2 - u;/.lp; , (3.12) 

&,,, = &,,b = j/n2 - U;f . (3.13) 

It is also useful to redefine the expansion coefficients 

B, = -(2ibQ/xc) exp{-az(n/P + x,,~~)}z,, , (3.14) 

C; = -(PibQ/xc) exp{+cF(n/P + &,)}t, , (3.15) 

Cz = -(2ibQ/m) exp{-sz(n/P - &,,,)}y, , (3.16) 

Bz = +(2ibQ/ac) exp{+i;i(s/P - &2,,)}z,, . (3.17) 

The expressions for the field components in the plane 
.z = -g/2 in these variables become: 

J% = (2Qlrcb) ew{-G/P)[ (KPrP’)G (r,ul) 

+ (llPl)CnZnunJI(u,p/Pl)~olnl (3.18) 

@ ’ = (2Qlrcb) ew{--iG/lB)[ (~/2rP2)G (r, b) 

+ %&mJ1 (unp)‘iIbn(tn exp(26tf(~/P + ibn) - vn)] 13.19) 

E; = -(ZiQ/rcb) exp{-i@/@}[(n/2r2p2)Go(r,ol) 

+ (l/P:)~,~,~~Jo(~,P/Pl)l (3.20) 

i;,” = -(2iQ/xcb) exp{-i@/p}[(s/2y2p2)Gg(T, b) 

+ %d’~JO(unP)(tn exP{2i?j(K//? + xbn) + Yn)] (3.21) 

Similar expressions for the field components in the plane 
t = g/2 are 

E:,’ = (2Qlrcb) exp(i~~/ilP)[(~/2rP2)Gl (r, 4 

+ (l/P2)Cn%nunJ1(unPIP2)~~2~1 (3.22) 

@  = (2Q/rcb) exp{in~/lB)[(n/2rP2)G1 (r, b) 

+ &~hJl (%-‘)&m(tn - Yn eJP{-%i(n/P - &a))] (3.23) 
@  = -(SiQ/xcb) exp{i@/~}[(~/2+y2P2)Go(r, ~2) 

- (llP!a~ nWjfJO(W/P2)] (3.24) 

Ez = -(2iQ/?rcb)exp{i~~/p}((~/272P2)Go(r,b) 

f %u~JO(hP)(tn + YnexP{-%f(‘C/p + xbn)) (3.25) 

Note that these expressions are valid both for a cavity, for 
which p1 < 1 and p2 < 1, and for a collimator, for which p1 > 1 
and p2 > 1. 

4. Basic Equations 

Unknown coefficients z y t and z, are defined by the nr n, n 
set of equations which are obtained by substituting expressions 
(3.18) through (3.25) into Eqs. (3.2) through (3.5) fdr the inter- 
face z = g/2 and the similar equations for the second interface 
t = -g/2. As was explained in Ref. 1, this set of transcen- 
dental equations can be replaced by a simpler set of algebraic 
equations. 
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N = 1,2,3,4 . (4-l) 

Then the set of equations can be written in a matrix form: 

CNC,A&X~=P~ L,N=1,2,3,4; n,l=1,2...m. (4.2) 

Eq. (4.2) constitutes an infinite system of linear algebraic 
equations for the unknown coefficients Xc. 

The coefficients A&, and the right-hand sides PL of 
the matrix eq. (4.2) for a cavity are presented in Table 1. There 

&m-b(P) = 
u,,Jo(u,,,P)JI(u,,)/(v~ - P”P&), if un # P&G 

vnJ:(un)/(h, + ph), if Vn = pu,. 
(4.3) 

In particular, 

4mn(l) = &mJ&)/Z (4.4) 

For a collimator, Eq. (4.2) looks the same but its coeffi- 
cients and the right-hand sides have a different meaning and 
are presented in Table 2. 

Two geometries considered in Ref. 1 (a pipe with a sudden 
increase or decrease of its cross section) are particular cases 
of geometries considered in the present paper. For example, 
the case of a charge passing through a decreasing cross section 
can be obtained by assuming u2 = b (or equivalently, p2 = 1) 
and g = 0 in equations describing a collimator. The same case 
can be obtained by assuming al = b (or equivalently, p1 = 1) 
and g = 0 in equations describing a cavity. Similarly, the case 
of a char&e passing through an increasing cross section can be 
obtained by assuming 01 = b (or equivalently, p1 = 1) and 
g = 0 in equations describing a collimator. The same case can 
be obtained by assuming 02 = b (or equivalently, p2 = 1) and 
g = 0 in equations describing a cavity. Using Eq. (4.4), it is 
easy to see that with necessary changes in notation, Eq. (4.2) 
indeed reduces to Eq. (12) of Ref. 1. 

Notice that for a smooth pipe for which p1 = p2 = 1 ‘or 
q1 = q2 = 1 all Pi = 0. Since DetlAE’NI # 0, only the trivial 
solution Xf = 0 exists. That means that there is no radiation 
in a smooth pipe, as it should be. 

5. Longitudinal Coupling Impedance 

The usual expression for the longitudinal impedance is: 
00 

Z(k) = -$ / d&F(r = 0, z) exp{-ikz/P} , (5.1) 
-co 

where E,” is the radiative part of the field, i.e., the part which 
depends on the expansion coefficients. Sometimes an alterna- 
tive definition of the impedance is used in which the integration 
is performed over the difference between the full field and the 
field of a charge in a smooth pipe. This definition is useful only 
if both side pipe cross sections have equal radii al = ~2 = a 
or, equivalently, p1 = p2 = p. In this case the real parts of the 
impedance are the same according to both definitions. The 
imaginary parts differ by 

AZ = -iZonFF(a)/ay2p2 , (5.2) 

where 47r/c = ZO = 377 R is the impedance of free space and 
F(a) is defined in Table 1. In the general case of different pipe 
radii, definition (5.1) is more useful and is used below. 



Table 1. Coefficients AllN and right-hand sides Pt of Eq. (4.2) for a cavity 

E+ = exP{2r+/P + ibn)), E- = eXp{-2aT(tC/P - ibn)}, F(a) = Ko(rb)/Io(rb) - Ko(ra)/Io(4 
PI = al/b, ~2 = a2lh : = g/26 

N 1 2 3 4 
s L 

1 2P;xdJdPd h,J:(h&,, -kn J&d&,,E+ 0 Jo(~~PI)/~o(w)(~; + (7bJ2) 

.. 2 4J,“(h)6h -2P:+hd(Pl) - ~P:+#w (PI 1 E+ 0 -(~~)P:~IJ~(u~)~o(~~~)F(~~)/(u: + (w)~)Y 

3 0 &,J:(h&& -~bn~;(h)h 2P;~a2n4rn(P2) J0(4~2)/~0(~~2)(~~ + (7b12) 

4 0 -~P;~&,I(P~)E- -2P;44nl(P2) -4 J: (b&I -(~b)pi4~~J~(~~)~0(~~2)F(~2)/(~~ + (ra2)2)7 

Performing the integration in formula (5.1) we find: 

Z(k) = -(Zo/n)C, {~n(+ - &ln)/ [1+ (~~&J2] 

+ Y&/P + xb)(exP{2ly(xb - z/p)) - I)/ [I + (+i)2] 

- tn(‘C/p - ib)(exp{%?(ib + K/p)) - I)/ [I + (++J2] 

+44b + L2n)/ [l + (7a2/k)23 } . 

(5.3) 

Formula (5.3) is valid for both a cavity and a collimator. 
The expansion coefficients z n, n, n, y t and t,, in this formula 
should be understood as solutions of corresponding equations 
for a cavity and a collimator, respectively. 

In the ultrarelativistic limit 7 + co there is an alternative 
way of calculating the impedance for a cavity with equal side 
pipes radii. Instead of integrating the field along the axis of 
the structure r = 0 one can as well integrate the field along 

67 any line r = R: 1 

00 

ZR(k) = -2 / dz&(r = R,z) exp(-ikr) . (5.4) 
-co 

Performing the integration we find: 

Z&) = -@‘o/r)&, {~.Jo(v,R/+c -k,) 

+ unJo(unR/b)(n + xb) [eXP{2ii?(xb - K)) - l] 

- t,,Jo(u,,R/b)(n - 1,) [exp{2&b + K)} - I] 

(5 5) 

’ 

+~,Jo(vnR/a)(n + x.2,)} . 

A remarkable feature of this formula is that the right-hand side 
of it does not depend on R in spite of its explicit presence there. 

In particular for a cavity, a convenient choice is R = a. 
Due to the boundary condition (3.1) the regions z > g/2 and 
%  < -g/2 do not contribute to the value of the integral. 

Table 2. Coefficients A;tfN and right-hand sides Pt of Eq. (4.2) for a collimator 

E+ = ed2G(~lP + xbn)), F(a) = Ko(4/1o(4 - Ko(ra)/Io(4 
ij = g/26 

N 1 2 3 4 
L 

1 Ln J,2@4&5nl 2q$bnhn(Q1) -29:%m’h(dE+ 0 

2 24444J,~(Q1) -4 31” (47,, -u; J:(v,+,,E+ 0 

3 0 2’3,2%m’h(‘&)E- -2~;‘iIb,‘d,,(,2) xo2n 31” (un)6,1 

4 0 --v:J~(u,,)~~~E- - uIf J: (v, ) 4, -Gk3#h,(q2) 

4 

-Jo(wd/Ioh)(v; + (42) 

-(4q:ulJ1 (~d~o(~@%)/(u~ + (7ad2)7 

-Jo(wz)/~o(w)(~: + (42) 

-(rb)q22u~Jl(u1)Io(ra2)F(a2)/(uT + (7a~)~)r 



Putting R = a in Eq. (5.5) yields, 

&a,(k) = - (ZO/~)G,JO(L+P) {Y& + 1,) 

[exp{2zT(Rb - K)} - l] 

-t,(K - ib) [eXp{2*7(& + K)} - l]} . 

For a collimator, a convenient choice is R = b. In this case 
due to boundary condition (3.1) the region -g/2 < z < g/2 
does not contribute to the value of the integral and we obtain 
(a = b/a, qz = b/4: 

Zc,u(k) = - (zo/+n [z.Jo(w)(~ - ib) 

+znJo(wz)(K +&,)I . 
(5.7) 

For large 7 the impedances obtained by means of all the 
formulae (5.3), (5.5), (5.6) and (5.7) agree very well and this 
feature is used as a check in numerical codes. 

6. Numerical Results and Conclusion 

In general, the solution of Eq. (4.2) c,an be found only 
numerically. Two computer codes, RCVTY (for the geom- 
etry sketched in Fig. la) and RCLMTR (for the geometry 
sketched in Fig. lb), have been written for this purpose. An 
approximate solution is found by truncating the matrix to a 
finite size, inverting it and solving for the coefficients. In a 
normal case, i.e., not for extreme values of parameters, a-ma- 
trix size of 20 x 20 is usually sufficient to obtain reasonable 
accuracy. The results are checked to be independent on the ma- 
trix size up to the maximum size of 100 x 100 allowed by the 
codes. The programs, if asked, can do an additional check for 
the correctness of the solution. Namely, the coefficients found 
are used to restore the continuity and the boundary conditions 
at the interfaces between different cylindrical regions. 

As an illustration of the results obtained with the help 
of RCVTY the real and imaginary parts of the longitudinal 
impedance for a cavity with the same dimensions as used in 
Ref. 2 are represented in Figs. 2 and 3, respectively. The plots 
are in good agreement with the result of that paper for all the 
frequencies except those around the cut-off freauencies of the 
pipe ka = 2.405: 

J 
Lr I I I I I II I 

2.4 2.6 2.8 3.0 3.2 

1 

11-m pK=ow/c 5598A2 
Fig. 2. Real part of the longitudinal impedance of a cav- 
ity as function of dimensionless frequency pn = au/c. 
a = al = 02, g/26 = 0.302, a/b = 0.152. 

2.4 2.6 2.8 3.0 3.2 
II-86 plc q owe 5598A3 

Fig. 3. The same as in Fig. 2 but for the imaginary part 
of the impedance. 

Dependence of the impedance on the charge energy is illus- 
trated in Figs. 4 and 5. Here the real and imaginary parts of 
the longitudinal impedance of a cavity are plotted for several 
different Lorentz factors 7. As one can see, from the point of 
view of the impedance 7 = 5 is already close enough to 00, 
7 = 10 is indistinguishable from 00. 

The real and imaginary parts of the impedance of a very 
thin cavity built out of two pipe flanges and a vacuum edge 
electrically connecting them are plotted in Figs. 6 and 7, 
respectively. 

To illustrate the results obtained with the help of RCLMTR 
the real and imaginary parts of the impedance of a washer in 
a pipe (thin collimator) for the SLAC geometry are plotted in 
Figs. 8 and 9, respectively. 

The impedance of a long collimator can be seen as the 
sum of two impedances for a sudden increase and decrease 
of the pipe cross section. The impedance in the range of 

400 
t 

I I I I I I I 

2.4 2.6 2.8 
1 I-86 pK = ow/c 55PtlA4 

Fig. 4. Illustration of the dependence of the real part 
of the impedance on 7 for the same cavity as in Fig. 2. 
1) 7 = 100, 2) 7 = 10, 3) 7 = 5,4) 7 = 2, 7 = 1.4. 
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1 

I 
2.4 

I I I 

2.6 2.8 
plc = ow/c 55YBA5 

Fig. 5. The same as in Fig. 4 but for the 
imaginary part of the impedance. 

Fig. 7. The same as in Fig. 6 
but for the imaginary part of 
the impedance. 

large frequencies, found using formula (5.7), coincides with the 
impedance of a sudden increase of the pipe cross section found 
in the paper.’ This is the consequence of the fact that the 
impedance of a sudden decrease of the pipe cross section tends 
to zero for large frequencies. 

An analytic derivation of the asymptotic formula for the 
impedance of a collimator is presented in the Appendix. As 
is discussed there the impedance is constant in the frequency 
range n < 7 and then falls down. 

40 

-1 c: 

I I ! I I I 1 1 1 

0 IO 20 30 40 50 
1 le.6 pK = owk 559wa6 

Fig. 6. Real part of the longitudinal impedance of a 
very thin cavity (e.g., built of flanges) as function of 
dimensionless frequency pn = au/c. a = 01 = a~, 
g/2b = 0.025, a/b = 0.5. 

-40’ 
0 IO 20 30 40 50 

It-86 ptc = ow/c 5598A7 

I I I I / I I I 1 

Fig. 8. Real part of the longitudinal impedance of 
a washer in a pipe (the SLAC type of the structure) as 
function of dimensionless frequency pn = aw/c. 
a = al = az, g/2b = 0.217, aJb = 0.281. 

50 

0 

c: 

2 -50 

2 
s 
b -100 

t 
i? 

!$ -150 
5 

-200 I I I I I I 1 I I 

0 2 4 6 8 IO 
11-86 pK = ow/c 5598.49 

Fig. 9. The same as in Fig. 8 but for the imaginary part 
of the impedance. 
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It is interesting to estimate the total energy 
distributed charge passing through a collimator: 

cm 
AW= 

/ 
~lf(w)12R~&orl(k) 9 

-co 

loss AW of a 

(‘3.1) 

where f(w) is the Fourier transform of the charge density. Let 
us assume f(w) to be Gaussian: 
. 

f(w) = (Q/2x) exp(-k2a2/2) , (6.2) 
where o is rms of the longitudinal charge distribution. 

If one assumes that Re&,~l is constant and given by Eq. (A.6 
then the total energy loss is 

AW= Q2 ~lnalb . (6.3) 

This expression is valid when u > b/-y and agrees with formula 
for the total energy loss of a charge passing through a sudden 
change in a pipe cross section obtained in the paper. 11 

For a point charge u = 0. If one assumes that R~Z,,,II is 
constant for n < 7 and is zero for n > 7, as was discussed 
above, then the total energy loss is proportional to 7 . That 
conclusion is in agreement with an estimates and numerical 
calculations ’ 1 lo for a charge passing through a hole in a screen. 

Acknowledgements 

The author is grateful to K. Bane and S. Heifets for many 
useful discussions and comments, and to B. Woo for the help 
with numerical calculations. 

Appendix: Asymptotic Formula for the 
Impedance of a Collimator 

The longitudinal impedance of a collimator in the large 
frequency domain (and for the relativistic case 7 >> 1) can be 
found analytically. We will do that using formula (5.7). Since 
asymptotically &, = n, only the diffracted field, i.e., the field 
depending on coefficients z,, contributes to the impedance. 
Physically that arises from the fact that only the diffracted 
field radiated ahead can reach the relativistic particle.. Hence, 

.&u(k) = -2(Zo/a)nLznJo(w) , (A.11 

where q = a/b, a and b are the exit pipe and collimator radii, 
respectively. 

The coefficients z,, can be found from Eq. (4.2) with the 
matrix and the right-hand side of it taken from Table 2: 

wJ:(4 = -Jo(w)/u; + 2q2Gn(tm - Y&-MI, , (A-2) 
where the quantities r&l,,, are defined in Eq. (4.3). Divide now 
Eq. (A.2) by .I:(Y~), multiply by Jg(vlq) and sum over 1: 

~~14JO(w?) = -~lJ,2(w)I4J12(~1) 
+ 2~~1Jo(wq)Jl(~,)-2 (A4 

L&n - YmJqhJ1(hn)(&/q2 - $,-’ * 

Summation here can be performed explicitly using the fol- 
lowing particular form of the Kneser-Sommerfeld formula:12 

GJ,” (w?) (u: - z2)-‘Jl-2(u~) 

= ~Jo(Q~){Jo(Qqo(~) - JO(~)yo(Q~))/4JO(~) 
(A-4) 

1 

where Yo is Bessel function of the second kind. 
One can easily see that the second term containing coeffi- 

cients t, and y, vanishes. First, interchange the order of the 
summations over 1 and m. Then formula (A.4) applies with 
z = urn/q and the result of summation is zero. 

Application of the same formula with z -+ 0 to the first 
sum in Eq. (A.3) gives: 

= (lnq)/2 . 
(A4 

Hence, for large energy and for large frequencies the impedance 
of a collimator is the following constant: 

Z,,I~~) = (ZO/~) ln(a/b) for K>>l, 7>>1 . (-4.6) 

From this formula it may seem that the corresponding wake 
field, which is the Fourier transform of the impedance, diverges 
at the zero distance behind the charge. That is not necessarily 
true. Indeed, derivation of this formula is based on the ap- 
proximate Eq. (5.7) which is valid in the limit 7 >> n. Com- 
paring Eq. (5.7) and the exact Eq. (5.3) one can conclude that 
formula (A.6) is not valid for n > 7. In this range of frequencies 
impedance should decrease at least as km2. 
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