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ABSTRACT 

We calculate the n-point correlation functions of spin fields on an arbitrary 

genus Riemann surface. We also calculate the corresponding correlators for the 

spin fields associated with the local supersymmetry ghosts using a specific ansatz 

for screening the background ghost charge. Using these results we show by ex- 

plicit calculation that to all orders in the string perturbation theory all n point 

amplitudes involving massless fields in the superstring and the heterotic string 

theory vanish identically for 0 5 n 5 3. 
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String perturbation theory a la Polyakov [l] entails calculating correlation 

functions of vertex operators on Riemann surfaces of successively increasing gen- 

era. In a previous paper [2] we have calculated correlation functions of spin op- 

erators on a torus. These are relevant in string theory for calculation of one loop 

amplitudes involving fermion emission vertices. Using these results we demon- 

strated that one loop two and four fermion amplitudes in superstring theory 

vanish when all external momenta are set to zero. In this paper we extend our 

analysis to higher genus Riemann surfaces. In particular we calculate n-point 

correlation functions of spin fields on arbitrary genus Riemann surfaces. For 

the ghost system there are some new subtleties that one encounters at genus 

two and higher. These have to do with the now nonvanishing ghost background 

charge and with the presence of the supermoduli [3,4]. We propose a way for 

handling these subtleties which makes the analysis relatively simple. Within this 

framework it is shown that all n-point amplitudes in superstring theory and the 

heterotic string theory vanish for 0 5 n 5 3, for arbitrary momenta of the exter- 

nal particles and to any order in perturbation theory. Thus our analysis provides 

an explicit verification of the non-renormalization theorems [5]. 

We start by analysing a system of one complex Weyl fermion 91, on a Riemann 

surface of genus g. Let us denote by S*(z) the spin fields associated with this 

system. The fields $, $, S* obey the following operator product expansions: 

(1) 



where ,!$* are excited spin fields of conformal dimension $. These operator prod- 

ucts may be realized explicitly by using bosonization [3]. The global issues in- 

volved in bosonization on higher genus surfaces are, however, more subtle, and 

at no stage of our analysis we shall use bosonization. 

We shall be interested in calculating a correlation function of the form, 

F(Yi, zi, ui, Vi) - 
( 

fjs+(Yi) fj S-(q) &(lli, &Vi) 3 (2) 
i=l i=l i=l i=l > 

on a genus g Riemann surface. ) (Nr - Nz) + (NJ - iVs) must vanish in order 

to conserve the total fermionic charge. In order to calculate this we start from 

another Green’s function: 

G(Y,~,Y~,wwG) = 
($(Y)+(Z) nzl S+(Yi) l-I21 Se(%) l-I21 TJ(%) II21 +Cvi)> 

(I-I21 S+(yi)nEl S-(zi)nzl $(%)n21 +(%I> ’ 
(3) 

An expression for G may be written down by examining its singularities and 

periodicities as a function of z and w using the operator products in Eqn.(l). 

The result is* 

* This generalizes the result obtained by Sonoda [6] in the absence of spin fields. 
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Here (Z, @ are each g dimensional real vectors with entries zero or half charac- 

terizing the spin structure of the fermion fields on the genus g Riemann surface. 

(20, &) denote some reference spin structure which is chosen to be odd.’ 29 [$] 

denotes generalized &function as defined in Mumford [7]. w’ is a g dimensional 

complex vector whose entries are g linearly independent holomorphic one forms 

of the genus g Riemann surface. P is an arbitrary point on the Riemann surface 

which has been introduced only for convenience, the argument of 19 poz$ does 

not depend on P. Finally h(y) is the holomorphic half differential associated 

with the reference spin structure (&, &), satisfying [7] 

(h(v))2 = ;(Y).$. 8 k] (4 le’=o . (5) 

Y 
19 g] (s w’) has a zero at z = y as well as at (g - 1) other points independent 

of y. We shall denote these points by RI, . . . . I&r. But h(z) has (g - 1) simple 

zeros at the same points [7]. Using these properties it is not difficult to check 

that expression (4) as a function of y and z has all the correct periodicities and 

the correct singularities dictated by (1) with no additional spurious singularities. 

Now, from Eqn (4) we may derive a differential equation for F as follows. Let us 

define the stress tensor as: 

1 [ayiqY)W - d(YP&)l + (z :42} - (6) 

Given a primary field 4(z) of conformal dimension h, T(z) satisfies the following 

operator product expansion with 4(z), 
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Let us define 

(7) 

H,‘-.(Z; ?Ji, Zi, Ui, Vi) = lim 
Y+= 

dyGg(~, z; Yi, zi, ui,vi) 

- d,G~(Y,z;Yi,zi,ui,vi) + 1 
which is the expectation value of the stress tensor in the presence of the fermion 

fields and their spin operators. If we now consider the limit z + yi , the singular 

part of Hzg may be identified with , 

1 1 1 
8(Z -yi)2 + 

eF(Yi, %, %, vi) 

2 - Yi F(Yi,zi,%,vi) ' 

where k is the conformal dimension of S+(yi). Thus we may first calculate Hcg 

using Eqs. (4) and (8), and then take the limit z + yi to get a first order 

differential equation for F in the variable yi. Studying other limits (e.g., z + zi, 

ui or vi in H) furnishes differential equations for F in all other variables. The 

details of the analysis are very similar to the l-loop case [2]. As in there, it turns 

out to be straightforward to integrate the set of first order differential equations 

for F. Here we only give the solution: 



[vh(Yi)] ’ [vh(zi)] ’ [vh(ui)] [vh(%)] 9 

(10) 
where Kz g is a normalization factor to be determined later. Note that since 

the argument of O[z”:] contains (l/2) s: w’ and (l/2) s; 3, it changes to a 29- 

function with a different characteristic as we translate Yi or zi once along any of 

the canonical homology cycles. As we shall show later, this will help us determine 

the relative phases and normalizations of the contributions from different spin 

structures. 

Next we turn to the superconformal ghost system p, 7 with the stress 

tensor [3]: 

T,(z) = ;i: 
[ 
-; p(z) aw 7(w) - f W3(4 7(w) - (z ‘w)2] (11) 
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We can now introduce the spin fields S: for this system. The short distance 

behaviour of various operator product expansions may be understood by repre- 

senting the various ghost fields as 

7(z) - e++) r](z), p(z) - e+(‘) at(Z) 

(12) 
S:(z) - e*f4(‘) 

where C$ is a scalar field and 7, [ are two fermionic fields [3]. The relevant 

operator product expansions are 

P(z) 7(w) - (z - fv 

p(z) S,‘(W) - (z - w); e-4 4(w) f3 t(w) 

p(z) S;(W) - (Z - w)-; e-i +(w) at(w) (13) 

7(z) S,‘(W) - (Z - w)-+ e+i +(w) q(w) 

7(~) S;(W) N (z - w); e+igcw) V(w) 

There are some subtleties in the calculation of the correlation functions in- 

volving the supersymmetry ghost fields due to the presence of the 2(g - 1) ghost 

zero modes on a surface of genus g 2 2. An associated problem is the integration 

over the supermoduli [3,4].* In general the ghost zero modes may be removed 

by insertion of operators proportional to e#(pi) at 2(g - 1) points PI, . . . . P2g-2.t 

Following reference [lo] we choose a basis for the holomorphic $ differentials h;’ 

* Here we only consider the effect of the supermoduli which appear due to the handles on the 
surface. The supermoduli appearing due to the punctures on the surface are used to the 
generate the picture changed vertex function along the lines discussed in Ref. [8,9]. 

t Here the operator e@ refers’to an operator with ghost charge 1 and conformal dimension 
-- 32, and need not be interpreted as the exponential of a bosonic field 4. 
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which may be expressed as 

hTe = V’V~ (z, Z) - C Aij bc2)(Z - Pj) (14 

where v:(z) is a half differential with poles of the form C Aii(z- Pi)-’ at z = Pi. 

The part of the action that depends on the supermodulii ci may be written as, 

J d2 zCihqe(Z) TF(Z) (15) 

where TF is the fermionic part of the super stress tensor. Since hf* does not have 

any singularity at Pi we can exclude a small region around each Pi from the z 

integral in Eq.(15). Substitution of (14) into (15) and integration by parts yields, 

ci Aij 
f 

/$ TF(Z) + ciwi - Ci [AijTF(Pj) + ~$1 
i 

where M$ denote the contributions from the singularities of TF. These will 

appear if we are calculating the correlation function of a set of vertex operators, 

in the presence of which TF will develop singularities. Thus M$ will in general 

involve the contour integral of TF around these vertex operators. The integral 

over ci will now give several terms, each containing a product of (2g - 2) factors. 

One of them will contain the product of TF(Pi) for 1 5 i 5 (29 - 2)) in the others 

some factors of TF( Pi) will be replaced by M$. 

Let us now take the limit PI + P2 = Qr, P3 -+ P4 = 92 etc. With the 

amplitudes properly normalized, only the most singular part will contribute. 

But the most singular part in the operator product e4(p1) T,(Pl) ed(p2) TF(P~) 

is e24(p2) (PI - Pz)-~. Only the term involving (2g - 2) factors of TF(Pi) will 

contribute, terms involving M$ will be non-leading. Thus the final prescription 

will be to insert factors of e2,+(Qi) at each of the (g-l) points Qi in any correlation 

function. 
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In what follows we shall further choose the points Qi, ..Qg-r to coincide with 

RI, ..Rg-1, the position of the (g - 1) zeros of 29 g] (s,” w’) in the z-plane which 

are y-independent. We believe the final result will be independent of the choice 

of these points, but the calculation becomes much simpler with this choice.* 

The total ghost charge carried by these operators adds up to 2(g - 1) and hence 

we get a nonzero answer for the correlator provided the total ghost charge of all 

other fields in the correlator adds up to zero.$ 

Thus we have to consider the correlation function 

g-1 Fg(yi, Zi) = n e24(Rk) ijI [S,+(yi) ASi( 
k=l i=l > 

(17) 

As before, we start with the function: 

G’(Y,Z; Yi,Zi) - 
(nil: e24(Rk) I& [So+(Yi) si(zi)l P(Y) 7(Z)) 

(lJi=: e2@W l-Ii”=, [s,+(Yi) Sy(zi)l> 
(18) 

The analytic properties of Gg as a function of y and z may be determined using 

the operator product expansion (13) as well as, 

p(z) e24(w) - (z - w)2 e4cw) f3 t(W) 

7(z) e2#(w) - (z - w)-2 e34(w) r](W) 
(19) 

* The special role played by these points have also been noted in Refs. [11,12]. 
$ Again we shall never explicitly use the representation of the operator e2$ in terms of bosonic 

fields. The only information we shall be using is that it carries ghost charge 2 and has 
conformal weight -4. 
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This gives, 

It may be easily verified that Gc; , so defined has all the right poles and zeros.* 

From this expression for Gzs ’ we can derive differential equations for J’is as 

before, using the stress tensor ‘(11). Here we write down the solution: ’ 

n { [h(Yi)]-‘[h(zi,l’ } 
i 

where kZ g is a normalization factor. 2 

We are now ready to assemble all the above results in order to calculate 

the correlation functions of fermion emission vertex operators. Here we will only 

* For that one needs to use the fact that h(z) p ossesses simple zeros at the points 

R I, . . . . $-I [7]. 
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exhibit what is needed in the proof of the nonrenormalization theorems. We shall 

use two different forms of the fermion emission vertex, [3,13] namely: 

V-; (u, k, Z) = tP(k) Z&(z) eikaX(‘) S;(z), 

Vi(f.4, k, z) = us(k) eik*X(z) So+ z) 
( { 

i3Xp (7p)ap SD (22) 

+f k, ?I’. [(w - z)-; Q”(w) S&(Z) - (w - z)-1 (7yap Sqz)] } , 

where we have defined a normal ordered operator by point splitting. The rule for 

calculating scattering amplitudes involving fermions is to choose a charge neutral 

combination of Vi and V-3. We shall also need the bosonic vertex operator 

Vi&, k, z) = cp [t3Xp + ik, tip(z) $+‘(z)] eik*X(z) (23) 

We shall now illustrate the non-renomalization theorem for the fermion- 

fermion boson vertex. For this we need to calculate 

( V+,k&) V+h,z2) Vo(h,k3,~3) ) (24 

We shall show that the non-renormalization theorems hold only as a consequence 

of the vanishing of the correlators in the $J space, hence we shall never need to 

calculate the correlators in the X space. Let us first consider the k independent 

part of the correlator. The relevant correlator is proportional to 

( SJZl) S,‘(z2) ) ( Sal (4 sp2 (z2) ) = Ah9 4 62 (25) 

where in writing down such an expression we should keep in mind that the 

ghost correlator is to be defined after soaking up the zero modes along the lines 

explained above. The function A(zl, ~2) may be calculated by choosing spe- 

cific values of ~111, p2 and representing the SO(10) spin operators as a product 
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of five SO(2) spin operators. Thus we may choose S,, (~1) and SPa(z2) to be 

s,‘(zl) s,‘(a) s,‘(a) S,‘(Z~)S,‘(Z~) and s,(a) S;(a) S;(a) SC(a) S;(a) re- 
spectively. The final expression for A(zl, ~2) may be obtained using Eqn (10) 

and (21) and summing over spin structures. The result is, 

where ~(a’, q d enotes the relative normalization and phases of the contribution 

from different spin structures. At this stage we have to demand that (26) behave 

as a one form as a function of z1 in order for the integral over z1 of V-f to be 

well defined. This in turn implies that the combination of &functions multiplying 

h2(z1) in (26) must be periodic as we shift z1 around any of the canonical ho- 

mology cycles. Note however that under such a shift 6 [zz$] [ (l/2) Jff w’] goes 

over to a theta function of a different characteristic. Hence the relative normal- 

ization and phases Q (Z, c) are completely determined by demanding periodicity 

in z1 [2,8].* We obtain 

Q (Z, 6) = K exp { 47rrri (a’.& - 67i&) } . (27) 

Substitution of this result in (26) s h ows that the answer vanishes identically due 

to the generalized Riemann G-identity [7,14], 

* In other words if we know the contribution from one spin structure, we know that from all 
others by translating z1 around different cycles. 
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and that 19 @‘I (0) = 0. 

Next, let, us analyse the part, involving k. It, is easy to see that the relevant 

contributions are proportional to the following structures 

I1 = i(k3),, uQ’ ckd t&a’ (k2) h)& (53)P 

(&,(Zl) S9z2) ?pyz3) V(z3)) (S&l) mz4 
(29) 

I2 = wF~z2 @l(h) ua2(k2) (k& (k& (s3)v (~2 - z2)-+ 

(30) 
(&l(Zl) Scz,(z2) V(w2) V(z3) V(z3)) (SJZl) s,‘(4) 

where we have dropped terms that would vanish by on-shell conditions, e.g., 

terms of the form (kz)vu *i(kl)ua2(k2)(Sal(z1)Scr2(z2)~Y(w2)). Expression (29) 

has two tensor structures of the form 

A(zl,Z2,Z3)@$ 6’” + B(zl,Z2,Z3) (~PY)a~ (31) 
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The tensor proportional to A does not contribute due to the on-shell condition 

5 . k3 = 0. B on the other hand may be evaluated by setting Jo = 1, Y = 2: 

S 01 = s--s-s's+ + r 2 3 4 Ss and Spa = S,SFScSLS,. The product of the spin 

correlators, after being summed over the spin structures gives, 

(32) 

This again vanishes using Eq. (28). F inally we turn to the correlator appearing 

in Eq. (30). There are four independent tensor structures which we shall take to 

be, 

Upon substitution in Eqn. (30) only the tensor structure proportional to A would 

contribute to the amplitude. A may be evaluated by setting p = 1 p = i, v = 2, 

S,, = ScSL SL Sz Sz, S,, = SF S[ S2 ST SC. This gives, 
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A cc lim w2’z2 [cw2 -a-:{ ok] (p))t ($1 (p))i 

Since the prefactor does not diverge in the w2 -+ 22 limit, we may set w2 = 22 in 

the sum. The result vanishes by (28). 

So far we have discussed the two fermion one boson vertex. The advantage of 

having the fermion vertex operator in the correlator is that the relative normal- 

ization and phase between contributions from different spin structures is fixed 

by demanding periodicity in the argument of the fermion vertex operator. This 

is not the case for correlation functions of purely bosonic vertex operators, since 

the function is periodic in each sector separately. However one may obtain the 

correlation function involving the bosonic vertex operators by starting from the 

fermionic vertex operator and then using operator product expansion.* For 

example, if we start from the correlation function 

( k(w, h, 21) v,(u2, h 22) h(s3, ks, 23) ) 

* We would like to thank E. Martinet for discussion on this point. 
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and take the limit zi + 22, the singular part of the expression is proportional to 

(a - 22)-l ( h@l rp ~2, h + h, 21) h(s3, h 23) > (35) 

Thus the vanishing of the correlation function of the two fermion one boson vertex 

operators also implies the vanishing of the correlation function of the two bosonic 

vertex operators. If we now take the limit ~1 + 2s in (35), the most singular part 

proportional to (21 - 23)-2 is proportional to the identity operator, thus showing 

the vanishing of the expectation value of the identity operator. This in turn 

shows the vanishing of the cosmological constant.+ Vanishing of the correlator 

(Vi (a) v-4 (z2)) is a straightforward consequence of (28), in fact all the relevant 

correlators were evaluated in calculating two fermion one boson vertex. Taking 

the ~1 -+ 22 limit in this correlator one may show that the one point bosonic 

amplitude vanishes. 

Calculation of the correlator of three bosonic vertex operators is somewhat 

more involved. We start from the correlator (V+V-+ViVo), then study the limit 

when the arguments of Vi and V-1. approach each other. The result again van- a 
ishes as a consequence of the Riemann theta identity. We shall not give the 

details of the calculation here. 

Thus in this paper we have derived a general expression for correlation func- 

tions of spin fields on arbitrary genus Riemann surfaces. Using a specific ansatz 

for screening the background ghost charge makes the calculation relatively simple. 

With this ansatz we have shown that all n-point amplitudes in the superstring 

and the heterotic string theory vanish for 0 5 n 5 3, to all orders of string 

perturbation. 

t Vanishing of the cosmologidal constant on higher genus Riemann surfaces have also been 
discussed in Refs. [ 12,151. 
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