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We present complete calculations for basic observables at the SLC/LEP e+e- 

colliders: the 2” cross sections, line shape and width, forward-backward and 

polarization asymmetries. The effects of experimental cuts are explored. Special 

emphasis is placed on the polarization asymmetry, a highly sensitive measure 

of electroweak couplings and of the presence of heavy particles in virtual loops. 

The calculations were performed using a new, more efficient Monte Carlo method, 
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1. Introduction: Physics at the 2” Peak 

The imminent arrival of the SLC and LEP electron-positron colliders promises 

extensive and detailed tests of the standard Glashow-Salam-Weinberg model of 

a - _ electroweak physics. Both of these accelerators will carry out their first ex- 

periments at the 2” resonance and will probe the electroweak neutral current 

with great precision, requiring correspondingly accurate theoretical predictions 

based on the standard model. Although a wide variety of measurements will 

be performed at these machines, we study in this paper the physical properties 

and computation of an important subset of measurements, the inclusive or semi- 

inclusive quantities arising from the decay of the 2” in the s channel into charged 

fermion-antifermion pairs (excluding electron-positron pairs; i;e., Bhabba scat- 

tering): total cross sections; the 2” peak position, width and line shape; and 

the forward-backward and left-right polarization asymmetries. We will examine 

the result of experimental cuts and, where relevant, the polarization of the elec- 

tron beam. The polarization asymmetry is of special importance, as it is not 
- 

sensitive to “difficult” physics, such as the hadronization of final-state quarks, 

but exquisitely sensitive to particles appearing in virtual loops. The results pre- 

sented here are accurate predictions for these quantities based on calculations as 

complete .aS necessary, up to the theoretical uncertainties discussed below. 

-- 

All of the above quantities are derived from cross section measurements. The 

forward-backward asymmetry is: 

A OF --aB 
FB = 

0~4-0~ ’ 

where F and B are the jermion cross sections in the forward and backward hemi- 

spheres, respectively, of the experimental detector. The polarization asymmetry 

- is-defined as: 

A CL - OR 
LR = 

uL+uR ’ 
(1.2) 

2 



where L and R refer to the left and right longitudinal polarization states of the in- 

coming electron. We can also define a polarized forward-backward asymmetry:“’ 

- 

Apd _ (ULF - URF) - @LB - ORB) 

FB - (ULF + URF) + @LB + ORB) * 
P-3) 

The 2” line shape itself refers to the measured cross section. All of these quanti- 

ties can be defined for various species of final-state fermions and also inclusively, 

after summing over all observed species. Precise theoretical predictions of these 

measurables require radiative corrections to the tree-level graphs. These fall into 

a number of classes (Fig. 1):[2’3741 the “oblique” loop (or gauge boson self-energy) 

corrections (Fig. la); the “direct” loop corrections, vertices (Fig. lb) and boxes 

(Fig. lc); and the bremsstrahlung, or radiation, graphs (Fig. Id). The direct cor- 

: ; 
rections can be further divided into subclasses: QED graphs, vertices and boxes 

involving at least one photon, and weak graphs, vertices and boxes containing 

only massive weak gauge bosons. The vertices can occur in either the initial 

- or. &al state. The QED graphs must be treated separately because they con- . . - 
tain infrared divergences. Each direct QED graph must be combined with the 

corresponding bremsstrahlung graphs to obtain a finite result. Hence, we can 

refer collectively to the “initial, n “final” and “initial/final” QED corrections. In - 

Table I we show the generic magnitude of these corrections to the various observ- 
-. - 

ables at the 2” peak. By far the most important correction to the cross section 

and AFB comes from the initial-state QED radiation, which distorts the shape of 

2” resonance. Furthermore, to reach the necessary accuracy in the cross sections, 

one needs to include higher-order radiation emission from the initial state up to 

at least two photons. Is1 This is best done by the procedure of “exponentiation,” 

which includes the effect of an infinite number of photons.[“” (Most of the ini- 

tial radiation is soft.) On the other hand, ALR is most sensitive to the oblique 

and initial weak corrections. Keeping in mind the limits on the experimental - 
- measurement of these quantities (listed in Table I), we see that the three sets of 

corrections, initial QED (vertex and radiation), oblique and initial weak, are all 

- .- that are necessary to make adequate predictions for the observables in question. 
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Our approach will therefore be to construct simple expressions for the cross 

sections that contain only these corrections. We explain this simple ansatz and a 

new Monte Carlo technique developed to apply it in Section 2. In Sections 3 and 4 

we present the results of this Monte Carlo for our set of observables: cross sec- 
- _ tions, properties of the 2” line shape and asymmetries. We also discuss some of 

the effects of residual corrections not included in this Monte Carlo. In addition 

to numerical predictions, we discuss in some detail the effects of polarization, 

experimental cuts and virtual @articles on the radiative corrections. 

-- - 

-. - 

- 
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2. EXPOSTAR: Physical Ansatz and Monte Carlo Method 

A simple Monte Carlo with the necessary corrections, EXPOSTAR, has been 

developed. As discussed below, we have also used another program, BREMS, a 

_ complete order (Y Monte Carlo based on the Berends-Kleiss generator, to check - - 
some of the results obtained with EXPOSTAR.“’ 

To construct the ansatz, we begin with the tree-level neutral-current ampli- 

tude, written schematically without tensor or spinor indices as:“’ 

M e2QQ’ 
NC = - 

+ e2(h - siQ)(I’s - siQ’>/s,“ci 
q2 q2 + 4\/zd&Gpp + i+rz 

; (2.la) 

rz e2 
3 = 127rs;c; f 

+$Qp;)‘(l- y) 

(2.ib) 
. . 

+ (gf)‘(1+~)] ./ZjLOCD ; 
- 

CQCD = 1 for leptons , 

=3. (ltc)forquarks ; s=-q2 , 

where “f” stands for sum over all accessible (low mass) fermions. In the s (an- 
-. - 

nihilation) channel, q2 = -s. The gauge-fermion couplings have been written in 

terms of the jermion quantum numbers, unprimed for initial state, primed for 

final. Q is the electric charge (in proton units) and I3 is the weak (left-handed) 

isospin. The amplitude has been written to make the different electroweak param- 

eters evident: the electroweak mixing si, ci = 1 - si, e2, the Fermi constant G, 

and p. The oblique corrections can be completely and self-consistently subsumed 

in one stroke by converting each of these fixed parameters to the corresponding 

uiversal “starred” function that runs with q2: 

s~(q2),cq(q2),e4(q2),G~,(q2),p*(q2) . _ (24 

-- - 
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-- 
The definition, properties and explicit one-loop computation of the starred 

functions were discussed extensively in a previous paper.“’ Precise predictions 

for the four basic starred functions are shown in Fig. 2. The gauge boson self- 

energies contain hadronic contributions computed via dispersion relations where 
- - necessary. [lo1 The starred functions are defined by a standard set of electroweak - 

parameters ( arem, G,, Mz) and knowledge of the radiative corrections. The next 

step is to include the weak vertex corrections. This can be done by modifying 

the tree-level gauge-fermion couplings. The electric charge (the fermion-photon 

coupling) is modified for left- and right-handed particles:‘3’0’“’ 

QL = Q[l + VL(q’)] + 13VLnAb(q2) ; 

QR = Q[l + VR(q2)] 
(2.3) 

. 

The fermion-g coupling is modified for left- and right-handed particles: 

gL = (I3 - se2(q2)Q)[1 + Vl;(q’)] + ct2(q2)IdknAb(q2) ; 
. . (2.4 -. gR = (-s+“(q”)Q)[l + vR(q2)] - 

The three V functions are defined in Ref. 9 in terms of the fermion’s quantum 

numbers, Q and Is, and a pair of virtual loop functions. These latter functions 

are universal for light fermions, depending only on q2 and the W and 2 masses. 

Assuming that the final-state fermions are also light, the modified couplings can 

be used for both initial and final weak vertices. 

--- 

We now are left with the initial-state QED corrections to consider. There are 

a number of approaches to the initial-state radiation problem. A standard path, 

pioneered by Berends and Kleiss,[” is to consider the emission of one photon, 

then extend the calculation to two photons (Berends et al.) [51 or, through expo- 

nentiation, to an arbitrary number of photons (Ward”’ and Jadach’“‘). Another - 
-way to calculate the initial state QED is to ignore any explicit consideration of 

photon dynamics and to regard the radiation as simply changing the energy- 

- .- momentum spectrum of the e + - beams. This method is perfectly tailored to e 
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the present case, where we are interested only in the final-state fermions and 

the indirect effects of the photon emission on them, and not in the radiation 

itself. Analytic calculations of this type have been developed by Cahn”” and 

Alexander et al.“” Following the work of Trentadue and Nicrosini,“” Kuraev 

_ and Fadin, [“I and Altarelli and Martinelli,‘“’ we can write the initial state QED - - 

corrections to the cross section in a “parton-like” representation, by convolving 

a radiationless utree-leveln cross section ue(s) with the electron and positron 

structure functions D(s,s): 

u(s) = J dz+dz-D(z+,s)D(z-,s)uo(s’) . 

The physical content of this approach is clear. The e+ beam loses some mo- 

mentum to radiation, and its energy is reduced to a fraction z+ of its original 

value. The e- beam energy is reduced to z-. The structure functions describe 

the spectrum of the electron and positron beams, without explicitly describing 

- the-emission of individual photons. The total cross section is then a convolution . . - over all possible ways of losing energy, with the unconvoluted cross section ue 

evaluated at the reduced s, s’ = Z+Z-s, in a new center-of-mass (cm) frame 

moving collinear to the beams. Of course, the radiation from the initial beams is 

not entirely collinear, but has a transverse component. The transverse degree of 

freedom is present in Eq. 2.5, but has been integrated over, so that its presence 

is implicit in the function D(z, s). The crucial point about the factorized form 

of Eq. 2.5 is that the integration over the transverse momentum $1 assumes no 

cuts.1181 The structure functions can be computed to the desired accuracy using 

evolution equations analogous to the Altarelli-Parisi equations of &CD. In the 

EXPOSTAR Monte Carlo, we make use of the structure functions of Nicrosini and 

Trentadue. [Is1 These form factors contain the large infrared logarithms summed 

to all orders of Q, a special case of uexponentiation.n In addition, they contain - 
- purely ultraviolet logarithms to order CII 2. As such, these form factors include the 

same contributions to the total cross section as a complete order o2 calculation 

__ .- would and are thus adequate for our purposes (compare, Section 1). 
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-- 
If angular cuts are made in Eq. 2.5, the neglect of transverse radiation induces 

an error in the cross section. The same problem occurs in the differential cross 

section because the differential cross section is, after all, just a special kind of 

Ucutn cross section. Our ansatz, based on Eq. 2.5, is: 
- 

d44 - ho(s) d&n 
d&b dx+dx-D(x+,s)D(~-,s)~~ . (2.6) 

Such an approximation is unacceptable for general applications but is quite suffi- 

cient in our case. To order cy, both analytic and numerical treatments show that 

the distribution of transverse momentum from initial-state radiation is contained 

almost entirely below 1 GeV and is concentrated heavily in the low hundreds of 

MeV. Such momenta are small enough to be considered as perturbations on the 

motion determined solely by the longitudinal radiation and effectively give rise 

to an intrinsic uncertainty in the angles of the final-state fermions. The effect of 

such uncertainties on the cross sections is small (on the order of a few tenths of 

- a percent) and negligible on the asymmetries. (See Table I.) A  direct confirma- 
-. tion is provided by BREMG, which contains the same exponentiated initial QED 

as.EXPOSTAR, but with the one-photon contribution removed and computed 

instead by the Berends-Kleiss generator of BREMS. These results will be pre- 

sented in a later paper. ‘lo1 The higher-order transverse momentum distribution is 

still unknown. Since the order cy transverse effect is small, however, it seems rea- 

sonable to assume that the higher-order distribution of $1 will have no significant 

effect on the experimental observables in question. In particular, we expect that 

any changes in the transverse distribution will occur mainly in the low hundreds 

of MeV region, while not markedly increasing the number of worrisome events 

with large pi. We should note here that EXPOSTAR is not designed to provide 

a realistic simulation of the final-state fermions on an event-by-event basis, but is 

rather a Monte Carlo integration routine that computes such integrals as Eq. 2.5. 

- This fact alleviates the limitation of missing the transverse degree of freedom. 

W ithout cuts, the integration in Eq. 2.5 could be carried out analytically, 

__ .- but the presence of cuts makes a Monte Carlo essential. The integrations in 
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- 
EXPOSTAR are rewritten in terms of an approximant cross section and radi- 

ation distribution. One then generates events by sampling in the space of the 

approximant. This space has some irregular shape, with a sharp, high peak at the 

2”. The usual way of sampling such an irregular space is to put a “box” around 
- _ it large enough to contain the space’s widest dimension. Points are then sampled 

uniformly in the box ( Ueventsn) and are thrown away ( Urejectedn) if they do not 

lie within the actual irregular Monte Carlo space. For 2’ physics, this approach 

is very inefficient, because most of the box’s volume lies outside the space to be 

sampled, and the points generated in this region will be rejected. This problem 

led us to-invent a new method, efficient and elegant, that involves no rejection 

procedure. As described in the Appendix and in another paper,“‘] the actual 

integrand Eq. 2.5 is discretized so that its volume can be easily evaluated as the 

sum of individual cells ( Unoodlesn) and sampled efficiently without rejection. The 

sampling space can be carved up into Unoodlesn in any fashion whatsoever, the 

_ better to handle any particular peaking structure at hand. This turns out to .be 
. . -. especially crucial at energies above the Z”, as the resonance peak becomes very 

i: 

narrow in the approximant space. A conventional rejection-based Monte Carlo 

would encounter grave difficulties here, as the number of events would have to 

increase rapidly in order to sample the peak properly. 

With the electroweak parameters adjustable by hand, results from EXPO- 

STAR reproduce two earlier calculations of the cross section[51 and left-right 

asymmetry,[131 respectively, as shown in Figs. 3 and 4. For the final EXPOSTAR, 

the tree-level cross section a0 was udecorated” by changing the electroweak pa- 

rameters to starred functions and modifying the gauge couplings, as outlined 

above; the electroweak parameters are then not arbitrarily adjustable, but com- 

puted self-consistently on the basis of the standard model. For purposes of 

comparison, we show in Fig. 5 the forward-backward and left-right asymme- - 
-tries predicted by EXPOSTAR together with two previous calculations, that of 

Lynn and Stuart [“I (containing no initial-state radiation) and the prediction of 

- .- BREMS (which contains just one initial photon). All three calculations contain 
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the oblique and weak vertex corrections. In keeping with the general proper- 

ties of the radiation, the lowest-order bremsstrahlung prediction overestimates 

the initial-state QED correction to both AFB and ALR (as do the results of 

Jadach et al.).‘2a1 BREMS also allows the addition of the weak box, initial/final 
- - and final QED corrections, effects touched on below with regard to ALR. 

-- - 

- 
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3. 2” Physics: Cross Sections and W idths 

In this section we present some typical results for the 2” peak cross section 

and line shape, including the effect of cuts and virtual corrections, postponing 
- - discussion of the asymmetries to the next section. Following Table I, we note - 

that the effects missing in EXPOSTAR limit the accuracy of the cross section 

calculation to approximately 1.5%. There is also the statistical error inherent in 

the Monte Carlo method; alluf the results were run with lo5 events, limiting the 

statistical error to approximately 0.3%. 

We use a canonical parameter set: Mz = 94 GeV, mHisss = 100 GeV, and 

m top = 60 GeV, with no detector cuts and a final-state fermion-antifermion 

energy cut of 10 GeV, which is necessary to avoid the photon pole at q2 = 0. 

Figure 6a shows the 2” peak as it appears for the muon, hadron and total fermion 

cross sections (Table II). The 2’ width for this case is 2.76 GeV, with a hadronic 

_ contribution of 1.94 GeV (including QCD corrections) and a leptonic contribution 

-. of. 820 MeV. Figure 6b illustrates a blown-up section of the peak for the muon 

and total cross sections, demonstrating how the peak is shifted from 94 GeV 

by radiation. (Actually, even the tree-level cross section peak is above 94 GeV, 

because of the photon exchange.) Note in particular that the peak positions for 

muon, hadron and total cross sections are indistinguishable. The hadronic cross 

sections do not contain any final-state QCD corrections. 

--- 

Detector cuts will be standard in SLC/LEP experiments. A  common cut 

is the endcap acceptance cut, which limits the angle of the final-state fermion 

with respect to the beam axis to some minimum value. For simplicity we use 

a symmetrical endcap cut. Figure 7 (also Table III) shows the reduction of the 

muon cross section as we apply more and more restrictive endcap cuts. The 

peak position suffers no apparent change, however. Another cut often used in - 
experimental analysis is the acollinearity cut, which places an upper limit on 

the acollinearity angle of the final-state antifermion relative to the final-state 

- .- fermion’s axis. (An acollinearity angle of zero means that the fermion-antifermion 
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pair is emitted back-to-back in the detector frame.) As most of the radiation is 

soft, the events generally have small acollinearities, so that even a tight cut of 2’ 

reduces the cross section by only a small amount (Table III). 

- We saw from Table I that the oblique corrections had a small effect on the 

peak cross section. This result holds even for very large oblique corrections, such 

as those coming from a large top quark mass. (A large Higgs mass has an anal- 

ogous but smaller effect.) The general effect of these corrections was discussed 

in Refs. 2, 9 and 21. Certain gauge parameters are strongly affected by large 

oblique corrections. This is evident in the 2” width, for example (Table IV). 

For top quarks as light as 30 GeV, the width contains an open top channel. As 

the top mass rises, this channel is cut off once the open top threshold reaches 

94 GeV, and the width drops. However, the top quark continues to have an indi- 

rect effect on the width through virtual loops that renormalize the couplings, and 

the width rises. (Figure 8 shows how s:(Z) varies with the top quark and Higgs 

- masses.) This effect is of potential importance, as the 2’ width will be used’ to 
-. count neutrino generations. Some limit on the top mass is necessary to make 

sure that the Umissing,n or “invisible,” width of the 2” is correctly attributed to 

neutrinos and is not due to virtual corrections. Although the width is affected 

by oblique renormalizations, the peak cross section is almost completely insensi- 

tive to them. At the pole, the gauge couplings in the width (Eq. 2.lb) exactly 

cancel the gauge couplings in the numerator of the matrix element (Eq. 2.la), so 

that even a large top mass has a negligible effect. This cancellation is crucially 

based on a self-consistent treatment of the oblique corrections throughout the 

matrix element. [‘I Self-inconsistencies will lead to faulty results, as illustrated in 

the recent papers of Berends et al.“” and Hollik.[241 (Both papers report large 

peak cross section shifts from a heavy top quark.) In any case, this cancellation 

limits the usefulness of cross section measurements in making sensitive tests of 
- 

- electroweak couplings and virtual corrections. For such precision, we must to 

turn to the various asymmetries. 
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4. 2” Physics: Asymmetries 

For precision tests of electroweak physics, the various asymmetries discussed 

earlier have a number of advantages over cross section measurements alone. Being 
- _ ratios of cross sections, they are not very sensitive to the luminosity errors that 

limit cross section measurements. Careful choice of polarization states can isolate 

different electroweak couplings. The forward-backward asymmetry is one direct 

measure of parity-violating couplings. At tree level, apart from photon channel 

terms suppressed by (rz/M~)~: 

(4.1) 

where the g’s are the fermion-Z couplings defined in Section 2, and e and f 

refer to the initial electron and final fermion, respectively. AFB depends on both 

_ the -initial and final fermion couplings. It has, however, a number of serious 
. . - limitations. At the 2’ pole, AFB is close to zero and is not strongly affected 

by- large oblique corrections, making it a poor measure of the fermion couplings 

(Table I). The most severe drawback is that AFB can only be cleanly measured 

for muons. and taus, as only these can be unambiguously identified in the final 

state by the detector. The final-state quarks suffer hadronization and decays, 

making measurement of their AFB difficult. Measurements of AFB for muons 

are subject to poor statistics and a large experimental error (< 3% branching 

ratio). All of these problems can be overcome by use of another, more powerful, 

quantity, the left-right polarization asymmetry ALR. At tree level: 

-- 

- 
-Unlike AFB, ALR depends only on the initial-state couplings, up to small de- 

nominator terms proportional to (I’z/Mz)~ (not shown). Hence it is universal 

__ .- to all final-state fermion species. As shown by Lynn and Verzegnassi,‘2s1 this 
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result continues to hold even in the presence of final-state photon and gluon 

bremsstrahlung and hadronization. Thus, all of the final-state fermion data (ex- 

cluding e+e- pairs) can be used to measure ALR, greatly improving the statistics. 

Moreover, ALR is nearly independent of initial-state radiation (compare, Table I), 
- _ as the radiation affects the left and right cross sections almost equally.12s’261 It is 

also independent of other initial-state effects, such as pair production.[271 (This 

contradicts the results of Jadach et al.) ‘221 On the other hand, because of its 

structure, ALR is exquisitely -sensitive to anything that changes the initial-state 

e+e- couplings to the 2” and so serves as the ideal test of the standard elec- 

troweak model. Some of the same advantages of polarized beams accrue to the 

polarized forward-backward asymmetry.“’ At tree-level: 

(4.3) 

so that A$$ is in some sense the complement of ALR, in that it measures only the 
. . - final-state couplings. Since it is not universal to all species, it still suffers from 

poor statistics. However, there is some hope of measuring both the polarized and 

unpolarized forward-backward asymmetries for the bottom and charm quarks by -- - 
tagging their decay products. 

Unlike the cross section calculations, the asymmetries predictions are not 

limited by the radiative corrections left out of EXPOSTAR (Table I). The only 

uncertainties are statistical; with lo5 events, they are again of the order of a 

few tenths of a percent. The excellent weight distribution of EXPOSTAR ac- 

tually brings these Monte Carlo errors down below the usual statistical level of 

l/~~. 

The results for the asymmetries evaluated at the 2” pole with the canonical 

parameters are displayed in Table II. Figure 9 shows how the forward-backward - 
-asymmetries vary with energy, using the same parameters. A$?’ demonstrates 

the advantage of polarized beams. Polarization has made the asymmetry larger 

than AFB at the Z”, essentially independent of beam energy, and thus easier to 
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-- 
measure. Earlier, in Figure 5, we saw how ALR(Z) was almost independent of 

- 

initial-state radiation. Figure 10 demonstrates the weak dependence of ALR(Z) 

on final-state species, for muons, up and down quarks, all hadrons and all fermions 

(also Table II). I n e en d p d ence of the final state also means that ALR is insensitive 

_ to cuts (Table V). AFB, on the other hand, does depend on experimental cuts, 

as shown in Figure 11 and Table III. 

The key property of the left-right asymmetry, its sensitivity to oblique cor- 

rections, is illustrated in Table IV and Figure 12. (Table IV also shows the 

inadequacy of AFB in this regard.) The nature of ALR makes it by far the 

most -delicate measure of the electroweak couplings. All oblique corrections will 

renormalize the function si (2) and so affect ALR(Z): 

~ALR(Z) N -Sb~f(z) . (4.4 

- (Compare Fig. 12 with Fig. 8.) ALR can thus serve as a probe of the virtual loop . . -. structure of the standard model, including as yet undetected particles coupled 

to .the electroweak gauge bosons.‘a’O”‘l Furthermore, since ALR(Z) is largely 

independent of corrections other than oblique and initial weak vertices, it can - 

be computed without a Monte Carlo. Another such quantity, affected only by 

- oblique and weak vertex corrections, is the W vector boson mass Mw. The 

virtual corrections common to both impose a relationship between them, shown 

in Figure 13 for the standard model with unknown top and Higgs masses. Since 

the radiative corrections have two unknown parameters (mt,,,, and mHiszs), one 

more experimental input [say, of the pparameter, p*(O)] is necessary to test 

the standard model including its radiative corrections. (This is a special case 

of a more general way of testing the W(2) xU(1) electroweak gauge structure 

independently of the specific content of the oblique corrections.) Nevertheless, 

-when combined with Mw, ALR(Z) can confine mtop and “J-J@ to some region 

of Figure 13. ALR also places limits on proposed additions and modifications to 

- .- the standard model, such as supersymmetry and technicolor. Table VI shows 
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the shifts in ALR(Z), as well as AFB(Z) and Mw, due to various kinds of exotic 

particles.[21 

- 

Because of its unusual properties, ALR can be measured with high precision at 

the SLC and LEP colliders, unlike A FB (compare, Table I). For this reason, extra 

care should taken in its calculation. We have used BREM5 to compute the shifts 

in ALR due to the weak box, initial/final and final QED corrections and added 

them to the results of EXPOSTAR. These predictions are displayed in Table VII 

for comparison to Table II of Lynn and Verzegnassi, which is based on the same 

corrections but has only one-photon radiation in the initial state. The results 

of Table VII constitute the most complete and accurate predictions for ALR to 

date. There are two important limitations to the prediction. of ALR.[~” The 

largest is the photon self-energy (vacuum polarization) error (caused by the use 

of e+e- + hadrons collider data in dispersion relations), which could be reduced 

in the future through better measurement of the low-energy hadronic resonances. 
(bAy;Poz (2) N 0.0035.) A smaller error arises from the imperfect cancellation 

- of final-state strong interaction effects in ALR(Z), caused by the presence of a 

photon channel. (GA$f”“(Z) ~0.0005.) Th e major experimental limitations are 

due to statistics (reducible with larger samples of events) and the uncertainty 

of the e- .beam polarization, which can be perhaps reduced to 1% by the use 
-. - of a Compton polarimeter. (GA~A(Z)/ALR(Z) = 6PI.P.) The experimental 

uncertainties are combined in Figure 14. With an e- beam polarization of 45%, 

a polarization error of l%, the current vacuum polarization data and lo6 2” 

events, ALR(Z) can be measured to an accuracy of f0.004. Together with the 

theoretical uncertainties, this fixes s:(Z) to fO.OO1. Figure 14 also compares the 

accuracy attainable with A&frons(Z) with that possible with A;?-(Z), very 

much to latter’s disadvantage. Apart from poor statistics, AFB is more sensitive 

to uncertainty in the beam energy, because it varies more rapidly with energy 

-than does AL-R. The structure function approach to initial-state bremsstrahlung 

is ideally suited to incorporating the effect of an intrinsic beamspread, if this 

- .* becomes necessary. In any case, intrinsic beamspread effects cancel out in ALR. 
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5. Discussion and Conclusion 

The basic set of electroweak observables presented here are sufficient to de- 
termine the gauge structure of the standard model. Using a subset of the relevant 

radiative corrections, the EXPOSTAR Monte Carlo is capable of computing to 

the necessary accuracy the following: the 2” cross sections to various types of 

final-state fermions, the forward-backward asymmetries and the left-right polar- 
ization asymmetry. The 2” peak cross sections and forward-backwardasymmetry 

are not particularly sensitive to virtual corrections, but are strongly affected by 
initial-state bremsstrahlung. They can be adequately computed by simple Monte 
Carloprograms that include only initial-state radiation and arbitrarily adjustable 
electroweak parameters. The cross sections and AFB are only able to test the 
standard model on a very general level that excludes the subtle effects of virtual 
corrections. The left-right polarization asymmetry, having certain unique prop- 
erties, is capable of testing the standard model far more precisely and is highly 
sensitive to virtual corrections. Together with the W  boson mass, it serves as a 

powerful check of electroweak loop physics. Such loop corrections must be in- 
cluded explicitly in any calculation of ALR. On the other hand, we have seen 
that, at the 2’ pole at least, radiation plays no important role in ALR. There 

is also little need to take final-state effects into account in ALR(Z). Thus, the 

considerable work done already on the polarization asymmetry without radia- 
tion remains valid, and future work is freed from the need for the simulation of 

radiation and hadronization effects.P81 

As the SLC and LEP colliders move beyond the first stages of studying the 

electroweak neutral current, the polarization asymmetry will play a central role 

in precise tests of the standard model. W ith high statistics, ALR becomes an 

indispensable tool for exploring the physics of virtual particles and probing for 

a new level of structure at mass scales inaccessible to present accelerators. The 

importance of ALR in testing and reaching beyond the standard model under- - 
scores the crucial need for polarization at the SLC, LEP and e+e- colliders of 

the future. 
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Appendix: The Noodle Method 

The Noodle method solves three major shortcomings of the standard Monte 

Carlo integration technique: finding a suitable approximant, inefficient sampling 

- _ of the approximant space and slow event generation via inversion. 

In the traditional Monte Carlo method, one computes ss f by rewriting the 

integrand in terms of an approximate integrand g as ss 5. The quantity 5 is 

called the weight. In the Noodle method, g is defined automatically as follows: 

First, the region of integration S is decomposed into small sets over each of 

which the integrand f is roughly constant. Then for each set, the approximate 

integrand g is defined as exactly constant over the set and equal to f at least 

one point in the set. The graphs of S and S resulting from this construction for 

the calculation of EXPOSTAR at ,/s = 94 GeV are shown in Figure 15a. By 

construction, g approximates f, and, since g is constant over each noodle, g can 

be integrated exactly. This solves the problem of finding a suitable approximate 
. . cross section. -. 

We then generate values for the phase space variables with relative probability 

g. This is done by constructing an array called noodle via noodZei = noodlei-I+ 

the integral of g over the jth set. Imagine a number of noodles all joined from end 

- to end forming a long noodle. Thinking of noodlei as the sum of the lengths of 

the first i noodles, sampling uniformly along the length of the long noodle picks 

out a noodle with relative probability density g. Once a noodle is chosen, since 

g is constant within the set corresponding to the noodle, any point in the phase 

space within the set is equally likely to be chosen. Accordingly, we simply pick 

a random point within the set. It is fast because each generation of an event 

involves only a binary search algorithm for choosing a noodle and a random 

number generation. It is efficient in the sense that no point that is generated is 

-rejected. 

For this method to work better than the traditional Monte Carlo method, it 

-- - 

- .- is crucial to partition S into small sets so that f is indeed approximately constant 
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-. 
over each set. One way to achieve this is simply to cut up S at equal intervals 

so that, over S, f takes values in a small interval around 1, say (1 - E, 1 + c). 

Thus, if the graph of j has a tall but narrow spike at a point but is otherwise 

flat, the necessary number of noodles dictated by the width of the spike is clearly 
- - an overestimate for the rest of the region of integration. 

In the spirit of replacing nontrivial analytical calculations by exact numerical 

calculations, it would be pleasing if there existed a numerical algorithm for finding 
_ 

an acceptable partition of S. The following algorithm is only a partial solution to 

this problem that presumes a knowledge of the general profile of the integrand: 

Start-with an arbitrary partition of S. For each component of the partition, 

evaluate the function wild. If the-component is wild, partition the component into 

smaller components until none of the components are wild. A component is wild 

if the integrand f fluctuates unacceptably inside the component. In EXPOSTAR, 

the region around the 2” pole and the region near the photon pole are defined 

to be wild. 

- The user has to define the wild function. Since the Noodle method automat- 

ically generates events, a list of events associated with unacceptable weights can 

readily be provided. This furnishes two pieces of information. It is an indication 

that the yild function is insufficiently defined. It also gives the user qualitative 
-. - information about regions of the phase space over which the differential cross 

section has an unexpected structure. Once the wild function is adequately de- 

fined, the Noodle method generates a minimal partition of S that produces an 

extremely good weight distribution (Figures 15b, 15c and 16). 

A complete description of the Noodle method along with a detailed example 

of application appears elsewhere. [“I 

- 
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iLR(s) = ALR(~) 1 + 
J; dxH(x) [w - l] a[(1 - x)s] 

.f; dxH(x)4(1- xbl - 

ALR(s) is not a steep function of s. (Without the photon channel, ALR 

would be constant.) Furthermore, H(X) is dominated by the infrared re- 

gion, x --) 0. Hence, the second term in brackets is small, and the initial- 
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(This neglects the photon channel and the initial weak corrections.) We 

get 
2[1 - 4s32)] 

ALR(Z) = 1+[1-449~(2)]2 * 

- 
From Fig. 2b, we read off s:(z) = 0.2146, so that ALR(Z) = 0.278, as 

compared to 0.271 in Table II, an error of 0.007. 

29. SLC Polarization Group/SLAG Mark II Collaboration. 

. . 
- 

-- - 

- 
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I. 

II. 

III. 

IV. 

V. 

1 VI. 

. . - VII. 

Table Captions 

Note: All Monte Carlo runs on EXPOSTAR with lo5 events. 
Hadrons = 2 uti + 3 dd. Total = Hadrons + 2 p+p-. 

Effect of radiative corrections to various observables at the 2” peak. 

Observables at the 2’ peak with standard input. 

Effect of cuts on the cross sections and forward-backward asymmetries at 

the 2” peak; with standard input. 

-Effect of heavy virtual top and Higgs on observables at the 2” peak; with 

standard input. 

Effect of cuts on left-right asymmetry at 2” peak; with standard input. 

Shifts to AEz-(Z), A$z-(Z), and Mw due to new physics; with standard 

input. Ia1 

Predictions for ALR from EXPOSTAR combined with shifts from BREM5 

due to: weak boxes, initial/final and final QED; with standard input. 

-- - 

-. - 

- 
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TABLE I 
-- 

Effect of Radiative Corrections on 2 Peak Cross Section 

Example: Mz = 93 GeV, l?z = 2.6 GeV, 5; = 0.223 

- 

Tree level2 

#+p-- (pb)l 

1720 _ 

Peak (GeV) 1 

93.05 

p&P-’ A;?- 

0.034 0.212 

Changes due to: 

Initial QED2 -450 +70 MeV 

Final QED +20 none 

I/F QED negligible negligible 

Oblique2 - -25 negligible 

Initial weak2 5 -10 none 
f. Final weak2 5 -10 none 

Weak boxes negligible none 

Uncertainties due to cuts and 31: 

Endcap zto.4010 negligible 

Acollinearity negligible none 

Realistic experimental goals: 

SLC/LEP zk3% f50 MeV 

-0.018 

negligible 

negligible 

negligible 

-0.001 

-0.001 

negligible 

5 -0.002 

5 -0.002 

negligible 

+0.014 

-0.006' 

negligible 

negligible 

fO.OO1 negligible 

negligible negligible 

f0.05 f0.004 

z- - 

_ -1. Unpolarized. 

2. Contained in EXPOSTAR. Other contributions obtained from BREM5 
Monte Carlo. “Negligible” = “5 one part in 1CJ3.” 
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-- 

- 

TABLE II 

Cross Sections and Asymmetries at 2’: Standard Input 

P+P- Uii 

Cross Sections (pb) 

dd Hadrons Total 

1360 4690 5970 27300 30010 

Forward-Backward Asymmetries to p+p- 
-&- A$b$-,Pol 

0.039 0.203 

Forward-Backward Asymmetries to Hadrons 
ufi,pol f. 4B AFB 

Add 
FB 

Ad&PO' 
FB 

0.139 0.538 0.192 0.708 

P’P- 

0.269 

Left-Right Asymmetries 

Ua dd Hadrons Total 

0.269 0.272 0.271 0.271 

- 
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TABLE III 

Cross Section. and AFB to jx+pL- at 2” with Cuts 

(= Acollinearity, cos 8= Endcap Cosine 

A - 

ap+p- (pb) A&f- 

6 = 180’ cos 6 = 1.00 1360 0.039 

cos 9 = 0.98 1320 0.039 

cos 8 = 0.80 987 0.034 

-E L 20 COSB = 1.00 1330 0.045 

z- - 

- 

‘.._ 
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TABLE IV 
-- 

Effect of.Virtual Top and Higgs at 2” 

All masses in GeV 

- 

ap+p- (pb) 2” Width (GeV) 

mH = 100 mt = 30 1120 2.95 

mt = 60 1360 2.76 

mt = 300 1360 2.88 

mt = 500 1370 3.09 

mt = 60 mH=lo 1360 2.78 

mH = 100 1360 2.76 

_ mH = 1000 1360 2.75 

f. A$?- A;?- 4Rdrons 

mH = 100 mt = 30 0.034 0.266 0.251 

mt = 60 0.039 0.269 0.271 z- - 
mt = 300 0.064 0.329 0.331 

mt = 500 0.121 0.426 0.430 

mt = 60 mH=lo 0.038 0.274 0.276 

mH = 100 0.039 0.269 0.271 

mH = 1000 0.032 0.260 0.261 

- 
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TABLE V 
-. 

Left-Right Asymmetries at 2” with Cuts 

.$= Acollinearity, cos 0= Endcap Cosine 

- 

f = 180’ cos 8 = 1.00 0.269 0.271 

cos 8 = 0.98 0.269 0.271 

cos0 = 0.80 0.269 0.272 

cos 6 = 1.00 0.270 0.273 

f. 

z- - 

- 
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TABLE VI 
4. 

Shifts to Various Asymmetries and Mw from New Physics 

Results are generic 

- 

One-Loop Physics 6A;z- 6Ag 6Mw (MeV) 

Heavy quark pair 
a) Large splitting 
b) Degenerate 

Heavy lepton pair 
a) Large splitting my = 0 
b) Degenerate 

Heavy squark pair 
a) Large splitting 
.b) Degenerate 

f. Heavy slepton pair 
a) Large splitting 
b) Degenerate 

Winos 
a) rnij2 << 100 GeV 
b) m3i2 > 100 GeV 

Technicolor 
~%43 x s278 

016 

0.02 
-0.004 

0.012 
-0.0013 

0.02 
0 

0.012 
0 

0.005 
<O.OOl 

-0.04 
-0.07 

Strong Interaction Uncertainty f.004 f.002 f25 MeV 

0.01 
-0.002 

0.006 300 
-0.0006 -14 

0.01 
0 

0.006 300 
0 0 

0.0025 100 
<O.OOl <lO 

-0.018 -500 
-0.032 -500 

300 
-42 

300 
0 

- 
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TABLE VII 

- 

Cross Sections. and AL-R with Residual Corrections 

from BREM5: Weak Boxes, Initial/Final and Final QED 

With Standard Input 

h (GW 

Cross Sections (pb) 

P+P- Uii dB Hadrons Total 

93 880 3040 3860 17660 19420 

94 1360 -4690 5970 27300. 30010 

95 1030 3560 4530 20700 22760 

Left-Right Asymmetries 

. . fi (GeV) P+P- Uii dd Hadrons Total - 

93 0.255 0.242 0.253 0.249 0.249 

94 0.269 0.268 0.272 0.271 0.271 . -- - 

95 0.280 0.287 0.283 0.285 0.285 
-. - 

- 
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Figure Captions 

Note: All Monte Carlo runs on EXPOSTAR with lo5 events. 
Hadrons = 2 zlii + 3 dd. Total = Hadrons + 2 p+p-. 

- rl 

1. (a) Oblique corrections, (b) Vertex corrections, (c) Box corrections, 

(d) Absolute square of bremsstrahlung amplitude. 

2. Running starred functions with oblique corrections as functions of timelike 

energy; with standard input:“] (a) We% (b) & (c) G,., (4 P*. 

3. -2” -resonance line shape, from 90 to 96 GeV, for muons. Parameters 

(by hand): Mz = 93 GeV, se 2 = 0.223, l?z = 2.5 GeV. Peak cross section: 

1370 pb; peak position: 93.11 GeV. For comparison, see Ref. 5. Dashed: 

tree level; solid: EXPOSTAR. (a) 2” peak from 90 to 96 GeV: large dots 

show peak position and intersection of tree and radiation cross sections, 

respectively; (b) blow-up of peak region. 

f. 4. Left-right asymmetry ALR from 90 to 100 GeV for muons. Parameters (by 

hand): Mz = 93 GeV, sg 2 = 0.222, rz = 2.8 GeV. For comparison, see 

Ref. 13. z- - 

-- - 
5. Comparison of forward-backward and left-right asymmetries for muons us- 

ing EXPOSTAR (solid), BREMS (dashed), Lynn and Stuart”” (dotted). 

With Mz = 94 GeV, mtop = 60 GeV, and mHigge = 100 GeV. (a) Forward- 

backward asymmetry; (b) left-right asymmetry. 

6. Muon (dotted), hadron (dashed) and total (dot-dashed) cross sections at 

the 2” peak, with standard input. (a) From 92 to 96 GeV. (b) Blow-up of 

peak area, showing only the muon and total cross sections. 

- 
7. Muon cross section at 2’ peak showing effect of endcap cuts. Endcap cosine 

= 1.00 (dotted), 0.98 (dot-dashed) and 0.80 (dashed); with standard input. 

8. s:(Z) as function of top (solid) and Higgs (dashed) masses; with standard 

input. “I 
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. ” 

9. Forward-backward (dotted) and polarized forward-backward (dot-dashed) 

asymmetries for muons; with standard input. 

- 

10. Left-right polarization asymmetry for various species: muons (dotted), up 

quarks (dashed), d own quarks (long dashes), hadrons (solid) and total (dot- 

dashed); with standard input. 

11. Forward-backward asymmetry for muons with endcap cuts. Endcap cosine 

= 1.00 (dotted), 0.98 (dot-dashes), and 0.80 (dashed). Left-right asymme- 

try for muons (solid); with standard input. 

12. -Left-right asymmetry at 2” versus top (solid) and Higgs (dashed) masses; 

with standard input. 

13. ALR(Z) versus Mw, with lines of constant top (dashed) mass and constant 

Higgs (solid) mass. (a) Top mass from 60 to 500 GeV. (b) Blow-up of lower 

left-hand corner of (a); with standard input. 

14. Accuracy of experimental measurement of ALR(Z) and sz (2) .“‘I 
f 

15. Monte Carlo sampling space of EXPOSTAR divided into “noodles.” (a) 94 

GeV; (b) 110 GeV; (c) 210 GeV center-of-mass energy. P*‘s are integrated 

radiation distributions (integrals of approximant D’s; see Eq. 2.5 in text). 

Large bulge (not to scale) is 2” peak. Bulge at far corner is photon peak. 

Note narrowing of 2” peak with increasing energy; with standard input.‘201 

16. A  typical weight distribution for the EXPOSTAR Monte Carlo; with stan- 

dard input, at 110 GeV center-of-mass energy.[aol 

- 
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