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ABSTRACT 

A method for simulating radiative Bhabha scattering for configurations where 

one or both electrons do not scatter appreciably is presented. Double radiative 

Bhabha scattering is included by using the equivalent photon approximation. 

Results from a Monte Carlo event generator are shown for two experimental 

configurations. When an electron and photon scatter at large angles, the con- 

tribution from order cr4 is large for low visible energies. For the single photon 

configuration, the order o4 correction is small. 
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1. Introduction 

Radiative Bhabha scattering where one or both electrons escape detection at 

low angles is an important background for neutrino counting experiments [l] and 

some searches for supersymmetry [2] and compositeness [3]. Also, the large cross 

section allows this process to be used to measure luminosity at e+e- machines (41 

as well as test QED and radiative corrections. 

The Monte Carlo program of Berends and Kleiss [5] simulates Bhabha scat- 

tering and includes the order cP correction. However, it cannot be used for 

configurations where an electron scatters at an arbitrarily small angle. So in 

order to study such configurations, we have produced a program that exclusively 

simulates radiative Bhabha scattering in this low angle region. 

The outline of this paper is as follows. In sect. 2 the process e+e- -+ e+e-7 

is discussed in lowest order. In sect. 3 the next order radiative correction to this 

process is treated by using the equivalent photon approximation. In sect. 4 a 

method to simulate the processes e+e- + e+e-r and e+e- + e+e-77 by a Monte 

Carlo procedure is presented. Results from the Monte Carlo program are given 

in sect. 5. 

2. Lowest order process 

The lowest order cross section for radiative Bhabha scattering, 

e+ (p+F(p-) --+ e+(q+)e-(c)r(k) , (2-l) 

can be expressed in a compact form, in the ultrarelativistic limit, by using the 

following notation [6,5]: 

s = (P+ + P-)” , i! = (P+ - q+)2 , u = (P+ - q-)” , 

s’ = (!I+ + 4-)2, t’ = (p- - q-)2 , u’ = (P- - 4+)2 , (24 

XI = P+ 4 x2 =p-.k, YI = a++ y2 = q- - k . 

2 



We are particularly interested in small angle scattering of the electron or 

positron and hence the quantities, t or t’, can be very small. However, terms 

containing m,2/t2 and m,2/t’2, that could be of the same order as terms containing 

l/t and l/t’, are neglected in the cross section of ref. [5]. To find the m,2/t2 term, 

we calculated the cross section from the only two diagrams that contribute to such 

a term, shown in fig. 1. The result was found, using the symbolic manipulation 

program REDUCE [7], to be 

a3 d5a = - s2 
R2S 

+ d2 + u2 + d2 + y(x; + Y:)) (2) d5r , 

dsq, d3q- d3k 
d51’ = b4(p+ + p- - q+ - q- - k) 2qo - - 

+ 2qZ 2k0 ’ 

in the ultrarelativistic limit. An exact order cP calculation [g] of radiative Bhabha 

scattering was found to contain the same mass term. Including the m,2/P2 term 

also, we use for the differential cross section 

d50e+e-+e+c-7 = d5aBK - - d 8m2 
7r2S e 

(xf + Yz”) + cx: + yl”) 
x2y2t2 xlYlt’2 

d6r , (2.4 

where d5aBK appears in the appendix. This modification can effect total cross 

sections by as much as 5% or more when they include electron scattering at 

arbitrarily small angles. 
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Figure 1. Diagrams that contribute terms containing l/t md m2/t2. These and 
the charge conjugate diagrams dominate the order cz* cross section for the region 
under study. 



3. Correction to lowest order 

In this paper, only the correction from higher order QED will be consid- 

ered. The contribution from the Z” is small since the annihilation channel is 

significantly reduced by the requirement that an electron be below some small 

angle in the final state. Matrix elements for double radiative Bhabha scattering 

are in the literature [9] but a calculation of the virtual correction to radiative 

Bhabha scattering has not yet been published. So, instead we make use of the 

equivalent photon approximation [lo] (EPA) for the next order correction. With 

this method, only the diagrams shown in fig. 2 and their charge conjugates are 

included. This will be shown to be a good approximation of the total radiative 

correction when one electron scatters at a small angle. 

In the following discussion, we consider the diagrams where photons are ra- 

diated from the electron while the positron is deflected only slightly. The charge 

conjugate diagrams are included by symmetrization. Interference between these 

two sets of diagrams is not included but the net effect is expected to be small. 

Box diagrams, known to cancel an infrared divergence in the interference terms, 

are also not included. However, the finite remainder, after the cancellation of 

the divergence, is small in the similar processes of Moller scattering [ll] and 

two photon pseudoscalar production [12]. In sect. 5 we confirm that the effects 

of interference and annihilation channel diagrams are small in the lowest order 

process by simply removing them from the matrix element. 

The radiation spectrum from the scattered positron is proportional to [13] 

(3.1) 

where k is the momentum of a photon with polarization e^. In the limit that 

p+ and q+ are collinear, the radiation goes to zero and so it is expected that 

the radiative correction to the positron will be small. This is confirmed by 

an explicit calculation[l4] of the radiative correction to the multiperipheral two 
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Figure 2. Diagrams included in the approximation of the radiative correction to 
radiative Bhabha scattering: a) Virtual correction diagrams; b) Double radiative 
Bhabha diagrams. 



photon diagrams of the process, e+e- + e+e-p+p-. This process is similar to the 

one studied here, except that both the electron and the positron predominately 

scatter at small angles. The total correction is found to be on the order of 1%. 

Vacuum polarization is also not included since the largest part of the cross 

section has q2 M m,2, where the effect is small. 

Both virtual and real photon emission from the electron are included in the 

next order correction. The infrared divergence associated with virtual photon 

emission is cancelled by integrating the soft real photon emission up to some 

cutoff energy, EcUt, leaving a finite correction. This total analytic correction can 

be written in the form 

da’” = (1 + 6) da’, (3.2) 

where 6 depends on the soft photon cutoff energy. The cutoff energy must be 

small enough that the experimental resolution would not allow the detection of 

the extra photon and that the approximations used in calculating 6 are valid. 

However, the cutoff energy must be large enough so that (1 + 6) > 0 for all of 

the phase space under study. 

The correction term, 6, for radiative Bhabha scattering in the region under 

study, can be obtained directly from radiative corrections to Compton scattering. 

The equivalent photon approximation relates these two processes by, 

d5ue+e-+e+e-7 = d3ne++e+7 d207e-+7e- (3.3) 

where dsne+4e+7 is the equivalent photon spectrum [lo]. The correction, (1 + S), 

is thus the same for both processes. This correction term has been calculated for 

Compton scattering in the ye center of mass system by Mork [15]. Provided that 

E cut is specified in the ye center of mass system, the corrected cross section is 

given by 

duev+8-+e+e-7 = (1 + s,‘;+7e-) doe+e-+e+e-7, (3-4) 
where bcrn ye-+-ye- is given in the appendix. 
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The process, e+e- ---) e+e-77 where both photons have energies greater than 

E cut in the ye center of mass system, can be calculated by a direct application 

of the EPA, 

d8ue+e-+e+e-77 = d3ne+--re+7 d607e-,e-7r. (3.5) 

The cross section for double Compton scattering, 

7(&f(p-) -+ e-(q-)7(k)7(k8), (3.6) 

was first calculated by Mandle and Skyrme [16]. Their result may be written in 

the form, 

d607e-,e-77 = - - CX= xMS dbr, 
7r2s” m,2 

dSq- dsk d3k, 
d51’ = b4(p- + i - q- - k - kB) - - - 2q!? 2k=’ 2k,” ’ 

P-7) 

ii = (p- +i)‘, 

where XMs is given in the appendix. Then the cross section for double radiative 

Bhabha scattering, 

e+(p+>e-(P-) --+ e+(q+)e-(q-)r(k)r(ke), (3.8) 

is given by, 

d8uc+e-4e+e-77 = -- 
s2 + (s - s”)2 + 2m,2 

i? -) 

d8r 
t , 

dsq+ d3q- dsk dak, 
d81’ = lj4(p+ + p- - q+ - q- - k - k,) 2qo - - - 

+ 2q! 2k0 2k,o ’ 

(3-g) 

where fi is the ye center of mass energy. 
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4. Monte Carlo event generation 

The Monte Carlo generation follows the method used in ref. [5], where trial 

events are generated according to an approximate cross section, da”. The trial 

events are accepted on the basis of the weight, 

w = do/da”, (4.1) 

so that the final set of events follows the distribution given by da. The total 

cross section is found by, 

u= wdu”. 
J (4.2) 

For the lowest order process, we use the approximate cross section 

d5aa - as q: 
e+e +e+e-7 =- -1 dlqil do,+ df-b, 27r2(1+c+4(Eb-qQ+O)2 t 

t = -2Ebq+O ((1 - cos e,,) + c/zt2) , (4.3) 

c = COSek, 2m,2 EZ- 
s ’ 

zo= q+o + 
Eb-‘f 

where all angles are measured with respect to pi. The approximate cross section 

does not treat electrons and positrons equally. For half of the final events, all 

charges are reversed, so that the final event sample is charge symmetric. 

A good approximation of the double Compton cross section, when k,O << &, 

is [17] 

d5u7e-+e-77 M 5 p- - - Q- - 
p- . k, q- . k, 

2 d=ks d2a 

k,o 
ye--+-ye- * (4-4 
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By approximating this equation further and again using the EPA, we use the 

approximate cross section for double radiative Bhabha scattering given by 

d80a e+e-+e+e-77 = dSaa dSaa 8 e+e-+e+e-7’ 

dSaa -- a 1 1 1 
8 

= 
4x2 k,02 1 -I- 

-I- 
- cp- c 1 - C-k + E > 

f(k,o,s”) F, (4.5) 

cp- = ~0s L(ks,p-), c-~ = cos L(k,, -k), f(k$i) = (l-$++‘, 

where d5aa e+e-+e+e-7 is given in eq. (4.3) and dsa,” is evaluated in the 7e center 

of mass system. The function, f(kt, s”), has been included to approximate better 

the peaking behavior when k,O M tfi in th e 7 e center of mass system, and c8 is 

some arbitrary small parameter. 

To generate a general phase space variable, x, according to a distribution 

D(x) dx, it is necessary to solve the following equation for x: 

Ai= j D(Z)dZ/ T’D(-)d& 
Zmin Zmin 

(4.6) 

where Xi is a random number equidistributed in the interval (0,l). The quanti- 

ties xmin and x,,, are specified by or calculated from parameters that describe 

the detector acceptance and event configuration. The photon and electron ac- 

ceptances are defined by minimum angles with respect to the beam line, Brrni, 

and eemin, and minimum energies, E, min and Eemin. Veto angles for photons 

and electrons are given by the angles, orveto and Oeveto- All veto angles need 

not be less than all acceptance angles, however the combination must not allow 

a collinear final state. The event configurations, identified as e7, single 7, and 

single e, specify the combination of final state particles in the acceptance, the 

others being below the veto. 
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From eq. (4.3), the distribution of qt and cos 8,+ is given by 

D(q,O,cose~+)dlq+Idcose~+ = (Et, fqp)2 d(q+l dcos 8,+. (4.7) 

The distribution of q$! alone, found by integrating over the positron scattering 

angle, Bq+, between 0 and the veto angle, Beveto, is given by 

D(z$))d$ = !& ln 1 + (’ - co~eeveto > 
s hiI 

zt2 
I 

d,$. P-8) 

Equation (4.6) cannot be solved for this distribution, so z+” is generated by a 

simple throw away technique. That is, a trial z+” is chosen at random, and is 

accepted with a probability proportional to D(z,O). The second degree of freedom, 

8,+, has the distribution given by eq. (4.7) and is generated by 

1 -coseq+ = + 
0 

1 + (1 - ~~~BLveto)z~2 X2 _ 1 

1 > 

. 
z+ c 

Similarly the angle of the photon, Ok, is generated by 

i+cOsek+E=(i+cOSema,+E) 
( 

l+cosfImin +c 

> 

x8 
i+cosema,+E 3 

(4.9) 

(4.10) 

where for the ey and single 7 configurations, Omin = 0, min and O,,, = r - 8, min, 

and for the single e configuration, Bmin = x - Oyveto and B,,, = ?r . The final 

degrees of freedom for the three body final state are simply 

4k = 2rb, and r&+ = %x5. (4.11) 

To generate an event sample which includes the virtual and soft real pho- 

ton corrections, the factor (1 + 6) is included in the weight given by eq. (4.1). 

This sample is combined with the double radiative sample, which is generated 

separately as shown below, to produce an event sample correct to order 04. 
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The double radiative Bhabha event generation closely follows the previous 

procedure, since the lower order process factors out in eq. (4.5), apart from the 

term, f(kt, s”). The distribution of q+” is now given by 

D(zt)dzz = 2& ln 
s Is+1 

1 + (l - coLeeveto) .g2 1 lnr dzt, 

(4.12) 

The remaining degrees of freedom of the three body final state are treated as 

before leaving just the three degrees of freedom of the second photon. The 

energy of the second photon in the ye center of mass system is generated by the 

following algorithm: 

(4.13) 

The approximate cross section peaks when the second photon is nearly collinear 

with the initial or final state electron. Since the choice of the axis about which 

ok, and &, are measured is arbitrary, by choosing the axis to be along p- and -k 

alternately, by another random number, both peaks are handled in accordance 

with eq. (4.5). These angles are generated by 

, and 4;: = 27rrXs. 
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5. Results 

The methods of the previous section have been incorporated into a Monte 

Carlo program. In order to make specific comparisons, we have simulated the 

e7 configuration for a typical PEP or PETRA experiment. The invariant mass 

distribution calculated with this Monte Carlo is shown in fig. 3 compared with 

a calculation * using the EPA. Removing the annihilation channel and the inter- 

ference between the t and t’ channels changes the total cross section by less than 

0.1%. This check was made by using eq. (2.3) instead of eq. (2.4) for the cross 

section. Hence the approximations used for the next order correction are valid. 

The choice of the cutoff energy, Ecut, for the next order correction depends on 

the detector resolution and analysis criteria. The range of allowed values of Ecut 

is quite wide as shown in fig. 4. Also, the total cross section is shown to not 

depend on the choice of Ecut as required. The total energy inside the acceptance 

is shown in fig. 5 along with the lowest order result. The total cross section is 

much larger when the next order diagrams are included due to low visible energy 

events. In these events, the longitudinal momentum of the missing electron is 

balanced by a hard photon, also undetected. The total radiative correction can 

be reduced by requiring that a minimum total energy be detected. Then the 

order a4 simulation whould be an accurate representation of this process. 

Total cross sections and energy spectra from the lowest order single 7 gen- 

eration agree with results from a numerical integration of the differential cross 

section t and from another Monte Carlo generator [19] which includes the con- 

tribution from the Z”. In order to judge the effect of including the order o4 

* See ref. [4]. We replace eq. (6) by, 

uo=max 

t See ref. [18]. The authors chose to use a = l/128.5, whereas we use CY = l/137.036. After 
correcting for this, agreement is found. 
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Figure 3. ey invariant mass distribution calculated to lowest order for a typical 
PEP or PETRA experiment. Eb = 14.5 GeV, cos 8, min = cos flvrnin = 0.72, 
8 e veto = 0.1 rad. The dashed curve is from an EPA calculation, and the his- 
togram is from the Monte Carlo generator. The total cross section is calculated 
from the EPA to be 29.51f0.01 pb and from the Monte Carlo to be 29.29f0.07 pb. 
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E 7 min = Ecmin = 1 GeV and the ey separated by more than 45’ in t#. 
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Figure 5. Total energy in the detector for the experiment described in fig. 4. 
The shaded histogram is the order as result and the unshaded is order CY~. The 
order cP total cross section is calculated to be 29.29 f 0.07 pb ; the order a4 to 
be 47.95 f 0.12 pb. 
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Table 1. Single photon cross sections for a simple SLC 
or LEP experiment. Eb = 47 GeV, &,,i, = 30°, 
e eveto = 15 mrad. For the order o4 cross section, 
e rveto = 15 mrad. Only statistical errors are included. 

E min 7 0.5 GeV 1.0 GeV 1.5 GeV 

Description otot (pb) 

Order QI’ 2 diagrams 33.40 f 0.09 4.89 f 0.03 0.120 f 0.003 

Order os complete 34.24 f 0.09 5.06 f 0.02 0.145 f 0.003 

Order a4 34.33 f 0.10 4.77 f 0.03 0.132 f 0.003 

diagrams, we have simulated the single 7 process for a simple SLC or LEP exper- 

iment. The total cross section is given in table 1 calculated to the lowest order 

using the complete cross section, given by eq. (2.4), as well as using only the two 

diagrams shown in fig. 1, given by eq. (2.3). In the cases where one electron is 

allowed scatter at 0’ (Er min = 0.5 and 1.0 GeV), the two cross sections agree to 

about 3%, which again indicates the interference and annihilation terms are small 

and the method used for the next order correction is valid. When the criteria 

force both electrons to be away from 0’ (Errni, = 1.5 GeV), the agreement is 

worse. In this case, the approximation used for the next order correction is less 

accurate. Table 1 also shows the total cross section when the order a4 diagrams 

are included. The correction is seen to be very small. 
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In summary, we have presented a method to simulate radiative Bhabha scat- 

tering for configurations where one or both electrons scatter at small angles. We 

have shown that for the ey configuration, the effect of including order cx4 can be 

large, due to low visible energy topologies that are kinematically inaccessable by 

three body final states. The size of this correction is best understood by the fact 

that if an electron radiates a hard photon in the initial state, the ye scattering 

process can take place at a much reduced center of mass energy. By specifying 

a minimum total visible energy, the correction can be reduced. The order o4 

correction to the single photon configuration has been shown to be very small. 

The author wishes to thank Mane1 Martinez and Ramon Miquel for very 

useful discussions which assisted in discovering an error in the event generation 

procedure. They have completed a calculation [21] of double radiative Bhabha 

scattering and find good agreement with the EPA method presented here. 
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APPENDIX 

Some lengthy formulas referenced in the text are included here. The lowest 

order cross section for radiative Bhabha scattering from ref. [5] is given by 

A = (ss’(s2 + s’“) + tt’(t2 + t’2) + uu’(u2 + d2))/(ss’tt’), 

w,, = - 
s’ t t’ s +----- U1 

+L+- 
x1x2 YlY2 XlYl X2Ya 57lY2 X2Yl’ 

w =1-mc2(s--‘) 
m  

s2 -I- d2 ( 

1, 
x1 

g+;+; . 
> 

(Al) 

The correction term for virtual and real soft photon emission for Compton 

scattering from ref. [15] with four misprints removed is 

6GeE+7e- = --& 

+ 4(2 - U)y2 - 4y + ;U + 

(A2) 

- fU ln2 (1 - t) - UL2 (t) 

1z2t +4y(t--l+k)] In(E’f)J, 

& E=-, 
me 

t = +(I + p- cOSey), Y = In [E sin($3;m)] , U = t + i/t, 

where L,(x) is the second order Spence function, 

1 

L2(x) = - 
J  

*&L. -- 
Cl z  

U ( w  
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The matrix element for double Compton scattering calculated in ref. [16], 

appears in ref. [20] as 

X,, = 2(ab- c)[(a+b)(x+2)- (ab- c)- 8]- 2x(a2 +b2) -88~ 

+ s (A + B)(x + 1) - (uA + bB)(2 + z1-“) + x2(1 - z) + 22 
X 1 

- 2p[ub + c(1 - x)] 

31 c Y a= -9 
1 4 b=x,, 1 

c=f+ 
1 njtc; 

3 

x= 
c 

IGi, y = k n;, z= &K;, 

1 1 1 

rnZrcl = p- s k, mzn2 = p-s k,, rnzrc, = -p-s k 

rnzrci = -q- . k, rnfrci = -q- . k,, rn,“n$ = q-s k. 

(A4 
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