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ABSTRACT 

Motivated by recent attempts to solve the cosmological constant problem, 

we examine the observational consequences of a vacuum energy which decays in 

time. In both radiation and matter dominated eras, the ratio of the vacuum 

to the total energy density of the universe must be small. Although the vac- 

uum cannot provide the “missing mass” required to close the universe today, 

- 

- 

--..- . 
- 

its presence earlier in the history of the universe could have important conse- 

quences. Element abundances from primordial nucleosynthesis require the ratio 

x = Pvac/(Pvac + prad) 2 0.1 in the radiation epoch; even a nonzero x 2 0.01 at 

nucleosynthesis, however, can allow the number of neutrino (or equivalent light) 

species to exceed NV > 4, a case ruled out in the standard cosmological model. 

If the vacuum decays into low energy photons, the lack of observed spectral dis- 

tortions in the microwave background gives tighter bounds, x < 4 x 10P4. In the 

matter-dominated era, the presence of a vacuum term may allow more time for 

growth of protogalactic perturbations. 
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c ,c- I.-INTRODUCTION 
. 

In the standard cosmological model, the early universe is thought to have 

~passed through a series of symmetry breaking phase transitions at various energy 

scales M,. As the temperature drops below M,, the vacuum energy density 

associated with the Higgs field changes by O(M:). It is therefore puzzling that the 

upper bound on the present value of the vacuum energy density, p,, < (0.003 eV)4 

[I], is much smaller than any of the energy scales associated with particle physics. 

Even if such a cancellation can be arranged classically, there is at present no 

known low energy symmetry which prevents quantum corrections from inducing 

a large value for pu: the cosmological constant does not appear to be a naturally 

small parameter. 
- 

There is some hope that a fundamental quantum theory of gravity will require 

pu = 0, but such a th eory must give rise to a cosmological term which is precisely 

cancelled by “low energy” contributions (e.g., at the electroweak scale) if our 

present understanding of the dynamics of phase transitions is correct. 
. . _ 

_-..._ . c 

-._ 

Another class of approaches to the problem relies on dynamical mechanisms 

to reduce p,, to a very small value over a period of time. In this category fall 

various models which introduce new fields, typically with very small mass scales, 

into particle physics [2]. This class also includes a set of ideas suggested by studies 

of the dynamical effects of quantum fields in de Sitter space-time. In the semi- 

classical approximation to quantum gravity, the backreaction of quantum fields 

on the metric may render de Sitter space unstable to conformal perturbations 

[3]. At present, the significance for cosmology of such an instability is unclear, 

since it is not known how the system would evolve away from the initial de Sitter 

solution. If either’ of these dynamical mechanisms proves-viable, the standard _- _T_ 
. . ----- inflationary scenario is in need ofrevision. 

- An intriguing possibility is that the universe eventually evolves to a state 

in which the effective cosmological term (pu) is small and continues to decrease 
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.=- with time. In this paper, we consider the consequences for observational 
. cosmology of a continuously decaying vacuum energy density. 

In such a general form, the problem is underdetermined: a fundamental 

calculation is necessary to specify how rapidly the vacuum energy decays and 

how it couples separately to non-relativistic matter and to radiation. In this 

preliminary study, we adopt a phenomenological approach instead and consider 

a class of cosmological models characterized by a new parameter, 

x = Pv/(Pr + Pv) , (1) 

the ratio of vacuum to the sum of vacuum and radiation (p,) energy density. - 

- 

The modified cosmological model is presented in general in Sect. II. 

Stipulating that the evolution of such a universe not differ too drastically from 

the standard model, we discuss the radiation epoch in Sect. III. There, we 

present a detailed discussion of the limits on the vacuum component obtained by 

(i) consideration of element abundances from Big Bang Nucleosynthesis, (ii) 

bounds on the spectral distortion of the microwave background, and (iii) con- 

straints on the production of entropy since the epoch of baryogenesis. In Sect. 

IV we consider the matter-dominated epoch under two different assumptions: 

(i) the vacuum couples only to radiation, and (ii) the vacuum couples directly 

to nonrelativistic matter, leading to the spontaneous creation of matter in the 

universe. For the latter we investigate constraints arising from the growth of 

_ 

_-..._ . 
- 

-._ 

density perturbations and the diffuse gamma-ray background. In both cases, the 

contribution of the vacuum energy at the present epoch must be several orders 

of magnitude less than the nonrelativistic matter energy density, i.e;, at most of 
k 

. _z. order of the radiation content of the present universe. We note that this con- 

- Cc straint is much stronger than the’corresponding bound for models with constant 
_I vacuum density[ 11. 

- _ Our major conclusion is that dynamical models of decaying vacuum energy 

of a rather general variety are consistent with observational cosmology; however, 

4 



* ,; the deviation from the standard model must bersmall. 
. 

II. THE MODEL 

Suppose that in addition to ordinary matter and radiation energy density, 

p, there is an energy density associated with the vacuum, pu. This additional 

component enters the Einstein equation for the Robertson-Walker scale factor 

a(t) 7 

(E)2E (g2 = y (P+Pu), P= Pm+Pr , (2) 

where we have assumed flat spatial sections (k = 0) and a line element, 

ds2 = -dt2 + a2(t) d$. 

- 

If we require the energy momentum tensor of the vacuum component to be 

Lorentz invariant in the flat space limit, then the homogeneous, isotropic pressure 

of the vacuum is p, = -pu. The pressure of the non-vacuum component is 

-. .- . 
- 

where w is given by 

_. _= 

P=wP 9 (3) 

1 w=- Pr 
3PTn+PT - 

(44 

Since the variation of w(t) is slow compared with the expansion of the universe, 

except near the time t,, when matter and radiation energy densities are equal, 

we will approximate w(t) as a step function: 

(radiation dominated) 
. 

(matter dominated) 
w 

- 
Note that the terminology “radiation dominated” or “matter dominated” refers 

to the relative contributions of these two components to the energy density of 

the universe, independently of the value of pu. 
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,%-- The conservation equation for energy-momentum takes the form 

or 

JL+b+3 (1+w) Ep=O, 

&J + $ $ (Pma3) + -$ f (p,a4) = 0 . 

(54 

(54 

- 

From the latter we notice immediately that if &, # 0, at least one of the 

ordinary adiabatic relations pr - am4, pm - ae3 ceases to be valid. If bu < 0 

then entropy or matter must be generated in the expansion. In the radiation- 

dominated epoch (pm < pr) the second term in Eqn. (5b) is small and can be 

neglected. In Sect. IV, we show that the creation of nonrelativistic particles 

by the decay of pu during the matter-dominated epoch is severly constrained by 

annihilation limits from the gamma ray background. As a result, the contribu- 

tion of the term $(pma3) to Eqn. (5b) must be negligible, and we drop it from 

now on. 
_..~._ . - 

-__ 

Assuming therefore that the vacuum couples only to 

component of the energy density can be parameterized by 

in Eqn. (1). Equations (1) and (5) may be used to derive 

for x(t) [4]: 

ci _- 
X --$+4:(1-x). 

radiation, the vacuum 

the quantity x, defined 

the evolution equation 

(6) 

. _T_ 

There are three possibilities for the behavior of x(t) at large t: (i) for x + 1, the 

vacuum term dominates, and the universe becomes de-Sitter-like as the radiation 

is redshifted away. This case is ruled out at the level of the bounds of Ref. 1; 
1. 

- 
(ii) the vacuum density falls more rapidly than the radiation density, i.e., x + 0, 

and we recover the standard cosmological model; (iii) the only genuinely new 

cosmology is obtained if x approaches a non-zero constant betwen 0 and 1, which 

corresponds to the vacuum and radiation densities redshifting at the same rate. 
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i ,a-. For this case, which we consider in the remainder of this paper, we find from 
. Ew (6) 

PU(t) = & pr N am4C1--2) . 
( ) 

Note that x may assume two diRerent constant values, one in the radiation dom- 

inated and one in the matter dominated epoch, if the expansion rate &/a changes 

at t,,. Again we assume a step function behavior for x at time t,,. 

From Eqn. (7), we see that the radiation density drops more slowly as a 

function of the scale factor than in the standard cosmology, whereas the matter 

density approximately redshifts in the usual way, pm - uw3 [see discussion fol- 

lowing Eqn. (5)]. With this scaling of the two components, the constraint that 

an early radiation epoch be followed by a matter dominated era requires that 

x < a in both the matter and radiation epochs. 

In the radiation era (pr > pm), Eqns. (2) and (7) are easily solved to yield 
- 

a- to/w--z)lI 
3x RD , -. . .- . 

- ” = 32rG(l - x)2@ 
(8) 

while in the matter epoch (pm >> p,), 

a N p/3 

pu N tH8/W--z)l I MD . 
(9) 

Increasing x towards unity speeds up the expansion rate of the universe in the 

radiation era. 

_. _T_ 

- 

In the dynamical decay process of Ref. 3, a form like (8) might be expected, 

at least in the radiation dominated epoch. Since the time scale for the instability 

of de Sitter space is the Hubble time (Gpu)-l/‘, b,, might be expected to be 

proportional to (Gp,) lj2, multiplied by pu for spontaneous vacuum decay, or by 

p,. for induced decay in the presence of massless radiation. A decay law of the 



* ,; form (8) has also been suggested by various authors in Ref. 2. The value of x is 
. presumably determined by the particular physical model of vacuum decay. 

We have not yet specified the forms of radiation into which the vacuum 

decays. As long as the created radiation reaches thermal equlibrium, it can be 

characterized by its temperature, with 

here g,B is the number of relativistic degrees of freedom. In this case, from 

Eqns. (7,8), we find - 

T(t) = 
167r3G geff(l - x) -1’4t-‘,2 

45 1 , (11) 

- 

_...._ _ - 

.__ 

for the radiation temperature as a function of time in the radiation-dominated 

epoch. Although the issue is model-dependent, for the rest of this paper we 

assume that essentially all of the radiation emitted by the vacuum is in the form 

of photons and neutrinos. As we show in Sect. III (ii), the electromagnetic 

radiation created by vacuum decay thermalizes completely up to at least a time 

tT M lo5 set (and, in particular, throughout primordial nucleosynthesis); thus it 

makes sense to describe the radiation by a Planck spectrum with a temperature 

given by (11). 

The assumption of thermal equilibrium determines how the radiation number 

density and energy per particle change with time. From Eqns. (7) and (lo), as 

long as the photons remain in thermal equilibrium, we have T A a’-‘. To 4 
_. _m_ maintain a Planck distribution, the energy per particle must redshift like the 

- temperature, so 3& - a’-’ as well. From Eqn. (7), this implies the photon 
- number density scales as a, - a -3(1-z). 

The assumption that photons are created in vacuum decay also implies 

that the baryon to photon ratio, ng/nr, decreases as the universe expands. 
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,%-- Since baryons are not created, TZg - um3, and the baryon to photon ratio thus 
. scales as 

nB 7 = - N ,J-~~ N T[3z/(1-z)l 
% 

, 

at least up to i?T. This fact will be used repeatedly in the discussions of observa- 

tional constraints which follow in Sect. III. In this paper, we have not considered 

the case where the vacuum decays, in whole or in part, into noninteracting, non- 

thermal particles such as gravitons, shadow photons, etc; in that case, Eqns. (11) 

and (12) are clearly inapplicable. 

III. THE RADIATION ERA 

i) Nucleosynthesis 

- 

_..~._ _ - 

-__ 

Since a non-zero vacuum component changes both the expansion rate through 

Eqn. (8) and the temperature-time relation, Eqn. (ll), it can alter the delicate 

balance with nuclear reaction rates at the time of helium and deuterium synthe- 

sis that holds in the standard cosmology. First we brieflly review the heuristic 

arguments for element abundances obtained at the epoch of Big Bang Nucle- 

osynthesis and illustrate qualitatively how these will change in the presence of a 

vacuum component. A correct treatment of this highly nonlinear problem with 

many coupled nuclear reactions, however, requires a numerical analysis. For com- 

parison to observation we therefore rely on the calculation of primordial element 

abundances in Wagoner’s code[5], modified to include a vacuum component. (For 

reviews, see Ref.6.) 

_. _m_ 

At the high temperatures in the early universe, the ratio of neutrons to 

- protons is determined by its thermal equilibrium value, 
L. 

n/p = ewQlkT , T 2 TF (13) 

where the neutron-proton mass difference & = 1.293 MeV and k is Boltzmann’s 

constant. The neutrons drop out of equilibrium below a freeze-out temperature 
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,%-- ?‘F, where the weak interaction rates can no longer keep up with the expansion 
. of the universe. Below TF the n/p ratio continues to fall due to P-decay on the 

time scale of the neutron half-life rn. In the standard model, nucleosynthesis, 

(subscript D), takes pl ace at a temperature approximately given by 

TD = 
2.2 MeV 

-1n7j * (14) 

Once TD is reached, deuterium becomes stable against photodissociation and 

nucleosynthesis takes place very rapidly, efficiently converting essentially all of 

the available neutrons into 4He. In this approximation, the primordial helium 

abundance YP is given by 

%J= ($)D= (~)FeX+W~-t~)l = I+exp2y(LJlTReesel , (15) 

- where the final approximation is valid since T-l = rn/ ln 2 >> tF - 1 sec. 

_...._ _ 

._ 

In the presence of a small vacuum component x < 1 (we will see from the 

numerical results that x must be less than O.l), we can illustrate heuristically the 

deviation from the standard model. The x dependence of TF may be obtained 

by recalling how TF is determined. Freeze-out occurs when a typical n H p 

weak interaction rate GLTs is equal to the expansion rate [G(p, + p,)] i. Since 

p,, + pr = &pr, the effective speed up of the expansion rate due to the vacuum 

component is 

leff = (1 - x)-l/2 2 1 . 

_. _Y_ 

- 

Then, since Ts - T$-ce~ we obtain 

TF-L TF(l - x)-lj6 , 

(16) 

- 

(17) 
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f ,; where an overbar indicates the standard model value (x = 0). By itself this 
. would tend to increase Yp by increasing the n/p ratio at freeze out. However, 

Eqns. (11) and (14) indicate that 

tD = fD(l - X)-” , (18) 

which increases the available time for neutrons to P-decay. This turns out to be 

the larger effect in the domain of interest, and we see that Yp is a decreasing 

function of x. The numerical analysis does indeed follow this general trend, 

although the quantitative results are somewhat different. 

In our modification of the nucleosynthesis code, we have directly included 

a nonzero vacuum term in Einstein’s Eqns. (2) and (5). As a consequence the 

temperature-time relation (11) and therefore all timescales (e.g., TF and to) 

are automatically modified. One of the most dramatic changes from the stan- 

dard model (not included in the previous heuristic discussion) is the behavior of 

entropy, which in the standard model is constant throughout and after nucleosyn- 

thesis (except for the infusion of e+e- pairs). In the decaying vacuum model the 

entropy per baryon can change drastically through nucleosynthesis and continues 

to change afterward according to Eqn. (12). As a check on our use of the code 

we verified that the temperature-time relation and the temperature dependence 

of the entropy are indeed given by Eqns. (11) and (12). 

- 

_..~._ _ - 

_. _Y_ 

The code we used assumes that neutrinos maintain a thermal distribution 

which parallels the photon distribution [Eqn. (ll)], modulo the effects of e+e- 

annihilation. This will certainly be true at early times t 2 tj? before neutrinos 

decouple. If neutrinos are created in vacuum decay with a thermal spectrum, they 

will be described by Eqn. (11) for later times, and throughout nucleosynthesis, as 

well. If, however, neutrinos are created with a non-thermal spectrum, then for t 2 1. 

- 
tF they do not have a simple Planck distribution (lo), but the neutrino density 

continues to redshift according to Eqn. (7). S ince neutrinos affect nucleosynthesis 

through the their contribution to the expansion rate [Eqn. (2)], our numerical 

results should apply with reasonable accuracy to this case as well. 
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i ,; We present our results graphically for 4He ;and D abundances in Figs. l-3 
. for NV = 3,4, and 5 neutrino species. For comparison with observation we have 

chosen a temperature TN = lo8 K to signal the end of nucleosynthesis; after 

this time, element abundances from the code no longer change significantly even 

for nonzero x, although the entropy continues to drop according to Eqn. (12). 

Requiring that 0.22 5 Yp 5 0.26 and 10m5 5 D/H 5 10w4[7], we find the (q,x) 

plane at TN is restricted as shown, and conclude that even for NV = 5 the vacuum 

component must satisfy x < 0.1: 

N v Xmax 

3 0.08 

4 0.09 

5 0.10 

- 

_...._ _ - 

Although at most four neutrino (or equivalent numbers of light) species can be 

accommodated in the standard model, for x 2 0.01 five neutrinos (or perhaps 

even more) are consistent with the observed element abundances (see Fig. 3). To 

turn this result around, if the number of neutrino species is found to exceed four, 

decaying vacuum energy offers a scenario with agreement between calculated 

element abundances and observations. 

-__ 

_. _Y_ 

We have also confirmed consistency with observation of the 7Li abundance 

obtained from the code for this range of parameters. The abundances of 4He, 

D, and 7Li are all lower than in the standard model, whereas the H abundance 

is slightly higher. This result is consistent with Eqn. (18) which indicates that 

there is more time for free neutrons to P-decay into protons. The constraints on 

I become more restrictive in the presence of a nonzero x, but remain within 

the same range as in the standard model (lo-lo 5 I 5 lo-‘). Thus we 

reach these important conclusions in this section: 

- 

- 
1) Primordial nucleosynthesis in the presence of a vacuum component with 

x 5 0.1 is consistent with observations of abundances of 4He, D and the 

other light nuclei. 
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i ,; 2) If E-C-.> 0, the preferred values of r] at nucleosynthesis lie within the same 
. range as in the standard model. 

3) If x > 0, Y, decreases. Although more restrictive observational upper 

bounds on the 4He abundance (or NV > 4) would lead to inconsistencies in 

the standard model, these could be resolved by the presence of a vacuum 

component at nucleosynthesis. 

ii) Microwave Background Distortions 

As Eqns. (5b) and (7) show, an interesting feature of models with x = const. 

and p,, - l/t2 is that some fraction of the microwave background photons in 
- 

the present universe was created by the decay of the vacuum. The spectrum 

of radiation emitted by the decaying p,, is model-dependent: in general it may 

be quite different from the Planck distribution appropriate for fully equilibrated 

radiation. If this is the case, and if the processes involved in the relaxation of 
- 

the injected photon spectrum toward equilibrium are not 100% efficient, then 

distortions of the Planck spectrum may arise[8]. 

-__ 

On the other hand, if the energy is injected with a thermal spectrum, then 

there will be no distortions in the present relic radiation spectrum and the bounds 

we discuss below do not apply. Such a situation might arise, for example, if 

the vacuum produces photons through an induced decay mechanism. Then the 

thermal photons already present might induce the vacuum to produce photons 

with a thermal spectrum. Equations (11) and (12) of Sect. II would then continue 

to apply down to the present epoch. 

. _F_ 

- 

In this subsection we explicitly assume that the vacuum does not decay into 

photons fully equilibrated to a Planck spectrum. The most likely possibility seems L- 
to be that the emission is peaked at long wavelengths (Er < kT).* In that case 

* In the dynamical decay scenarios of Refs. 2 and 3, the only lengthscale in the 
problem appears to be the Hubble radius or possibly the Compton wavelength 
associated with a very small mass. 
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.?-- the photons would be efficiently absorbed by the free electron plasma via 
. inverse bremsstrahlung, since the cross section for this process rises like 1/w3. 

At frequencies lower than the plasma frequency 

up E 3 x lo6 (T/eV)3/[2(1-z)] qyyo 1062/(2-1) set-’ , 

any electromagnetic radiation produced by the decaying vacuum is rapidly 

damped and its energy transferred to the plasma by ohmic heating. The re- 

sult in either case would be to increase the electron energy density relative to 

the radiation density. However, at very early times, i.e., for redshifts greater 

than ZT = 6.3 x 104(ti~h2)-6/5, th e injected energy is completely thermalized 

by double Compton and bremsstrahlung process: no distortions survive. [In this 

and all the following we take Ho = 100h km/set Mpc-’ for the present value of 

the Hubble parameter, TO = 2.7’K for the present radiation temperature and 

.we assume three massless neutrino species;ng is the density parameter for the 

ionized gas. We also neglect the small s-dependent factors in all redshifts defined 

in this section.] 

-.a 

-- ..- . - When z < ZT, the injected radiation energy heats the electron plasma, and 

photon production by the electron gas continues in the far Rayleigh-Jeans region 

(tiw << kT). At higher energies, however, photon production by the hot electrons 

becomes inefficient, and Compton scattering cannot redistribute the excess low 

energy radiation toward the peak. Thus, except at the very low end of the 

spectrum, we have Te > T,, and multiple scattering off the electrons shifts the 

background radiation to higher frequencies without changing the total number 

of photons. The spectrum then takes on a Bose-Einstein form, with a nonzero 

chemical potential ~1; If (Te - Z’,)/T, < 1, the resulting value of ~1 (also small 
. _=. 

-.- compared to kT,.) depends only on the total amount of energy injected into ;. 
photons, Apr, and is independent of their initial frequency distribution: 

_I 

- 

c 

- _ APT p = 1.4 kT, - . 
Pr 

(19) 
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,; For a continuous injection of photons by vacuum decay, (Ap,)/p, is the time 
. integral of - (bv)/pr (th e contribution of neutrinos to pr cancels from the integral), 

=f 
APT -=- x iv dt & = 
Pl or dz l-x 

=4xln 3 , 
( > Zf 

(20) 

by Eqn. (7). Th ermalization to a Bose-Einstein spectrum requires multiple pho- 

ton scattering, but the average number of scatterings per photon decreases as 

the universe expands. For times later than tl E 1011 set (or redshifts less than 

z1 = 8.5 X 103(RBh2)-li2), multiple scattering becomes inefficient, and the back- 

- 

ground subsequently evolves too slowly to relax to a Bose-Einstein spectrum. So 

we take zi = ZT and zf = zr for these ~1 distortions. Since observations of the 

microwave background spectrum require ~1 < 0.01 ICT, [9] we obtain the bound 

on 5: 

- . . . .- . 

__ 

_. _Y_ 

x < 4 x 1o-4 , 

where we have taken nBh2 = 2.5 x 10m2 here and below. 

(21) 

At later times t > tl, energy injected and efficiently absorbed by the electron 

plasma produces a different distortion of the microwave background spectrum. 

Compton scattering shifts the photons to higher energies, creating an excess in 

the -Wien region and a shortage in the Rayleigh-Jeans part of the spectrum. 

The resulting spectrum is parametrized by a new variable y, which can again be 

related to the total energy injected: 

1. 
1 APT 

y=Gr= 
(22) 

- 

by Eqn. (20). 
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* ,A-- If we assume that the injected photons are too low in energy to reionize the 
. gas after it has recombined, then zf for this distortion should be taken to be of 

the order of the redshift of recombination, 22 E 103. For t > t2, energy injection 

will continue to raise the temperature of the residual ionized gas and heat the 

intergalactic medium, without distorting the m icrowave spectrum. 

Taking z; = zr and zf = z2 in Eqn. (22) and using the observational bound 

g < 0.02 [9] yields the following bound on x: 

__ 

x< 5  x 10-3, 

so that the ~1 bound is the most stringent constraint on x we have obtained. These 

constraints are so severe because the background radiation is being subjected to 

the injection of energy over many expansion times, when the processes responsible 

for restoring equilibrium are inefficient. W e  reiterate that the key assumptions 

used in deriving these bounds are (i) that the vacuum produces photons which 

are out of equilibrium with the pre-existing radiation and (ii) that essentially all 

of the energy injected by the vacuum decay goes into heating the electron gas to 

Te > T,. If the vacuum decays into some non-interacting form of dark matter 

instead, then (ii) need not be true and we would again lose the very stringent 

bounds of Eqns. (21,23). 

iii) Entropy Generat ion 

_. _F_ 

- 

According to models of grand unification(GUTs), an excess of baryons over 

antibaryons is produced at a  very early epoch[lO], typically at a  temperature 

corresponding to GUT symmetry breaking, of order TGUT = 1015 GeV. After 

baryon-antibaryoh annihilation, this baryon excess corresponds to a  primordial 

baryon-to-photon ratio, 7  (TGuT). S ince entropy is produced by the decay of 

the vacuum, 77 subsequently decreases with temperature according to Eqn. (12). 

The vacuum energy density can be constrained by ensuring that the value of 

16 



L ,; 7 produced at baryogenesis does not fall too low subsequently. Requiring that 
. 7 lies within the bounds 10-l’ 5 I 5 lo-’ at the time of nucleosynthesis 

(see Sect; III ‘) 1 and using I = ~(TGuT) (TN/TGuT)~“/(~-“), we find the 

constraint 

(G) x 2 0.02 1+ log ‘7-g ( > 
, (24) 

where ~(TGuT) = ~~~)lO-g and we have assumed TGUT N 1015 GeV. For a large 

primordial baryon asymmetry, ~GUT 5 10T4, this bound is comparable to that 

of Sect. III (i), x 5 0.1. 

Similarly, x is constrained by the evolution of q after nucleosynthesis. The 

most stringent bound is obtained if the vacuum decays to a thermal spectrum  of 

radiation for all time. In this case, Eqn. (12) applies through the present epoch, 

- 

32/(1--2) 
. 

- 

Taking ~(2.7 K) 2 2x lo-l1 [7] f or a conservative lower bound today and 7 (TN) 5 

lo-’ at nucleosynthesis, we find 

x < 0.07 . (26) 
__ 

On the other hand, if, as considered in III (iii), the radiation produced by vacuum 

decay only thermalizes up to a time tT, then Q remains constant for T < TT  N 

(3.3 x 105(i2h2)-6i5) l-’ 2.7 K. In this case, we obtain the less stringent bound 

_. _= 
x < 0.15 . (27) c 

;. 
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,A-- IV. THE MATTER DOMINATED ERA ; 
. 

When p m > pr, i.e., for t > teq, the vacuum can decay either to matter 

-(the dominant component) or to radiation. Thus there are two possibilities to 

consider: 

i) 5 (a3 pm) = 0 

ii) $ (a3 pm) # 0. 

The first case expresses exact conservation of particle number; the second 

would result if massive particles are created by the decay of pv. Vacuum coupling 

primarily to matter (case ii) would imply the continuous creation of baryon- 

antibaryon pairs. Naively, one would expect this effect to be greatly suppressed 

relative to radiation production. More to the point, observations so restrict the 

size of such a matter creation term that case (ii) becomes indistinguishable from 

case (i), as we now demonstrate. 

- 

- 

_._._ _ - 

Denote by LhB the net baryon (or antibaryon) number density created by the 

vacuum during the matter dominated epoch. Since the vacuum decay presumably 

does not violate baryon number, equal numbers of baryons (B) and antibaryons 

(B) would be produced. By Eqn. (5b), 

__ 
t 

Ang=hg=- 
1 

mPa3 @I J 
a3 (t) iv dt , 

teq 

(28) 

where mp is the proton mass. For this argument, we replace x by 5 where 

. _T_ 

21 Pv 
PTn-kPv~ 

(29) 4 

and consider the i + constant case. We can then Solve-Einstein’s equations (2) 

and (5) to obtain 

a(t) N p/W-~)1 
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r . . _ 

. 
1 ii? I1 -- 

pv - 67rG (1 - Z)2 F ’ 

and the integral in Eqn. (28) can be evaluated to find 

AnB(t) = 1 _ [& (t+$‘(l--i)] . 
6rGmpt2(1 - x) 

(3W 

(31) 

The baryon and antibaryon pairs annihilate with one another and produce an 

observable gamma ray flux. Any such pair annihilation in the Galaxy is extremely 

constrained by observations so the most likely place to hide antimatter would be 

in the intergalactic medium. There, observations of the isotropic gamma ray flux 

lead to the constraint [ll] 

(hg) (Ang) 2 lo-l8 crnm6 . (32) 
- 

Substituting AnB(to) from Eqn. (31) into Eqn. (32) and taking the present age 

of the universe (lOlo yr < to < 2 x lOlo yr), we find the constraint 

1200 [I - (g92z’7 2 1 . (33) 

The formation of galaxies by the present epoch requires that density perturba- 

tions must have had time to grow. Since they can only start to grow at the 

earliest when t = teq, we will obtain a maximum value for teq/to and hence an 

upper limit to 5. 
L 

. , _F_ The density contrast 6 = (&p/p), in the linearized approximation satisfies 

-the equation [12]:’ 1. 

- . 
&2%=4,Gp,6. 

U 
(34 

From (2) and (29) the power law solutions to this equation are of the form 
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6 -- tn -where 
. 

n= (i-p) * (/32+f)1’2 , (35) 

where p = 2/[3(1 - ?:)I is th e p ower law index of the scale factor. The range of 

n is n E (l/2,2/3) as L varies between 1 and 0. Requiring &(te,) = 10-q and 

b(to) = 1, i.e., that the perturbations were able to grow by a factor of 1Oq since 

the beginning of matter domination, we find (teq/to)n = 10-q which leads to the 

constraint 5 <, i(1.2 X 10m4) from (33). S’ mce agreement with the isotropy of the 

microwave background requires q >, 4[13], we find k 2 3 x 10m5. 

Thus, any vacuum component must be at most at the level of the radiation 

energy density in the present epoch, and from (30a) the expansion rate of the 

universe is indistinguishable from the usual (5 = 0) matter-dominated case. Be- 

fore we drop this possibility entirely, it is worthwhile to point out the loopholes 

- in the above agrument. If the creation of matter and antimatter could somehow 

be separated at large scales or if it takes place only in dense sources such as black 

-.. .- _ - 
holes (from which gamma rays cannot escape without at least being degraded 

in energy), case (ii) might still be possible (though it would remain implausible 

theoretically). 

._ 

. _T_ 

If the vacuum component decays only to radiation [case (i)], then there are 

again two distinct possibilities [see Sect. III (ii)]: (a) the vacuum produces pho- 

tons with a thermal spectrum or (b) th e vacuum produces photons in a non- 

equilibrium distribution. In the matter dominated era, when the radiation en- 

ergy density is small, we recover most of the features of the standard.model with 

x = 0. In particular, -u - ta for either of the cases (a) or (b) above. There is an 

- -- - important difference between thstwo cases, however. 

- 
We first consider case (a). When the vacuum photons are thermal, the radi- 

ation energy density falls like a-4(1--2) [cf., Eqns. (7) and (ll)] throughout the 

matter dominated era. Since the matter density falls like um3, the redshift when 
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r matter- and radiation were equal is given by :- 
. 

.Zeq = (~)l”l-rl) > (z) = (zeq),td = 2.5 X 104Rh2 . (36) 

Thus the time te, occurs earlier than in the standard cosmological model. More- 

over, since the stringent bounds on x from microwave distortions do not apply in 

this case, zes could be significantly earlier. For example, if x is as large as 0.07, 

as allowed by nucleosynthesis and entropy generation, the redshift of equality 

becomes (z,td)1’(1-4z) = 1.9 x lo5 (for Rh2 = 0.25). 

This reduction in t,, could have important consequences for models of galaxy 

formation based on adiabatic density perturbations with cold dark matter[l4]. 

For example, for a scale-invariant (Zeldovich-Harrison) spectrum, the scale 

Xeq = Cteq( 1+ zeq) b e ow which the spectrum flattens is decreased,* 1 

- 
X 

eq - 
_ ‘iyy (2.5 x 104~h2)-22/(1-4z) 

_...._ _ - 

Since the spectrum is usually normalized at a scale X, N 8h-lMpc, less than 

Xeq(x = 0), the large-scale perturbation amplitude, and thus the large-angle 

._ 

* The power on scales less than X,, will be slightly modified from the standard 
(z = 0) model, because the growth of perturbations which enter the horizon during 
the radiation-dominated era is altered. Eqn. (34) may be written as 

d2S 3y + (2 + 4z)y4= d6 3s 
dy2+ 

-- 
~Y(Y + y42) dy ~Y(Y + y49 = ’ 

where y = a(t)/a(t,*). At y << 1, i.e., well before the matter era, the approximate 
solutions are 

3Y1-4= 
s1 = l+ 2(1- 4x)(1 - 22) _ 

.  
,  _T_ and 

3yl-62 

” = ‘-” + 2(1 - &.)(I - 4z) 
- 

Note these solutions are degenerate at x = 0. The corresponding solutions for x = 0 
were found in Refs.15. At small y, the growing mode solution 61 is an increasing 
function of x, but its coefficient must be determined by including both solutions in 
the match at horizon crossing[lb]. 
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r anisotropy in the cosmic microwave background, will be reduced. (This is just 
. a reflection of the fact that pushing t,, back allows more time for non-baryonic 

~perturbation growth, so the initial perturbation amplitude and hence the cor- 

responding microwave anisotropy can be smaller than in the standard model.) 

This reduction in power on large scales may strain the ability of such models to 

produce the structure recently observed or inferred on large scales [l7]. Further, 

for x = 0.07 with 0 = 1 and h = 0.5, Xeq < X, so that the perturbation am- 

plitude on small scales (< X,) is increased. In this case, the small angle (4.5’) 

microwave anisotropy, which is sensitive to perturbations on scales - X,, may be 

slightly enhanced. 
- 

- 

_...._ _ 

For a universe dominated by hot dark matter which becomes nonrela- 

tivistic at late times, e.g., massive neutrinos, the effects are quite different. 

(We here assume the neutrinos are also produced with a thermal spectrum.) 

From Eqn. (11)) the time tnr - Ti2 - rnL2 at which neutrinos become nonrela- 

tivistic is essentially unchanged from the standard model (it is increased by the 

negligible factor (1 - x)-li2). Since tnr N t,, for massive neutrinos, in this case 

t,, is also unchanged. Further, the redshift Znr is increased, so the free streaming 

scale Xfs = ct,,(l + znr), below which neutrino perturbations are damped out, 

is slightly increased. (For discussion of neutrino models, see [14].) 

.__ On the other hand, if the vacuum decays to nonthermal radiation [case (b)], 

the limits on x from microwaveconstraints apply (cf., Sect. III), and the value of 

x must be very small. As a result, zeq will not differ appreciably from its value 

in the standard (x = 0) model. 

. IV. CONCLUSION , _F_ 

- 
We have investigated the cosmological constraints on and consequences of a 

vacuum energy density which dynamically decays in time. We conclude that such 

a scenario can be consistent, but the universe cannot be vacuum-dominated for 

times later than about t - lsec. In fact, from the concordance of big bang 
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,a-. nucleosynthesis with observations of element abundances and constraints on 
. baryon-antibaryonannihilation from the gamma ray background, we find that the 

vacuum density must remain below the radiation density in both the radiation 

and matter eras. For vacuum decay to a non-thermal radiation distribution, the 

microwave background spectrum provides the strongest constraint, x < 4 x 10m4. 

On the other hand, if the radiation produced by the vacuum retains a Planck 

spectrum for all time, the requirement that the baryon-to-photon ratio not drop 

too low after nucleosynthesis gives the strongest bound, x < 0.07. In the lat- 

ter case, saturation of the bound may have important (and possibly adverse) 

consequences for theories of galaxy formation. 
- 
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,; . . _ FIGURE CAPTIONS 
. 

1. Element abundances as a function of the vacuum energy density parameter 

x and the baryon-to-photon ratio at TN, r] = ~-relO-~’ for NV = 3 neutrino 

species. The primordial 4He abundance satisfies 0.22 < YP < 0.26 and the 

ratio 10m5 < D/H < 10s4. Cross-hatching indicates the allowed region. 

2. Same as Fig. 1 for NV = 4 neutrino species. 

3. Same as Fig. 1 for N,, = 5 neutrino species. Note that models with x > 0 

can accomodate NV > 4. 
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