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Fig. 1. Cylindrically symmetric structures considered 
*‘inthe present work: a) a cavity and b) a collimator. 
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Wewill briefly describe our method and present some early 
results. More details will be forthcoming in a future paper. 

- _ 

The Current Sources 

Consider an ultra-relativistic particle of charge Q moving 
at speed /3c parallel to the z axis of a cylindrically symmetric 
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. 
Introduction structure. Let the transverse position of the particle be at 

r = h and B f 0. The current density is then given as When an ultra-relativistic’charge moves past a discontinu- 
ity in an accelerator vacuum chamber, electromagnetic fields 
are excited. A test charge following behind the exciting charge 
will, in. general, experience a longitudinal kick (affecting its 
energy) and a transverse kick from these fields. The interac- 
tion can be characterized by the wakefield or the impedance of 
the structure. Either of these functions are useful for studying 
the current dependent behavior of a bunch of particles in an 
accelerator. 

=Ta(r - /b)6(z - pet) 2 = 
m=O l+ 6m0 

) 

with 6,s the Kronecker delta. The m = 0 term in the sum 
drives monopole modes, the m = 1 term drives dipole modes, 
etc. If the beam moves close to the structure axis the monopole 
modes dominate the longitudinal effect, whereas the dipole 
modes dominate the transverse effect. We limit our study here 
to the dipole modes, though the method that we use can easily 
be modiEed to calculate higher multipole modes. 
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4t has long been possible to compute the longitudinal and 
transverse impedances of the periodic disk-loaded structure,“’ 
as well as the impedances of cylindrically symmetric cavities 
with arbitrary shape, up to the tube cut-off frequency. *A More 
recently, the computation of the longitudinal impedance of sim- 
ple cavities’-’ and collimators, ‘*‘I and of arbitrarily shaped 
cylindrically symmetric structures’ has been demonstrated, 
including frequencies above cut-off. 

For calculating the transverse impedance we take as driving 
term the Fourier transform of the dipole component of jl 

In Ref. 9 the method of field matching is used to calculate 
the transverse impedance of a simple, cylindrically symmetric, 
perfectly conducting cavity with long beam tubes. The struc- 
ture is divided into two subregions separated by a longitudi- 
dial cut. The fields are given as an expansion with unknown 
coefficients in the two subregions. The coefficients are then 
found by matching the fields along the cut. In the present pa- 
pe@eld matching will also be used to compute the transverse 
impedance of simple structures. The subregions, however, will 
be separated by radial cuts, allowing us to consider the case of 
a simple collimator as well as that of the simple cavity. Fur- 
thermore, our cut allows the two beam tubes to have differing 
radii (See Fig. 1). __ 

_. 
21 = I j.1 exp(ikct) dt 

-m 

=$(r - h) cosBexp(ikr/P) , 

(2) 

with the wave number k = w/c. Once the resulting fields are - 
known, the transverse impedance is given by 

m 

“’ = Qh:os 8 /  

- e 

[E, - &He) exp(-ikz/P) dt . (3) 

Field Exnansions 
The structures of interest to us are composed of simple 

cylindrical subregions that include the axis. In any such subre- 
gion L with pipe radius at, the Hertz potentials of the radiation 
fields excited by the point charge can, in general, be expanded 
into a series of cylindrical waves with unknown coefficients as 10 

ir,, = - cos 0 2 .I1 (5) [CL exp(--i&z) + C(‘l exp(iXf,z)] 
n & 

ii:, = -sin0eJ,(y) [D&exp(-iar,z) +D&exp(iol,z)] . - 
(1 

(4 
The propagation constants are given by 

with v,, and p,, representing the nth root of Ji and .7: respec- 
tively. 

The coefficients for radiated waves moving in the positive 
t direction are C,‘, D:, whereas those for waves moving in 
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the negative z direction are C;, 0,. Thus, in subregion 1 of 
the cavity or collimator (see Fig. 1) all the former coefficients 
must be zero, while in subregion 3 all the latter coefficients are 
zero. Only in the middle subregion do we need all four sets of 
coefficients. Note that the propagation constants need to be 
defined with negative imaginary parts, to satisfy the Sommer- 
feld radiaGon condition. __ -. 

. The Fourier transforms of the vector and scalar potentials 
are given by 

if = -ikfI~ + V x I?; + ggFl(r) exp(ikz//J) cos.0 

* 2QP Qf = -V . II, + =Ft(r) exp(iks/P) cos e , 
63) 

with 

FL(‘) = 
_ 1 

b(rr)fKl(rh) - Il(~h)~l(~aO/1l(raf)l r F h 

11 (rh) [Kl (rr) - 4 (rr)K~ (w)/b (41 r > h, 
(7) 

r = klj3-j . (8) 

The last terms in Eq. (6) are the source terms. The functions 
Irj-Kr are the modified Bessel functions of the lat order. 

From the scalar and vector potentials we get the electric 
and,magnetic fields of region e in the usual manner. Note that 
the boundary conditions for a perfect conductor are automat- 
ically satisfied at r = al. 

Field Matching 

The cavities and collimators that we will consider can be 
decomposed into three simple cylindrical subregions (see Fig. 
1). In order to solve for the unknown coefficients in our field 
expansions we first match the four tangential field components 
&, &, k,, co, at the boundaries between adjoining regions. 
In%ddition, E, and ,?$ are set to zero on a radial wall. We 
then eliminate r from these equations by performing a definite 
integration over r. 

For example, for the cavity of Fig. la, at z = -g/2 we set 

1 

- - .** _ - 
Era, &a = 

Erl,-%, r < al 

0 al I r L a2 (9) 
- I - e 

Hrn,Hsz = Hrl,&, r<al . 

Both sides of these equations are multiplied by Jr (u;r/aP)r2 dr 
and then integrated from r = 0 to r = aP, with p = 2 for the 
first two equations, p = 1 for the final two equations. The 
corresponding procedure is then applied, at the boundary at 
2 = g/2. _- _ - 

We‘are finally left with eight infinite sets of equations in- 
volving theat sets of unknown coe&cients C,, Dl,, C,, 
D;,,, C.$,,, Dzn,, Cz-, Dzn. The problem can be written in matrix 
notaG% as 

Mx=b , (10) 

with M  an infinite matrix, x and b vectors of infinite dimen- 
sion, with x representing the unknown coefficients. After trun- 
cating the matrix and vectors to finite size, Eq. (10) is solved 
numerically for x. 

Results 

Two computer codes have been written to calculate the 
transverse impedances of a simple cavity and a scraper at dis- 
crete values of k according to the method described above. Due 
to the memory limitation of our computer the sums in Eq. (4) 
are truncated at 50 terms. For the examples to be presented 
here, however, the impedance results remain essentially un- 
changed when only 20 terms are included in the computation. 
For simplicity, we restrict ourselves to the case of p = 1 in our 
examples. 

For our first example we give the impedance of a cavity 
with or = az, azfar = 6.58, g/al = 3.97. The imaginary part 
of Z, below the TEll cut-off frequency, kar = 1.84, is given 
in Fig. 2. Its value at the origin is -81 R. The frequencies 
where %m(Z,) changes abruptly from a large negative to a 
large positive value are the resonances. We have broken the 
curve at these points. The resonances are at kal = 0.58, 0.83, 
0.97, 1.06, 1.12, 1.30, 1.58, 1.65 and 1.69. These values agree 
with the results given by the computer code TRANSVRS.2 In 
this range, the real part of Z, is given by a sequence of delta 
functions, and thus cannot be found directly by our method. 
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Fig. 2. %m(Z,) below cut-off for a cavity with al = a3, 
az/al = 6.58, g/al = 3.97. 

we(Z,) above cut-off for this structure is given in Fig. 3. 
As in the longitudinal case5” we find a few sharp (but finite) 
peaks just above cut-off, in the present case at kar = 1.85 and 
2.04, with broader peaks ocurring at higher frequencies. 
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Fig. 3. !.Re(Zr) above cut-off for a cavity with al = as, 
az/al = 6.58, g/al = 3.97. 

As a second example we give the dipole impedance of a 
single convolution of a rectangular bellows (See Fig. 4). The 
dimensions are al = as, az/al = 1.212, g/al = 0.0667. As 
in the longitudinal case’ the impedance is dominated by one 
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large, somewhat broad resonance, centered above the lowest value of arSm(Z,(O)) = -0.19 R, comparing well with the field 
TM tube cut-off. The peak is centered at kar = 6.11; its matching results. The FFT method, however, cannot resolve 
maximum value is 11.75 R. Its position roughly agrees with6 the very narrow resonance at kal = 7.01. The major discrepan- 
k(az - al) = n/2, which yields kar = 7.4. The Q, defined as ties in the results are that, unlike the field matching method, 

the FFT method predicts a rather broad tail below the first 
resonance and a small, broad peak at kal = 5.73. 

the central frequency divided by twice the full width at half 
i maximum-, is 5. Smaller peaks are found at kar = 3.88 and 

kal = 7.26, just above the fir&, two TM1 tube cut-off frequen- 
cies, 3.83 and 7.02. The value of arSm(Z,(O)) is -0.74 R. 

For comparison, we have also used the computer code TBCI” 
to calculate the wakefield of a short Gaussian bunch, with 
bunch length uz = O.O6ar, up to a distance of 12ar. Taking 
the Fast Fourier Transform of this function, then multiplying 
by exp(k2ui/2) yields Z,. (We will denote this as the FFT 
method. For a discussion of this method, see for example Ref. 
12.) The results of this calculation are given as crosses in Fig. 
4. Although it is difficult to get high resolution by the FFT 
method, we see that the results of the two methods compare 
quite well. Possibly the only important difference is in the 
val++z of arSm(Z,(O)). Here the FFT method yields -1.28 D. 
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?rig. 4. 3m(Z,) (top) and %e(Z,) (bottom) for a single 

convolution of a bellows with al = ag, az/ar = 1.212, 
g/al = 0.0667. The crosses give the results of the FFT 
method for comparison. 

As a final example we give the dipole impedance of a single 
iris in a a tube. The dimensions are al = a3, az/ar = 0.281 and 
g/al = 0.122. The impedance for this obstruction is shown in 
Fig. 5. Two narrow peaks can be seen near the first two TM1 
cut-+% of the tube. One large resonance, at kal = 3.81, has 
a. peak valuraafarXe(Z,) = 14.61 kfl and Q = 200. A smaller 
resonance, at kar = 7.015, has a peak value of arlRe(Z,) = 
0.76 kD and Q = 700. Thus we see that a single iris can trap 
modes with very high Q  values. In between these two narrow 
res.onances we find a broad shoulder. The value of arsm(Zr(0)) 
is -0.22 kn. 

We have again calculated the impedance by the FFT method, 
for comparison. The wakefield used was that of a bunch with 
length uL = O.lar, computed out to 20ar. We have roughly 
twice the resolution of the previous example. On the whole, 
the results of the two methods agree. The FFT method yields a 
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Fig. 5. %m(Zr) (top) and %e(Zr) (bottom) for an iris 
in a tube with al = as, az/ar = 0.281, g/al = 0.122. 
The peak value of arXe(Z,) is 14.61 kf’l, centered at 
kar = 3.83. The crosses give the FFT results. 
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