
. 
Summary certain coherent displacements did indeed linearly perturb the 

dispersion. This observation led to several studies of systematic’ 
and random8 errors with the conclusion that this effect stems 
from the fact that the dispersion in the Arcs is not always 
matched (especially in the vertical plane) due to the necessity 
of rolling the achromats about the beam axis to follow the site 
terrain. We will now review these findings in simple form. 

Certain causes of anomalois dispersion in the second order 
achromats of the SLC arcs are investigated. For matched dis- 
persion, transverse displacements of combined function magnets 
do not introduce anomalous dispersion. This is shown by de- 
riving-a’non-dispersive condition connecting the average of the 
matched dispersion function with the quadrupole and sextupole 
components of the field. In the SLC Arcs, however, the achro- 
mats are rolled producing a dispersion mismatch. In this case, 
the horizontal (vertical) dispersion is affected linearly by verti- 
cal (horizontal) displacement of magnets. The integral condition 
connecting the dipole and quadrupole fields and the matched dis- 
perstan is also derived. Combining this with the non-dispersive 
condition and the analytic expression of the matched disper- 
sion gives two simple relationships for the fields of second order 
achromats constructed of combined function magnets. 

-3’h.e effects of the dispersion mismatch in the SLC Arcs is 
investigated using computer simulations. The results show that 
this mismatch will increase the sensitivity to transverse errors. 
We report the effects of certain systematic errors. 

Consider a differential slice of an Arc magnet with length ds. 
The transverse field components can be expressed as follows, 

Non-Dispersive Condition 

B, = B, + Biz + iB:(z2 - y2), 

B, = B;y + B;zy, 

where the coefficients B,, Bi and BI represent the dipole, 
quadrupole and sextupole strengths of the combined function 
magnet, respectively. Here the prime indicates differentiation 
with respect to transverse displacement. 
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Introduction 

The FODO cells of the SLC Arcs are put together to form 
second-.order achromats.’ Each cell is composed of two combined 
function magnets each having superimposed dipole, quadrupole 
and.sextupole fields. The strength of the dipole field is the same 
f& both magnets. The field gradients in both magnets are nearly 
the same but the signs are opposite. The sextupole components 
are different both in the signs and in the strengths. 

Suppose at this location that there is no dispersion in the y 
plane and that the horizontal dispersion is equal to 11. Suppose 
further that the elemental magnet is displaced from the reference 
axis by AZ and Ay. Then, for a momentum p = p,(l + 6), 

z = ~6 + AZ, (3) - 

&-this lattice the matched dispersion function I), defining 
thg-deviation of the trajectory for an off-momentum particle, 
and its derivative 9’ with respect to the path length s are both 
periodic with a period equal to the cell length. 

y=Ay. (4) : 

During the course of designing the SLC orbit corrcelion sys- 
te& for the SLC Arcs one of us (JJM) observed’ that transverse 
tran&tions df the combined function magnets were effective in 
generating a non-dispersive orbit correclion , By this is meant 
that the beam direction can be made to change and that this 
change is independent of momentum in the linear approxima- 
tion. It is shown below that this effect is the result of a simple 
relationship between the average value of the matched disper- 
sion function q and the strength of the quadrupole and sextupole 
components in each combined function magnet. 

With these equations inserted in Eqs. (1) and (2), the an- 
gular “kicks” d8 in horizontal and dq5 in vertical planes of a ray 
passing through the elemental magnet may be written as follows, 

-ds 
de =- 

P&  + 6) 
(Bo + Big6 + ;B;q26’) 

It has been shown3 that the integral relationship in this sim- 
ple form consists of the most dominant terms contained in a 
more general integral expression which can be used to define 
the.pr-q.erties of a second order achromat. In most situations, 
where the radius of curvature is large, tb simpler form can be 
used to calculate sextupole strengths which agree with those 
obtained from TRANSPORT to within a few percent. 

The-demonstrafion of this non-dispersive eflect was a key 
part of the decision to adopt transverse displacements of com- 
bin&-function magnets as the method’a5 of correcting the beam 
trajectory in the SLC Arcs. 

+(B:, + B;o6)Az + $(A”’ - Ay’) 
> 

, 

+ds 
PO0 + 6) 

(B:, + B;o6)Ay + B;AzAy 
> 

. (6) 

Consider only the terms up to the linear approximation in AZ L 
and Ay and neglect all others, then ~a 

de s ~ + +6, + B:(l + 
0 

dq5 k ds -Bi(l + 96)Ay 
P$ + 6) 

. 
0 

Even though the matched dispersion function is unperturbed 
in the linear approximation by either random or coherent dis- 
placment of magnets, it was later found6 that in the SLC Arcs 

Clearly, the momentum dependence in both equations will 
factor out if the following conditions are satisfied everywhere, 

‘Work supported by the Department of Energy, contract 
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Eqs. (9) cannot be satisfied at all points since within a mag- 
net v varies while B, Bb and Bz do not. However, if q is aver- 
aged over a single Arc magnet the second equation in Eqs. (9) 
is satisfied, i.e., 

i ,a-. g,.: - 
atnglc magnet = 1 . 

0 . 
(10) 

Eq. (10) is the non-dispersive condition given in Ref. 2. This 
equation is satisfied by the fields of combined function magnets 
in second order achromats. 
Eqs. (7),(8), and (10) can be used to conclude that in the linear 
approximation the matched dispersion function r) is immune to 
effects due to random or purposely induced transverse displace- 
ments of single magnets in an achromat composed of combined 
function magnets. For the SLC Arcs a transverse displacement 
of 100 microns for Ax (Ay) steers a beam horizontally (verti- 
cally) with a strength equivalent to 1.2% of the dipole bend- 
ing field B, making such displacements an effective method of 
steering. Furthermore, since this non-dispersive property ap- 
plieyto a single magnet such a magnet can be used to provide a 
non-dispersive “kick” anywhere in any lattice provided that the 
average value of the dispersion is not zero. 

Relationship of Field Components 

-The first equation in Eqs. (9) is also satisfied when q is 
averaged over each magnet of an entire cell, i.e., 

g lentire cell = l . 

This is shown to follow from the definition of the 9 function and 
a general integral equation derived in Ref. 9 and which apply 

to a cell of an arbitrary lattice. Eqs. (10) and (11) can be .used 
to derive relationships for the field components correct to a few 
percent for achromats composed of combined function magnets. 
These relationships are useful because for such achromats 7 can 
be&keg-rated analytically as in Ref. 9 . Using the SLC Arc cell 
for-an.example, Eqs. (10) and (11) become 

Bib _ 7-l , BhLl _ F-1 1 

and 

$+(qf - ‘ID) = 1 ( 

02) 

where the subscripts F and D refer to the focusing and defocus- 
ing magnets, respectively. Similar relationships can be written 
for combined function lattices of second order achromats com- 
posed of magnets with differing lengths and field components. 

Effect of Mismatched DiSpetsion 

*-cmations (3) and (4) are now rewritten to allow the position 
in the differcrrtial slice to include deviations from the mat&d 
dispersion. Let 

x = AZ + qz6 = AZ + (~0 + AQ,)~ , (14) 

and 

y = Ay+qY6 = Ay+Aqy6 , (15) 

where Ax,Ay are transverse displacements, qZ,qY are the ac- 
tual dispersion functions, q0 is the matched q-function and Aqz 
and AQ are the differences between the actual and matched 
functions. 

Again, Eqs. (14) and (15) are inserted in Eqs. (1) and (2). 
Then retaining only terms linear in AZ and Ay, averaging the 
dispersion over the length of the moved magnet, 1, and separat- 
ing the remaining terms in dispersive and non-dispersive groups, 
one finds 

r- ae z po(l-; 6) { (Bb + B:C+x 

(16) 

A+= ’ 
P$ + 6) 

(17) 

Inserting Eq. (10) and taking the derivative with respect to 
6 at the point 6 = 0, the anomalous Av’, for z and y planes, 
respectively, become 

- 
A @ Y  

I, 

A6 = +f 
_ 

%zAy + A+x 
> 

(18) _ 

These equations show that in the presence of a magnet mis- 
alignment a deviation of the dispersion from that of the matched 
dispersion will generate an anomalous q:,Y . This is important . 
to the SLC Arcs in that the dispersion is not always matched due 
to the required rolls. The consequence is that the Arcs are more 
sensitive to misalignment than if they had been constructed flat. - 
For a typical 10” roll as in the Arcs, Aq, is small compared to - - 
Aqy so the main contribution to both Av:,~ comes from the : 
terms proportional to AqY. That means that Avl is produced 
by a vertical displacement Ay and vice versa. On the other - 
hand, for the whole Arc the accumulated error in Aqz becomes 
large and both terms in Eqs. (18) and (19) are significant. 

Computer Simulations 

The predictions for the behavior of anomalous dispersion 
given in Eqs. (18) and (19) have been compared with computer 
simulations of both rolled and not rolled achromats. For the dis- 
placement of a single magnet, the results are in good agreement. 
That is, for an unrolled achromat (matched dispersion) there is 
no eflect, whereas for a rolled achromat, the induced anoma- 
lous dispersion, as calculated using Eqs. (18) and (lQ), agree 
quantitatively with the simulation results. This agreement was 
confirmed for several magnets located at arbitrary points where 4 
the mismatched dispersion was either large or small in magni- 
tude. 

Systematic Translations of Magnets 

With agreement established for simple cases, computer sim- 
ulations were now used to investigate the effects of systematic 
errors in whole achromats and finally for the entire north arc. 

Systematic translations of magnets in the arcs can have 
many causes; here we will examine two particular ones. In 
the arcs there is a one-to-one correspondence between mag- 
net movers (steering correctors) and beam position monitors 
(BPhl’s). In this scheme each focusing magnet is moved horizon- 
tally (vertically) to steer the beam through the BPhI, (BPM,) 
attached to the next focusing (defocusing) magnet. This scheme 
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utilizes 10 correctors and 10 monitors in the horizontal plane and 
10 correctors and 10 monitors in the vertical plane per achro- 
mat. The position monitors are placed in the drifts between 
magnets. Thus the matched dispersion has the same magnitude 
( '?BPM - 35mm) at all BPh4’s. Therefore, either a) a system- 
a& error in BPM, alignment or signal processing or b) steering 

i a beam which has the wrong.energy with respect to the arc ex- 
- citation w”;ll cause a systematic offset of all horizontally focusing 

magnets. A systematic BPM, error will do the same in the ver- 
t&al plane. Fortunately, these systematics will show up in the 
harmonic analysis of the magnet mover positions and, in prin- 
ciple, is correctable for magnitudes greater than - 30 microns. 
Steering an off-momentum beam with y = 10m3 will induce a 
systematic error in the magnet positions of 28 microns which is 
just detectable. 

In Figures 1 and 2 An, is shown versus a systematic mis- 
alignment of BPM,‘s or relative momentum error. Here, Av, = 
qZ - no where q0 = 47mm at the end of the north arc. 

_...._ 200 100 0 -100 -200 
; i-Si Translation AX (microns) 5743Al 

Fig. 1. Error in r/= when beam is steered with a Horizontal 
displacement at entrance of each focusing magnet in north Arc. 

In Figure 1, each BPM, is offset by the same amount and 
the arc steering algorithm applied. Because of the one-to-one 
correspondence between each BPM, and the upstream magnet 
mover a systematic translation is introduced at every horizon- 
tally focusing magnet: A systematic offset of 100 microns at the 
BPh4,‘s will cause an equivalent offset of - 80 microns at each 
horizontally focusing magnet. This same relationship holds for 
the vertical plane. It can be seen in Figure 1 that a systematic 
displacement of this magnitude will cause a 50 - 80% change in 
the-horizontal dispersion function nZ at the end of the north arc. 

Next, it can be seen that the results shown in Figure 2 
are similar mose shown in Figure 1: Here a beam of fhe 
wrong momentum with respect to the arc excitation was steered 
through the system. In this case, prior to the application of the 
steering algorithm, the centroid of the beam would have the 
same offset at each BPM,. The action of forcing this centroid 
offset to become zero at each BPM, again introduces a system- 
atic offset of the horizontally focusing magnets. Thus steering 
a beam with a relative momentum error of 3 x 1O-3 is equivalent 
to a systematic error of - 100 microns at the BPM,‘s. The 

vertical dispersion T)~ is affected nonlinearly in both of the above 
cases, changing by - 12mm (compared to its nominal value of 
zero) for a BPM, offset of 100 microns. 
A systematic error in the position of the vertical BPM,‘s will 
also cause dispersion changes but at a level reduced by an order 
of magnitude. 

Conclusion 

In the linear approximation the matched dispersion function 
is not affected by random or coherent displacements of mag- 
nets in a second order achromat made up of combined function 
magnets. For the SLC Arcs the necessity of rolling the achro- 
mats has caused a dispersion mismatch which has increased the 
sensitivity to transverse errors. In particular, the increased sen- 
sitivity to systematic errors will require close attention to these 
errors in component alignment and signal processing electronics 
for both the beam position monitors and the orbit correcting 
magnet movers. 

-4 -4 -2 -2 0 0 2 2 4 4 
RELATIVE ENERGY ERROR AP/P (ppm) RELATIVE ENERGY ERROR AP/P (ppm) 

4-87 5743A” 

Fig. 2. Error in qZ when off momentum beam is steered through 
the north Arc. 
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