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ABSTRACT 
--.. .- . 
-. This paper deals with the dynamics of the growing of two subgraphs, the 

K-Nearest Neighbour (KNN) and the K-Minimum Spanning Tree (KMST) of 

an undirected weighted and complete graph G. Both are widely used in cluster 

and data analysis. Some limit values of K (K,,,), for which they become com- 

plete, are given. The results of some experiments on “random graphs” are also 

presented. 
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1 INTRODUCTION . 

. 

The dynamic study of a “system” provides useful information about its 

finer nature (presence of layered configurations) and allows one to discover 

changes in its space-states. Dynamic study of graphs is of great interest in 

this context. Given a weighted graph G, the computation of the number of 

components of its minimum spanning forest for increasing thresholds [l], and 

its K-nearest neighbours for increasing K [2] are examples of dynamic analysis. 

In this paper we analyse some dynamic properties of two subgraphs: the 

K-nearest neighbour (KNN) and K-Minimum Spanning Tree (KMST) of an 

undirected weigthed and complete graph G [S,4,5]. All those features, that 

depend from the variable K, are considered as dynamic. Some topological 

configurations, that give some information about the distribution of the nodes 

in the case of random graph, are studied. The results obtained may be use- 

ful for the analysis of “sparse images” [6] and the study of multidimentional 

clustering problems [3]. 

_-.._ . L 

The next section is dedicated to some definitions and notation used througout 

the paper. In Section Three some limit values of K, for which the KMST 

and the KNN become complete, are derived. A relation between these two 

subgraphs is also established. In Section Four two topological configurations 

of nodes (“Pure Star” and “Pure Linear”) are investigated. In Section Five 

some experiments are presented, concerning the dynamic behavour in the case 

-- of “random graphs”. Section Six presents some concluding remarks. 

2. DEFINITIONS AND NOTATION 

In the following undirected, complete, and weigthed graphs G =< N, W >, 

are considered. Here N is the set of nodes, the cardinality of which is denoted 

_ . ._ - by IN], W:N x N --+ R+ is a norm function and R+ is the set of positive 
- - +-real numbers. The nodes of G are elements of a d-dimentiona! space X. 

- 

- _ 

For each node z E N the set Nz = N - {z} is ordered as follows: 

b,=E& 3l-i = - W(2,y) 5 W(2,z) 
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The first K nodes of Nz are the K-nearest neighbours linked to x. 

. 

DEF 1. The degree of a node x E N, OD,, is the number of arcs linked to it. 

DEF 2. The KNN(G) is a subgraph of G,such that each node x E N is linked 

with its K nearest nodes. 

DEF 3. The MST(G) is a spanning tree of G, such that the sum of the weigth 

of its arcs is minimal. 

DEF 4. The KMST(G) is a spanning subgraph of G, such that: 

lMST(G) = MST(G) 

KMST(G) = [K - l]MST(G) U MST(G - [K - l]MST(G)) K > 1. 
- 

Here “G - [K - l]MST(G)” d enotes the set difference between graphs. 

In the following G - KMST(G) E GcK) =< N(K),W(K) >. Here NtK) = 

N - {xl x E N and OD, = INI - l}, and WcK) = W - {WI W E [K - 

l]MST(G)}. F g i ure.1 displays the nodes of G, Figure.2a and Figure.fLb show 

-_ the 2NN and the 2MST of G respectively. 

_..._ . L 

DEF 5. A graph such that 3el,elNI E N,OD,, = OD,,,, = 1 and Vei E 

N-hep$P% = 2 is a chain and will be denoted by (er, e2, . . . . ei, . . . . elNI). 

3. DYNAMICS OF THE KNN AND KMST 
-. 

This section presents some results concerning the value of K for which 

the KNN(G) and the KMST(G) b ecome equal to G. This value is denoted 

by- &run. An exact value of Kmaz is found for the KNN(G), while for the 

KMST(G) only some limit values are extabilished. 

If the nodes of G are points in a normed space X, the following lemma 4 
_ . ._ Tz 

holds: - - -- ;. 

- 

- _ 

LEMMA 1. Let T be the subgraph added to the KNN(G) to compute the 

[K + l]NN(G), then T is a forest. 

Suppose that a cycle of order L exists: 
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( x1,22,. . . JL-191) 
,c- 

. 
It is easy to see that the following order may be stated between the 

weigths of the arcs in the cycle: 

for i= 1,2,...,L-3 

xi+l is linked to xi - qxi, %+I) L W(Xi+1, %+2)i 

x1;-1 ie linked to XL-~ e W(ZL-~,ZL-~) 5 W(ZL-~,Z~); 

and finally: 

x1 is linked to XL-~ ++ q~L-l,~l) < qaJ2); 

-_ 

The last inequality is strict because x1 has yet to be linked to 52 at the 

beginning of the cycle and this leads to the contradiction W(xr,x2) < 

W(xr, x2). Therefore 2’ is a forest A. 

L 

hi. 

LEMMA 2. For each 1 < K < INI - 1, 3x E N of the KNN(G) such that 

OD, = K. 

For K = 1 this follows from LEMMA 1 (1NN is a forest). Suppose 

it is true for 1 < K 5 INI - 1, then is true for K + 1. In fact let 

Y = {y I OD, = K}, then to compute the [K + l]NN(G) only [Yl - 1 

edges are linked to the nodes of Y and by LEMMA 1 they make a forest. 

Therefore 3y E Y such that OD, = K + 1 A. 

THEOREM 1. For the KNN(G) the value of Kmaz is INI - 1. 

It follows from LEMMA 2 A. 

_ . ._ = Note that the result is valid only if the space X is normed. 
- - -- 

- 

- _ 

The evaluation of the Km,, of the KMST(G) is more difficult and depends 

strongly on the configuration of the nodes in X. Two limit conditions will be 

’ stated below. Two very uncommon configurations of the nodes are considered 

for this purpose. 

_ 
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DEF 6. A graph G is said pure linear, PL, if its nodes are topologically 

configured as follows: 

i ,c- 

. VO 5 K < INI 3(e19e2,-,epV(K)I) =+ 

[K + l]MST(G) = KMST(G) U(el,ez, . . . . ei . . . . epT(K,I) 

Figure.3 shows an example of a PL graph. 

DEF 7. A graph G is said pure star, PS, if its nodes are topologically config- 

ured as follows: 

VO 5 K < INI 3xK E NtK) + 

W(XK,Y) 5 min{W(y+)l~,z E NtK)) 
- 

The node XK is called the dominant of GcK) (XK dom GcK)). Figure.4 gives 

an example of a PS graph. 

The two classes of graphs are denoted by PL and PS respectively. 

LEMMA 3. The value of Kmoz for G E PL is [IN l/21 and this is the minimum 

value. 

_..._ . 
L 

In fact, by DEF 6, at each step of the computation of the KMST(G) 

there are two cases: 

INI even + 

VO 5 K < INI IN(K)) = INI and 

_ _ ._-. 
- - --- 

- 

- _ 

K maz x (INI - 1) = INI x (INI - 1)/2 * Kmaz = INI/ 

INI odd _ 

VO < K < (INI - 1)/2 IN(K)I = INI, - 

. K = (INI - 1)/2 IN(K)I = (INI - 1)/2 and 

(Knuz L 1) x (INI - l,+ (INI - 1)/2 = INI x (INI - 1)/2 + 

K muz = (INI + 1)/f-4 

The value is the minimum because at each step we add the maximum 
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number of edges A. 

LEMMA 4. The value of Kmoz for G E PS is IN] - 1 and this is the maximum 

value; - 
. 

By- DEF 7, at each step of the computation of the [i]MST(G) IN] - i 

edges are added and therefore: 

K’ (INI -i) = INI x (INI - 1)/2 ===+ Kmaz = INI - 1 
i=l 

Thir value is the largest possible because the maximum degree of the node 

in G is IN] - 1 A. 

From the LEMMAS 3 and 4 it follows: - 

THEOREM 2. For a generic G: 

[INI/ I Knoz L INI - 1 

L Figure.5 shows an example of graph with []N]/2] < Kmoz < INI - 1. 

From LEMMA 4 and DEF. 7 follows that if G E PS then at the end of 

the computation of the [N - l]MST(G) the nodes are ordered in a chain: 

( Xl, 52, --a, xlNl) 

_ ._ :. xi -< xj _ i < j and xi dom G(‘) , xj dom G(j) . . -;sr^ ;. 

- 

- _ 
Another dynamic property relating the KNN(G) to the KMST(G) may 

be stated from the previous results. 

THEOREM 3. For each K the KNN(G) is a subgraph of the KMST(G). 
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The proof is made by induction. 

c ” r( = la 1NN C 1MST true by definition of MST; 

. 
suppose it is true that 

K>l==+KNNGKMST; 

then by LEMMA 1 the subgraph T added to KNN(G) to compute the 

[K+l]NN(G) is a forest and therefore T U KNN(G) 5 [K+l]MST(G) 

A. 

- 4. CHARACTERIZATION OF THE GRAPHS PS AND PL 

In this section we give some conditions on the cardinalty of graphs PS 

and PL, whenever their nodes are points of a multidimentional normed space 

X. In the following the dimention of X will be denoted by d. 

Let us first analyse the case d = 1. For sake of semplicity the nodes of G 

are considered ordered from left to rigth in a chain (1,2, . . ..n - 1, n). 

- . . _  .  

L 

Ai 

It is easy to show, by construction, that the class PS contains the chains 

{(l), (1,2), (1,2,3)}. For n 1 4 the chain (1,2, . . . . n) contains the kernel 

(2,3, . ..) n - l), in fact the node “2” is the closest to “1” and the node “n - 1” 

is the closest to ‘n” therefore G 4 PS. 

The following LEMMA holds, for the class PL: 

LEMMA 5. If d = 1 then the class PL contains only the chains: 

_. 
._ = 

. . -;c--- 

{(l),(W) ,..., (1,2,3,4,5)) 
- 

- _ 
The proof is made by construction. The hypothesis of ordering allows 

one to compute a K spanning tree of G, KST(G) as follows: 



Vl<_K<n 
” -. begin 

. N’ + q5 
insert t false 

j + 1 
while (IN’1 < n) do 
begin 
St1 
while (S < n A -insert) do 
begin 

I=(j+S)modn 
if (j,Z) $Z KST(G) A (j,Z) does not form a cycle then 

KST(G) t KST(G) u (j,l) 
N’ + N’u (j,l) 
j + 1 

insert t true 

else 
StS+l -_ 
insert t false 

endif 
u.._ . L end 

end 
end. 

In order to demonstrate the correcteness of this algorithm note that at 
each step K the inserted arcs do not form cycle. Two cases must be 

considered: 

K < [n/2] + th e computed tree is a chain of cardinality n. In fact: 
; 

- _ e- 

- 
V’rf j< N (j-$K) mod n # (r + K)mod.n 

- _ If n is even it is easy to verify that after n - 2/2 steps the KST(G) 

is completed in one more step by inserting n - 1 edges. Moreover n/2 
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edges must be linked to the node “1”. 

” If n is odd it is easy to verify that after (n - 1)/2 steps the KST(G) 

is completed in one more step by inserting (n - 1)/2 edges. Moreover . 
(n - 1)/2 edges must be linked to the node ul”. The KMST(G) is also 

a KST(G). 

Therefore G E PL only if n 2 5. The proof is completed by checking, 

with the previous algorithm that {(l), (1,2), . . . . (1,2,3,4,5)} E PL A. 

COROLLARY If d = 1 + V G Kmaz 5 [jNl1/2. 

For d > 1 an upper limit for the cardinality of N is difficult to determine 

for both classes. 

Below, we give some conditions on the spatial distribution of the nodes in 

X for the class PS. 

The concept of convex hull of a set of points plays a central role in many 

problems related to pattern recognition, classification [7,8,9] and computa- 

tional geometry [lo]. R e evant information, regarding the distribution of the 1 

nodes for G E PS, may be carried out by considering the convex hull of the 

_ 

. .._ . - set N. 

DEF 8. Given a set of points N c X, the convex hull of N, CH(N), is the 

smallest polyhedron containing N. 

The hypervolume surrounded by the CH(N) is denoted by int (CH(N)). The 

sum of the edges of the CH(N) is denoted by Perim(CH(N)) 

THEOREM 4. If G E PS then the int(CH(N)) may contains only one point. 

_ _ ._-. 
- ._ e- 

Assume that G E PS and that 3a,b E int(CH(N)). One of the two 

nodes, suppose a, must be dom G. In fact from the triangular inequality 

it follows that: L. 

c 

c W(a, y) I Perim(CH(N)/d) 
v=fW) 
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and V y E CH(N) 

c W(y, z) > Perim(CH(N)) 
ZECH( N) 

Consider now a partition of X in to a set of d orthogonal hyperplanes, 

such that one of them contains {a,b} and then have their origin at the 

middle of the segment [a,b]. By hypothesis b E intCH(N). Then 32 E 

CH(N) such that {b,z} is in the same partition of X, therefore: 

W(b,z) L W(w) 

The last inequality contraddicts that hypothesis that a is dom G. There- 

fore only one point may belong to int(CH(N)) A. 

The last result allows one to state that for d = 2, if G E PS then INI 5 5. 
. .._ . - 

Computer experiments, on simulated “random graphs”, made for d > 2 

seem to support the following conjecture: may be claimed: 

5. BEHAVIOUR~ IN THE CASE OF RANDOM GRAPH _ . ._ Tz 
. . -i”--^ 

Some Monte Carlo simulations have been made in order to study the 
- 

- _ 
growing of the KMST of a ‘random graph”. Here a graph is considered 

random if its nodes are randomly distributed from a uniform distribution in 

X. 
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Figure.6 shows the experimental results of Kmaz versus ] N ] for a random 

graph. The experimental points fit very well to a straigth line with slope 

z ” m = .58. This value is roughly the average between the two limit conditions 

. given by THEOREM 2. The values of Km,, seem not be related to the 

dimention of X. 

A second experiment was made in order to give an estimate of the upper 

bound for the cardinality of the classes PL and PS. A sample of 1200 graphs 

were generated for d = 1,2,4,6,8,10 and IN] = 5,7,10,20. The results are 

.shown in Table 1. 

Columns 3 and 4 give the percentage of graphs PS and PL found in the 

sample, column 5 indicates the mean value of Kmaz. The experiment seems 

to show that the class PL t larger then the class PS, in spite of the fact that 
its characterization is more complex. 

The data contained in the Table 1, also, confirm the results stated in 

THEOREMS 2 and 4 and in LEMMA 5. 

- 

S. FINAL RJWLUWS 
u..._ . - The study of the dynamics of graphs is at the beginning phase and the 

analysis of the subgraphs KNN and KMST seems to offer a spring of un- 

solved problems. 
UI  

The interest in studying the dynamics of both graphs seems to be beyond 

that of mere speculation by the fact that they are of great interest in practical 

udata analysisn and Uclustering” problems. The topics in this paper cover 

jointly discrete topology, computational geometry, and combinatorics. Several 

questions, regarding the cardinality of PL and PS, as function of. d and N, 

__ ._ 7. are still open. 
--- 

_- 

- _ 

Further investigation could study the dynamics of different classes of graphs, 

e.g. the t-transitive graphs [ll] seems to offer a good example in which alge- 

braic and combinatorics problems are combined. 
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