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NOTE ADDED: 
:, 

- 

The expression (4.13) for the correlation function (V+V-+V+V-+) in the 
ki + 0 limit vanishes identically. This can be seen by using the Riemann theta 
identity (Eq. R5 of Ref. [a]), 

cGygY(5)29Y(Y)ljJY(u)ljfY(v) = ~~1(~l)~l(Yl)~l(~l)~l(~l) 
v 

where 

v1= +y--u+w) 

A similar result can also be proved for (V+V-4). This is as expected from the non- 

renormalization theorems [*I . Thus our analysis provides an explicit verification - 
of the results of Ref. [b], and at the same time gives a general prescription for 
calculating the 2n-point fermion amplitude in the covariant formulation, which 
are expected to be non-vanishing for sufficiently large n. 

We expect that the non-renormalization theorems on higher genus surfaces 
will be consequences of identities involving generalized G-functions analogous to 
the Riemann theta identities [cl . The results will be published elsewhere PI . 
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ABSTRACT 

An expression for the arbitrary n-point correlation function of SO(2) spin 
-. - operators on a torus is derived. From this expresssion one can calculate the 

n-point correlation function of any SO(2N) p s in operators. Application of our 

results to the calculation of one-loop scattering amplitudes involving SO(16) and 

SO(10) p’ fi Id s m e s in superstring theories is also given. 
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I. Introduction 
- 

Calculation of higher-loop amplitudes in closed string theories has been of 

interest in the recent past [1,2]. Most of the calculations that have been done so 

far, however, have focused on the calculation of the partition function of various 

string theories and on the issue of finiteness of the resulting expressions. The 

partition function in any string theory is expressed as an integral of an appro- 

priate measure over the space of conformally inequivalent Riemann surfaces of 

a given genus (which is known as the moduli space). To calculate any scatter- 

ing amplitude, one must multiply the integrand which appears in the partition 

function calculation by a correlation function of the appropriate vertex opera- 

tors.. In other words, once the string partition function is known, the problem of 

calculating any string scattering amplitude reduces to that of the calculation of 

correlation functions of the vertex operators. 

The vertex operators in a string theory may be divided into two classes. 

Some vertices have simple expressions in terms of the basic variables of the theory. 

Examples of such operators are eik’X, &Xa,X, X(z) &X . . . etc. where X and X 

are the basic bosonic and fermionic degrees of freedom in the theory. Correlation 

functions -of such operators may be calculated on a given genus Riemann surface 
-. - 

by using standard techniques such as path integrals. But there is also a class of 

vertex operators which cannot be expressed directly in terms of the basic variables 

of the theory. Examples of such operators are the spin fields which appear in the 

fermion emission vertex in the covariant formulation of the superstring theory 

[3,4], and the twist operators describing the emission of twisted states in string 

theories compactified on orbifolds [5,7]. The basic variables of the theory (A or 

X) become multivalued on the Riemann surface in the presence of these fields. 

_ The calculation of correlation functions involving these vertex operators is usually 

more difficult. This is the problem we address in this paper. In particular, we 

study the correlation function of spin fields on a torus. This, for example, can be 
.._ _ 

used to calculate one-loop fermion scattering amplitudes in the Ramond-Neveu- 
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_. -. 

- 

Schwarz formulation of the string theory. The tree level (i.e., on the sphere) 

analog of this problem has been solved in Ref. [8] for the spin fields and in 

Ref. [6] for the twist operators on orbifolds, using the techniques of current 

algebra and conformal field theory [2,3,9]. 0 ne alternate approach that has also 

been implemented for the calculation of tree level twist field correlations is that of 

Ref. [7]. In such an approach one may try to calculate these correlation functions 

directly in the path integral by knowing how the presence of twist fields affect 

the behavior of the basic variables of the theory and implementing such behavior 

in the path integral. 

The approach we shall take in calculating correlation functions of spin fields 

on a torus is entirely based on the techniques of conformal field theory. Our 

_ calculations are closely related to those of Ref. [6] where it was shown that, 

by knowing the expectation value of the stress tensor in the presence of vertex 

operators, one can derive a first order differential equation for the correlation 

- function of these vertex operators, which may then be integrated to obtain the . - 
correlation function itself. 

We start our calculation in Sec. II with a simple system, that of two real (or 

one complex) Weyl fermions on a torus. This system has SO(2) symmetry and 

one can introduce the SO(2) spin fields S *. Using the techniques of conformal - 
field theory we derive an explicit expression for the n-point correlation function 

of these SO(2) spin operators. Since the SO(2N) spin operators for a system 

of 2N real fermions may be constructed as products of spin operators of the 

N SO(2) subgroups of SO(2N), th e n-point correlation function of the SO(2) 

spin operators is sufficient to calculate the n-point correlation function of the 

SO(2N) spin operators. We use this result in Sec. III to calculate the scattering 

of four gauge bosons in the Es x & heterotic string theory which belong to the 

-spinor representation of the SO(16) subgroup of & X Es. This specific scattering 

amplitude requires the four point correlation of the SO(16) spin operators. This 

is so, because in the fermionic formulation of the &3 x Es heterotic string theory 

only the SO(16) x SO(16) part of the gauge group is realized linearly [lo], and 
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- 
the vertex operators for the emission of gauge bosons belonging to the spinor 

representation of SO (16) are described by the spin operators of SO(16). 

- 

In Sec. IV the results of Sec. II are applied to the calculation of the one-loop, 

four-point fermion scattering. The fermion vertex operators in this case involve a 

product of the SO(10) p s in operators and the spin operators associated with the 

world-sheet local supersymmetry ghost fields [3,4]. Thus, correlation functions 

of ghost spin fields need to be calculated. We derive in that section an explicit 

expression for the n-point correlation function of the ghost spin fields, and use 

this result to calculate the four-point correlation function of the fermion emission 

vertices. Sec. V summarizes our results and contains some speculations about 

the extension of these results to higher genus Riemann surfaces1 

II. Correlations of SO(2) Spin Fields 

-. In this section we calculate correlation functions of spin operators on a torus. 

We restrict ourselves first to a simple field theory, namely that of a single complex 

Weyl fermion $J. We shall show in the next section how the correlation functions 

of spin operators in theories with several fermions may be constructed in terms 

of these simple correlation functions. The torus we will be working on will be 

described by a parallelogram in the complex plane with sides given by 1 and r 

with the identification 

Here r is the Teichmuller parameter. The fermion $ is allowed to satisfy either 

periodic or antiperiodic boundary conditions in the 1 and r directions. Thus, 

-altogether, there are four different sectors (spin structures) [ll] : (P,P), (P,A), 

(W) and (AA), h w ere the first index denotes periodicity along the direction 1 

and the second index periodicity along r and P(A) d enotes periodic (antiperiodic) 

boundary condition. 
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1; The spin operator acting at a given point on the torus creates a branch point 

such that going around that point the fermion field $J changes sign. One may also 

consider general types of spin operators, in particular, ones for which the field T,LJ 

changes by e +Zlrik/N (k < N are integers) as it goes around the point of insertion 
- 

of the spin field. These operators do in fact arise in theories on orbifolds [6,7] 

as the superpartners of the bosonic twist operators. In this paper we restrict 

our attention to the regular spin fields. Our analysis, however, can be readily 

generalized to the fermionic twist fields encountered in orbifolds. 

The simplest way to understand the spin operators is to bosonize the fermion 

fields [3] i,$ as, 

ti - e+i4, $ - evi4 . P-2) 

The spin operators are then given by, 

-. Sf - e*w2 . (2.3) 

Treating 4 as a free bosonic field, we may calculate the operator product of 

the II, ‘s and the spin fields [3] -. - 

ms+b4 - (z _ $,2 04 + * * * 3 

qqz)s+(w) - (2 - w)1/2i+(w) + . . . , 

- $.qz)S-(w) - (2 - wp2k(w) + . . . ) 

(24 

where . . . denotes less singular terms and ,!?* are excited spin fields. From 
.- .” 

Eq. (2.4) we see that $, 4 always have a branch point at w (i.e., at the point of 
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. insertion at the spin field). We may also calculate the operator product of the 

S’s 

s+(z)s-(w) - (z -:)1/J + (2 - w)3/4&b + . . . 
- 

and that of the $J’S 

~(Z)+(W) - (z T w) + nonsingular. 

P-5) 

P-6) 

In our calculation we shall only use the short distance expansion given in 

Eq. (2.4) and (2.6) and will not explicitly use the representation.of the spin oper- 

- ators in terms of the bosonic fields. In fact, on a torus or higher genus surfaces, 

standard bosonization always gives the average over spin structures [12], hence 

it cannot be used to calculate correlation functions in a given sector. Instead we 

shall derive a differential equation for the correlator of the spin fields directly, on 
- 

a torus using a technique originally developed in Ref. [6] for calculation of bosonic 

twist field correlators on the sphere. To implement this method, we define the 

stress tensor: 

-- - 

(2.7) 

First we compute the two-point correlation function (S+(zr)S-(22)) in the 

(P,P) sector. The insertion of the operators S+(zr) and S-(Q) creates a cut on 

the torus between the points zr and ~2 (Fig. 1). Let us define 

- 

G(w4a+2) = 
(~(~)lcl(w)s+(~l)s-(~z)) 

(s+(a)= (22)) - 
P-8) 

- 
From Eqs. (2.4) and (2.6) we see that G(z, w; zr,z2) must satisfy the following 
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-. 
conditions: 

lim G(z,w;zl,z2) = 
1 

-+..., 
Z+W Z-W 

- 
lim G(z,w;zr,z2) CC 2+21 

lim G(z, w; zr, ~2) cx (z - z2)1/2 + . . . , 
z-+z53 (2-g) 

lim G(z, w; zr, ~2) o( (w - z1)li2 + . . . , w+z1 
_ - 

lim G(z,w;z~,z~) o( 
w+z2 

Finally, G(z, lo; zr, ~2) must be periodic on the torus as a function of z and w. 

The unique Greens function which satisfies all these conditions is given by 

G(wv1,~2) = [ihg,]. [ 
&(z - z+91(w - Zl) v2 
&(z - z1)%(w - z2) ] 

(2.10) 

x 61(z-w+yq 

[ 1 61(2-w) ’ 

where 61 denotes the Jacobi g-function. * Using various properties of the 29- 

functions (e.g., 61 (z) - 19i(O)z as z + 0) one can verify that G(z, w; zr, ~2) given 

in Eq. (2.10) h as all the right properties. 

From Eq. (2.7) we may now calculate the expectation value of the stress 
- 

--- 

* We use the notation of Whittaker and Watson [13]. In Mumford’s [14] notaeion, the con-e- 
sponding 6 is 611. 
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tensor in the presence of spin fields, 

(q+pl)S-(zz)) 

(T(z)) = (s+(zl)s-(z2)) 
- 

= /rir ;a,c( WW~,ZZ) - ;~~G(w;z~,zz) (2.11) 

-. - 

+(z-lw)z - -.I 
The right-hand side of Eq. (2.11) can be calculated explicitly using the expression 

for G(z, w; zr, ~2) in Eq. (2.10). -The result is 

1 ti;(z-zr) 29;(z-z2) 29:(v) 
- 5 ( ?91(z - Zl) - 2942 - z2) ) I91 (yq 

(2.12) 

+ nonsingular terms as z -+ zr, z2] , 

where “I’‘-denotes differentiation with respect to the argument of the G-function. 

As z --) z2 the singular part of the above expression is given by: 

-- - 

118 
(z-242 +A2 1 qz2 - a) -- - 4%(Zz -ZI) 1 (2.13) 

On the other hand, the singular part of the operator product expansion for 

T(z)S-(~2) is 

- 

T(z)S-(~2) = (z _h,2)2S-(z2) + ;la,s-(zz), - (2.14) 

where h is the conformal weight of the field S-. Thus the singular part of the 
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left hand side of Eq. (2.11) is given by, 

(z -“z2)’ + ;‘& w+(zl)s-(z2)) * (2.15) 

- 
Comparing Eqs. (2.13) and (2.15) we see that h is l/8 and that, 

(2.16) 

We co-uld_also derive another differential equation by analyzing the limit z -+ zr. 

This will fix the zr dependence of the correlation function. However, that is not 

necessary since by translation invariance on the torus the correlation function 

(s+(.4s-(zz)) must be a function of (~2 - zr) only, then Eq. (2.16) integrated 

gives 

(s+(zl)s-(zz)) = Kl(29l(Z2 - zl))-1/461 , (2.i7) 
-. 

where Kr is a normalization constant which will be determined later. 

Before we go on, we want to stress the following two points: 

-. - 
(i) From Eq. (2.17) we see that: 

z!52(s+(4s-(z2)) - (z2 - z1)3’4 . (2.18) 

This may seem surprising at first since, according to Eq. (2.5), the most singular 

part in the operator product of S+(zr)S-(~2) should go as (zr - z~)-l/~. How- 

ever, we should remember that we are calculating the correlation function in the 

sector with periodic boundary conditions, and the vaccuum expectation value of 

-the identity operator (the partition function) vanishes in this sector due to the 

presence of fermion zero modes. Hence one expects the leading contribution to 

come from the next term in the operator product expansion in Eq.- (2.5). This 
.._ ” 

agrees with Eq. (2.18). 
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.; (ii) The function 29r(zz - zr) is quasiperiodic with periods 1 and r (i.e., it 

changes by a multiplicative factor when we shift 22 by 1 or by 7). However, 

94 2 za--zL) is not, since the argument changes only by k or fr as we change 22 

by 1 or 7. Instead under such a translation 291 (y) goes to one of the other 

- 
- 

Jacobi &functions. This shows that the Greens function given in Eq. (2.17) is 

not even a quasiperiodic function on the torus as a function of z2 (or zr). To 

understand the reason for this let us go back to Fig. (1). If, in this figure, we 

take the point z2 and translate it once around the torus, we get Fig. (2a), which 

is equivalent to Fig. (2b). Note that the branch cut now extends all the way 

across the torus, thus changing the spin structure. This clearly shows that one 

should not expect the correlation function (S+(zr)S-(22)) to be (quasi)-periodic 

under a translation of z2 by 1 or 7, instead it should change into the correlation 

function (S+(zr)S-(~2)) with a different spin structure. 

We shall now calculate the correlation function (S+(zr)S-(22)) with different 

choices of the spin structure. (This could be done by starting from the correlation 

function in the periodic-periodic sector and replacing 22 by 22 + l,z2 + r and 

22 + r + 1 respectively, but we shall take a more direct approach.) We start 

with the Greens function G(i, w, zr, za), as defined in Eq. (2.8), but now impose 
-- - 

different boundary conditions on G as z or w goes around a cycle. The Greens 
-. - 

functions in the various sectors are given by: 

G&w 
112 

‘Vl,Z2) = [og)] [ fil(Z - z2)fh(w - a) 

fil(Z - @l(W - 22) ] 
[ 

s,(z-w+y) 
h(z - w) 1 

(2.19) 

-where v = 1,2,3,4 corresponds to spin structure (P,P), (P,A), (A,A) and (A,P), 

respectively. 291 , . ..tid denote the four Jacobi &functions [13]* . The same method 

. 
* In Mumford’s 1141 notation, the corresponding tiV’s are 811,&o, 80,~ and 601 respectively. 
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can now be used to calculate the correlation function (S+(zr)S-(~2)) in different 

sectors. They are given by, 

(s+(Z1)S-(Z2))pA = K&91(z2 - z1))-1/462 z2 ; z1 , - ( ) 

(S+(z+-(z2))AP = K4(6&2 - 21))-1’494 ’ 

(2.20) 

The KY’s differ from each other only by constant phase factors. Note that, as 

expected, each of these correlation functions goes like (~2 - zr)-li4 as z2 -+ Zl. 

Also; using properties of the 9 functions one can verify that under zz + zz + 1 

or zz + r, these correlation functions and the one given in Eq. (2.17) transform 

among themselves up to phase factors. As we shall see in the next two sections, 

- the correlation functions of the physical vertex operators in string theory involve . - appropriate powers of the correlation functions given here which make them 

periodic after summing over the spin structures. 

Finally, we comment on the normalization of the correlation functions. While 
--- 

calculating physical scattering amplitudes, we shall multiply suitable powers of -. - 
these correlation functions by the partition function on a torus characterized by 

the Teichmuller parameter r, and then integrate over 7. The relative normalization 

of various correlation functions in Eqs. (2.17) and (2.20) have been fixed in such 

a way that the spin structure dependent contribution to the partition function 

from the fermionic determinant coming from the integration over the variable $ 

has already been included in Eqs. (2.17) and (2.20). It is for this reason that 

these functions transform among themselves under translations of z2 by a period. 

-T4e absolute normalization may be fixed by demanding that as zr -+ ~2, the 

contribution to the Polyakov integral [15] from a given sector should be (Z1-in11,4 

times the vaccuum functional [6]. Th is is a consequence of the operator product 

expansion (Eq. (2.5)), and will be explained further in Sec.111. 

11 



Next, we calculate correlation functions with more than two S’s. First we 

consider the correlator (S+(qr)S-(z2)S+(zs)S-(~4)). (Due to the U(1) charge 

conservation [3], only those correlators with an equal number of S+ and S- are 

nonvanishing.) Define, 
- 

(2.21) 

Again, this Greens function can be written down in a given sector by examining 

the singularities as z or w goes to the various insertion points 21, z2,23,24. The 

explicit form of G(z, W; zr, z2,23,zq) for the various sectors is given by: 

Gv(%W;Zl,Z2,Z3,Z4) = 
8: (0) 

M 
Q+.Z4-Zl-Z3 ] 

2 > 

x 

[ 

9, (2 - w + =2+z4;=-) 

61(2-w) * 1 
Note that the spin structure dependence of G as a function of z, w is only through -* 

19, (z - W-+ z2+z4iz1-z3). From this we can compute _ _ 

(T(++(@-(Z2)S+(@-(Z4))y 

(S+(~~)S-(~~)S+(~~)S-(~~))V 

and in the same way as before derive first order differential equations for the 

correlator (S+(Zr)S-(Z2)S+(Z3)S-( 24 )) V in the variables zr ,z2, ~3, and 24. These 

equations may be integrated easily and the solution is 

(s+(@-(++(~3)s-(.& = K;6, z2 + z4 ; ” - z3 
- 

fil(zl - z3)‘h(z2 - 24) 1 114 
X 

(2.23) 

where again v = 1,2,3,4 corresponding to the (P,P), (P,A), (A,A) and (A,P) 
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- 

: j, 

. - 

sectors, respectively. One can verify that these correlation functions transform 

up to phase factors among themselves under a shift of one of the zi’s by 1 or r. The 

overall normalization is again fixed by considering the limit ~1 --+ ~2, 23 + 24 

and using the operator product expansion (Eq. (2.5)). This will be illustrated in 

detail in the next section. 

The generalization of Eq. (2.23) t o arbitrary 2n-point correlation is also 

straightforward. The Greens function in the presence of 2n spin fields is given 

by: 

- From which we derive, 

(2.24) --- 

ni<j 29&i - Zj)6l(Wi - Wj) 1 1'4 

(2.25) 

X 
* l-Ji,j 291 (Zi - Wj) 

-This concludes our analysis of the SO(2) p s in model on a genus one Riemann 

surface. In the next two sections we shall use the results developed above to 

calculate correlation functions of physical vertex operators in string theories. 
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III. Application to the Heterotic String 

In this section we study the scattering of four gauge bosons in the Es x Es 

heterotic string theory where the gauge particles belong to the spinor representa- 

tion of the SO(16) subgroup of one particular Es group. Since only the SO(16) 

subgroup of &3 is realized linearly in the fermionic formulation of the & X Es 

heterotic string theory, the vertex operators of the gauge bosons which belong to 

the spinor representation of SO(16) are given by the spin operators of SO(16). 

Although by a gauge transformation this amplitude may be transformed into an 

amplitude of scattering of four ordinary gauge bosons of SO(16), and hence may 

be calculated without the use of spin operators, we illustrate it here to demon- 

strate the basic rules behind applying the results of the previous section to the 

SO(16) spin model. 

The one-loop partition function for the Es x Es heterotic string may be 

written as 

where the function f(r) has been calculated by various authors [l]. In the inte- 

grand we have exhibited two more factors explicitly. The first factor in the curly 

bracket comes from the integration over the right-handed fermions (the space- 

time fermions) and the supersymmetry ghosts, and vanishes due to an identity 

among the &functions [13,14]. The factor inside the second curly bracket, on 

the other hand, comes from the integration and sum over spin structures of 16 

-&the left-handed fermions (the fermions which couple to the external gauge 

bosons whose scattering ampliltude we are going to evaluate). There is of course 

a similar contribution from the other 16 fermions but this has been included in 
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We shall now show that the four-point scattering that we are going to cal- 

culate is given by replacing the factors in the curly brackets by appropriately 

normalized correlation functions. The vertex operator for a gauge boson belong- 

ing to the spinor representation of SO(16) is given by [lo], 
- 

V(k, E, a) = J .d2.@zX’1 + ;k,X’XY)S%,e”k~x , (3.2) 

where E and k are the polarization and momentum vectors, X’s are the space-time 

fermions, cy: is a gauge index, and Sa is a spin operator of SO(16) of a definite 

chirality. To construct these operators, we first define eight complex fermions 

in terms of the 16 real gauge fermions and then define the spin operators St, 

_ associated with each of these complex fermions. A general SO(16) spin operator 
. - will then be given by* 

s* s* 1 2 -*- SC . (3.3) --- 

-. - 

This gives 256 operators. But the requirement of having a definite chirality 

restricts the total number of S-‘s to be odd or even. For definiteness, we take it 

to be even. This reduces the total number of spin operators to 128. 

The one-loop scattering amplitude of four such particles is then given by, 

- 

* At this stage we are not being very careful about the cocycle factors which may pro- 
duce overall constant phases in the correlation function. These phases however may be 
determined by demanding that the final amplitude has the appropriate symmetry. This is 
illustrated later. 
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-; Z(k’, k2, k3, k4) = / d2rf (r) /- d2z1d2z2d2z3d2z4 

(( 
&,Xp’(zl) + ;k$V“(zl)Avl(z~)) ,ik’-X(zl) 

- 

(a,,Xp2(4 + ;k;2Ap2(z2)Y’2(z2)) eik2.X(z2) 

(3.4 

(h4Xp4(z4) + ;k;4A’1(z4),V4(z4)) eik4.X(=49 

( sa(zl)sp(z2)s7(~3)~s(~4)) E;lC;2&$4 

-. 

The correlation function involving the X’s and X’s may be calculated by using the 

- standard Greens function for the free fermionic and bosonic fields on a torus, and 

their normalization may be fixed exactly in the same way as the spin operators. 

We now demonstrate how to calculate the correlation function of the S’s 

with proper normalization. ‘Using Eq. (3.3), we may reduce the correlation 
-A’ 

function of the P’s into a product of eight correlation functions of the form 
-. - 

given in Eq. (2.23). Let us assume that m of these correlations are of the 

form (s’(~l)s-(~2)s-(Z3)s-(Z4)) Or (s-(zl)s+(z2)s+(z3)s+(z4)), n Of these 

are of the form (S*(zr)SF(zs)S*(2z)S’(Z4)), and 8 - m - n are of the form 

(s*(~l)ST(~2)s*(~4)SF(Z3)). Th ecorrelationfunction (P(,z~)SP(Z~)S~(Z~)S~(Z~)), 

after summing over spin structures, then looks like, 

__ . 

- 
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K”c(7?2, n) f: 
u=l i ( I 

m 

flv 
21 + 23 - z2 - z4 

2 

[ 

91(z3 - a)&(~2 - z4) 1 44 - fll(Z2 - 21)61(24 - a)%(22 - 23)91(24 - 23) 

[ ( I 

n 

* 6” 
21 + 22 - 23 - 24 

2 
. (3.5) 

‘h(zl - z2)+3 - 24) 

I 

44 

‘9&3 - +91(24 - 21)29+3 - z2)&(z4 - z2) 

21 + z4 - q- 23 
8-m-n 

2 

-[ 

8-m-n 

&(zl - 24)&(22 - 23) 1 4 

291(22 - a)‘291( z3 - a)91(22 - z4)29&3 - z4) 

. - where K” is a normalization constant and s(m, n) are some constant phases to be 

determined. It can be easily seen that the restriction on the spin operators to be 

of positive chirality forces m, n to be even. Using this fact and the transformation 

laws of 6 functions under translations of its argument one can show that Eq. (3.5) 
-- - 

-. - is. invariant under translation of any of zi ‘s, zi + zi + 1 or zi + zi + 7. 

The relative normalizations as well as the relative phases between terms com- 

ing from different spin structures for fixed m, n have been fixed in the above ex- 

pression by demanding periodicity in zi. The overall normalization of Eq. (3.5) 

can be fixed as follows: Let us look at a fixed spin structure (say Y = 3) and 

at m = n = 0. If we now consider the limit zr + 22 and 23 + 24, we get the 

singular part as, 

- 
K”(d3(0))8 (9\(0))4(21 --:2)2(m - z4)2 - 

Here we have chosen s(O,O) to be 1 for convenience. On the other- hand, with 
__ . 

the choice m = n = 0, the most singular part of the operators products of S” ‘s 
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are given by, 

s”(zl)sq4 - 
(a :22)2 

P-7) 

S7b3)S%4) - (z3 ly)2 

as can- be readily calculated using Eq. (2.5). Thus, in this limit, a properly 

normalized correlation function should be given by, 

(293(o))8 (zl -z2)2;m - z4)2 ' P-8) 
_ - 

where the factor (193(0))~ reflects the fact that according to our convention the 

correlation function of the S’s replaces an explicit factor of (29s(0))8 in Eq. (3.1) 

in this given spin structure. Comparing Eqs. (3.6) and (3.8) we get, 

K” = (9; (0))4 . (3-g) 

This still leaves an ambiguity in the phase of the correlation function depend- 

ing on m,n, which we have denoted by c(m,n). It manifests itself as the ambi- 

guity in determining the signs of the square roots which occur in Eq.(3.5). These 

ambiguities may be resolved by demanding that the final amplitude must be ex- 
-. - 

pressible in an SO(16) invariant form. We write down the most general SO(16) 

invariant tensor structure with arbitrary coefficients, and then determine these 

coefficients from the calculation of the correlation functions with fixed choice of 

the indices CX,~,Y, 6. Since the number of SO(16) invariant tensor structures is 

less than the possible number of combinations of m and n, there is a self consis- 

tency requirement which this amplitude must satisfy. This dictates the choice of 

phases. We shall illustrate this in the context of SO(10) invariance of the four 

fefmion scattering amplitude in the next section. 

Finally, we discuss the modular invariance of the amplitude (Eq. (3.4)). Since 

the partition function is modular invariant, we only have to verify that the prop- 

erly normalized correlation functions transform under modular transformations 
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in the same way as the quantities they replace. Using standard transformation _. 
laws of the 20 functions under r + r + 1 we can show that Eq. (3.5) is invari- 

ant. This is as it should be, since (9~)~ + (19~)~ + (94)8 is invariant under this 

transformation. On the other hand, to study the behavior of Eq. (3.5) under 

r + -i, we use the standard relations between tiV(z,r) and GV(-f,-:). If we - 
- 

define Eq. (3.5) as f(Zr,Z@s,Z&r), We Can show that, 

f(Z1,Z@$Z4,7) = f F 9 T y,-; 
> 

r-8 , 

remembering to include the modular transformation of the normalization con- 

stant K” given by Eq. (3.9). Then, schematically, 

dzl dz2 dz3 dZ4 f(a 22, ~3, 24,~) = 

. 
- 

(3.10) 

(3.11) 

where Z: = zi/r. This is precisely the way the modular form (&(O, r))8+(9s(0, r))8+ 

(294(0, r))8 transforms under 7 -+ -k. The actual vertex operators involve inte- 
5’ 

grals over-.zi as well as Zi, and there will be a factor of 7-4 coming from the 
-. - 

change of the variables I. But this factor should be combined with the corre- 

lation function in the right-handed sector to show that the resulting expression 

transforms in the same way as (G3(0,r)4 - 64(O,r)4 - tii(O,r)) under the modu- 

lar transformation 7 + -$. 

As a check on our procedure, the correlation function in (3.5) may be com- 

pared to the result derived in Ref.[lO] f or the one loop four point scattering 

of gauge bosons in the heterotic string theory. It is not difficult to verify that 

-I!@(3.5) agrees with the result given in Eq. (6.12) in the last reference in [lo]. 
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IV. Correlation Functions of the Fermion Emission Vertex 

The original motivation for introducing spin operators in string theory was 

to describe the fermion emission vertex [3,4,16]. Indeed, in the Ramond-Neveu- 

Schwarz [17] f ormulation of the superstring or the heterotic string theory, the 

fundamental fields are the ten right-handed Majorana-Weyl fermions Xp trans- 

forming in the fundamental representation of SO( 10) Lorentz group. The fermion 

emission vertices in this theory are described in terms of the spin operators of 

SO(10). These operators may be constructed as follows. Let us combine the ten 

real fermions into five complex fermions. We may then in the standard fashion 

introduce five sets of spin operators (St’, St:), (i = 1, . . .5). The SO( 10) spin 

operators are given by 

s* s* 1 2 --* SC . (4.1) 

There are 32 such operators. As in the SO(16) case, we may divide these into two 

sets according to their chiralities. We take the convention that operators with -. 
an.even number of S-‘s are positive chirality and those with an odd number of 

S’s are negative chirality. 

The correlation functions involving these SO(10) spin operators may be cal- 
-. - culated in the same way as we did in Sec. III. The fermion emission vertices, 

however, also contain spin operators of the ghost fields and hence we also need 

to calculate correlation functions involving these fields. Let b, c denote the ghost 

fields due to reparametization invariance and p, 7 be the local world-sheet super- 

symmetry ghost fields. One can bosonize the ghost fields P,7 as [3]:* 

7(z) = ,+4Czlq(~), p(2) = e-+(‘) at(Z) T (4.2) 

-where c$ is a scalar field and 7 and E are two fermionic fields. The fermion 

* To be consistent with the analysis of the previous section one should repl_ace z by z ev- 
erywhere in this section, since the Lorentz fermions and the gauge fermions have opposite 
chirality. 
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emission vertex in the theory is then given by, 

v_,,,(~, k, Z) = Ua(k)e-;~(Z)Sa(Z)eik.X(z) . (4.3) 

- (This is actually only half of the vertex. It must be multiplied by an operator of 

dimension (0,l) in the left-handed sector (e.g., &Xp) to form a complete vertex 

operator). 

As we can see the operator given in Eq. (4.3) carries a non-zero ghost charge 

(-4). Since the ghost number current is conserved on a torus, the total ghost 

charge ofall the operators in a correlation function must add up to zero. (On a 

surface of genus g they should add up to 2g - 2). Hence, correlation functions 

involving only the V-l/2 always vanish. The solution to this problem was given 

in Ref. [3] where an infinite set of vertex operators for the same fermion state 

was introduced. In particular, another vertex operator describing the emission 

of the same state as Eq. [4.3] is, 
. 

- 
Tr,1/2b, k 4 = ua dzXp + i (k-X)X’L 

4 
(7,),pSP + eg4qbS 

I 
eik.X (4.4 

The prescription for calculating an n-point correlation function was to calculate 

the correlation of these vertex operators using any one of the infinite set of 
-. - operators at a given point. The operators are to be judiciously chosen so that 

their total ghost number adds up to 2g - 2 for a surface of genus g. The result 

was proven to be independent of actually which set of operators are chosen to 

calculate a given correlation function. In particular, on a torus for a 2n-point 

correlation function we may choose n of the vertices to be V+1/2 and n of them 

to be Vm1i2. In such a case, the term in Eq. (4.4) proportional to e+i4 drops out 

due to the conservation of the reparametrization ghost charge (Nb - NC), and we 

only need to evaluate ghost correlation functions of the form: - 

( e-~#(Zl)e+~4(wl) ... e-i4(zn) e+i4(wn) . 

> 

The above correlation function may be calculated in the same way as in Sec. II. 
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_ The energy momentum tensor for the p, 7 ghost system is given by, 

T,(z) = ;A% 1 
-; P(,+,7(w) - +3,p(z)7(w) - (z lw)2] - (4.6) 

- _ we also can calculate the operator product expansions from Eq. (4.2): 

p(,),f#(Zl) - (2 - z1)lj2 e-;+(z1)f3t(zl) 9 

p(s)e-iS(Zl) -N (2 - q)-li2 e-ff4(z1)d((zl) , 

(4.7) 
7(z)e+4+(z1) - (z - ,q)-lj2 e+g4(z1)7j(zl) , 

_ - 

7(z)e-+4(z1) -- (Z - z1)li2 e++4(z1)8(21) . 

Using these operator product expansions, we may write down the Greens function 

G( Z,W;Zl, ..5 Zn, WI, . . . Wn) = 

for. a given spin structure. This will be given by an expression identical to 

Eq. (2.24). From this we can calculate the correlation function (T,(z) ni -c 

( 
e-:d’(zi)e+:4(wi) 

> 
) using Eq. (4.6) and derive a differential equation for the 

-. - correlation function Eq. (4.5) the same way we did for the SO(2) spin opera- 

tors in Sec. II. The solution to the differential equation in a given spin structure 

labeled by Y turns out to be, 

n 

(n 
e-f4(Zi)ef4(Wi) _ ii(“) 29 

i=l 

),- v [ ” (L~~;~w~),-’ 

- 1 
l-I wi - Zj)291(Wi - Wj) -l,4 

i>j 

n fll(Zi - Wj) 1 , i, j 
(4-g) 

where kpl is a normalization factor. 
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_ We can now proceed to calculate the correlation function of any number of 

the operators Vli2 and V--1/2.. We shall focus for definiteness on the four-point 

correlation function and carry out the computatation in the soft k limit in which 

case the k . AM‘ term drops out from Vlj2. The correlation function of two Vli2 
- 

. 
-. 

and two V--1/2’s reduces to 

( 
e1:~(zl)e~~(z2)e-4~(z3>e3~(z4) 

)(&,(~l) sa2(z2)%&3) sa4(z4)) * (4.10) 

The S,, Sa are spin operators of SO(10) with positive and negative chiralities, 

respectively. (The F’s appearing in Vl/2 carries opposite chirality from the 

Sa’s appearing in Vm1/2, due to the presence of the rP factor in V+l/2.) The 

correlation of the S’s may be calculated in the same way as Eq. (3.5). Let us 

define the analogs of m, n in this case. Remembering that we must multiply the 

two correlation functions in Eq. (4.10) before summing over the spin structure 

(the spin structure of p and 7 must be identified with that of A) we get the 

answer, 

[ ( . 
m-l 

pu81(m,n) c &j, 6, a + 23 ; 22 - 24 

Y I 
-. - 

- 

29&3 - .+91(~2 - z4) 
m--l 

4 

f9l(Z% - a)&(24 - a)%(22 - 23)291(z4 - z3) 1 
- 6, 

[ ( 

21 + 22 - z3 - 24 

2 I 

n 

[ 

&(a - z2)h(z3 - z4) 1 44 

291(z3 - a)& ( 24 - +h(z3 - 22)&(24 - z2) 

1 ( Zl + z4 - 22 - 23 I 
5-m-n * 19, 2 

1 
5-m-n 

fil(zl - z4)&(22 - z3) 
4 

91(z2 - .+Jl( 23 - a)f91(z2 - z4)291(z3 - ;4> 
(4.11) 
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;,, 

where 6r,&, 63, 64 are 1, -1, 1 and -1 respectively. Again, these relative phases 

between the contributions from different spin structures have been fixed by de- 

manding periodicity in zi. Using the fact that Soll(zr) and S,,(zs) have the 

same chirality, whereas S+(Z~) and Sa4( 24 carry chiralities opposite to that of ) 
- 

Sal(zr), we can show that m must be odd, while n must be even. With this fact, 

it is now very easy to demonstrate that the expression in Eq. [4.11] is invariant 

under the translation of any one of the zi’s by 1 or r, provided the 6,‘s are fixed 

as above. The normalization constant K”’ is determined as before by looking at 

the limit zr + 22, 2s --) 24. To calculate the correlation function for arbitrary 

momentum, we need to calculate correlation functions involving the operator 

k - M‘(7JaBS~. Th’ 1s can be done using the same method, if we define the op- 

erator through point splitting and suitable subtractions. We shall not carry out 

these calculations here. 

Finally, we would like to clarify the issue of covariance alluded to earlier as 

- well-as fix the phases &‘(m, n). As mentioned in Sec. III, our method allows us to 

calculate the correlation function for arbitrary polarizations, cr, /?, 7,6, but does 

not directly give the answer in a Lorentz invariant fashion. However, we may find 

the Lorentz invariant answer by writing down the most general Lorentz structure 

for a given correlation function and determining the various Lorentz invariant 
-. - 

-. 

coefficients from the calculation of correlation functions with fixed polarizations. 

To see how this is done, let us write down the general expression for: 

(v&~)v”2(z2)v&(z3)va4(z4)) = G&i)&la24.x3a4 + G2(z&la4&t3a2 

+ G3(~;)(7~>a,a,(r~>*‘*~ , 
(4.12) 

Gr can readily be seen to be given by Eq. (4.11) with m = 3, n = 0, G2 

-w&h m = 3, n = 2, and Gs with m = 1, n = 2. There are some ambiguities 

in determining the relative phases but those can be determined by demanding 

proper antisymmetry under interchangeof the points 1, 2,3,4 and that Eq. (4.12) 
.._ _ 

reproduces Eq. (4.11) f or other values of m, n as well. Namely, the amplitude 
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must be given by G1 + GJ for m = 1, n = 0, by G2 + Gs for m = 1, n = 4, 

and by G1 + G2 for m = 5, n = 0. Thus, we can finally write down a covariant 

expression for the four-point correlator, 

- (~&l)~“‘[~2)vcc,(z3)v*‘(y)) 

= 19, 

. 
- 

-. - 
It is now clear that the above expression vanishes identically. This can be 

seen by using the Riemann theta identity (Eq. R5 of Ref.[14]), 

c6ygY(z)gY(Y)29y(u)BY(2)) = ~~1(~1)~1(Y1)~1(~1)~1(~1) (4.14) 
u 

where 

- y1 =+y+ u - u) 
: 

ill ++y-u-u) 
(4.15) 

u1= +y-u+u) 
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A similar result can also be proved for (V;V-+). This is as expected from the non- 

renormalization theorems[l8]. Thus our analysis provides an explicit verification 

of the results of Ref.[18], and at the same time gives a general prescription for 

calculating the 2n-point fermion amplitude in the covariant formulation, which 
- 

are expected to be non-vanishing for sufficiently large n. 

V. Conclusions 

In this paper we have calculated the general n-point correlation function for 

SO(2) spin operators on a torus. Using this result, one can calculate the general 

n-point correlation function of SO(2N) spin fields for arbitrary n. We have also 

show-n how our results can be used to calculate various one-loop amplitudes in 

string theories for external states whose vertex operators are given in terms of 

spin fields. 

. Our analysis also seems to generalize to higher genus Riemann surfaces. The 
- 

main problem is essentially to write down the Greens function involving the 

fermion fields in the presence of spin fields. The Greens function will have cer- 

tain singularities determined from the operator product expansion which are - 

independent of which Riemann surface we are working on. Moreover, it must -. - 
satisfy certain periodicity properties as a function of its arguments. These de- 

pend on which Riemann surface we are working on and on the spin structure 

of the fermions. Such a function can be written down in terms of the prime 

forms [14] by generalizing the results of Sonoda[lS]. Once the Greens function is 

written down, the derivation of differential equations for the correlation function 

should be straightforward and follows the procedure illustrated in Sec. II. 

We also expect that the non-renormalization theorems on higher genus sur- 

-fZes will be consequences of identities involving generalized &functions anal- 

‘ogous to the Riemann theta identities(201. Th e results will be reported else- 

where[21]. 
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