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INTRODUCTION 

Q An introduction to the basic concepts of wake ields and wake potentials 
is presented in Richard K. Cooper's paper "Wake Fields: Limitations and 
Possibilities" in these proceedings. In this lecture we explore the possibil- 
ity of using wakefield concepts to accelerate electrons and positrons to the 
high energies required by the next generation of linear colliders. 

Brightness in Linear Colliders 

In a linear collider, electron and positron bunches accelerated in 
opposing linacs are directed toward a collision point between theqwo lis* 
The intensity of the collision is measured by the luminosity, defined as 

d- - N’F, . 
w c (1) 

Here N is the number of particles in the electron and positron bunches 
(assumed to be equal), f is the bunch repetition frequency and 0~ is 
the transverse dimension Ef the bunch, assumed fqr 
and round. We note that the .units,of& 

sim licity to be gaussian -P are cm set . 
multiplied by the cross sectionA '"T h 

Thus the luminosity 
or t e occurrence of a particular event in 

the beam-beam collision gives the number of events produced per second. The 
transverse bunch dimension in Eq. (1) can be expressed in terms of the in- 
variant emittance E , the beam energy y normalized to the*electron rest 
energy,and the beta "function at the beam collision point 6 as 

Using this expression 'together with thebaverage beam current I ve = eNfr _ _ --.and the peak beam current I- = eNc/(2n)%_ in equation (1) we o tain % . lJ 

2 ’ L. z pzyq[+] l = L (wr’)“L e c 
(2) 

- 5 The bunch length,,must be less than B* in order to avoid loss of luminosity 
due to variation of the transverse bunch dimensions during the beam-beam 
collision. Furthermore, it can be shown under reasonable assumptions that 

c 

*Work supported by the Department of Energy, contract DE-AC03-76SF00515. 
(Invited talk presented at the NATO Advanced Study Institute on High 

Brightness Accelerators, Petlachry, Scotland, July 13-25, 1986) 
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Bk % scales with energy as y , and that o 
the total ac wall plug power for a co 

2 z Q X r~ % + in order toTk;;p 
lider wit reasonable bounds. 

the last factor in Eq. (2) is roughly invariant, and the lumi?;Fi&y then 
* de.pends only o-n the "brightness" B E I ave Ip/~nP$i?ven by the .&nerz& factor. 

. The concept of brightness in a linear collider can be carried further 
by introducing the relative energy spread in the bunch 6 Z AE/E. The B" 
that can be achieved for a given 6 varies as 6'. Thus an extended defi- 
nition of collider brightness would be B-1 ave Ip/En62* 

Acceleration Concepts 
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A number of mechanisms have been proposed for the acceleration of 
particles to the 300 GeV - 
colliders. (A 

5 TeV energy range desired for future linear , 
n efficient and economical single bunch acceleration'%&i&@.'Qould 

also be usefulF$$ an injector into storage rings for particle physics, syn- 
chrotron radiation and FEL's.) The concepts that have been suggested range 
from the more-or-less conventional, such as a traditional disk-loaded 
accelerator structure powered by microwave tubes, to more exotic schemes, such 
as laser and plasma accelerators. Although the principal topic of this paper _ 
is the wakefield acceleration mechanism, it is useful to place the wakefield 
scheme in context by comparing it with other acceleration concepts proposed 
for high energy lAteJr&liders. First, however, we will discuss some simple 
but basic concepts,,%mmon to any acceleration method. 

Figure 1 gives a conceptual diagram of an accelerator. In general an 
accelerator consists of some sort of ,dr~v,Tf; which produces electromagnetic 

-. energy (not necessarily rf), 
some kind of 

which is'>dnverted into an accelerating field in 
structure. A figure of merit for the driver is the efficiency 

with which it converts average input ac power into the electromagnetic power.. _ 
delivered to the structure. A figure of merit for the structure is the &@ilJe 

L elastance per unit length, defined as the square of the unloaded accelerating 
gradient divided by the input electromagnetic energy per unit length. The 
accelerating structure must, of course, be appropriate for each particular 
driver. Some proposed drivers and structure combinations are listed in 
Table I. 

In the first three concepts in Table i, the elcctronagnetic energy 
is produced external to the accelerating structure. Concept number three 
is the so-called two beam accelerator. 
running parallel to the accelerator, 

The high current external beam, 
can be accelerated either by induction 

linac units or by superconducting rf cavities. Rqenergy can be extracted 
either by an FEL interaction or by bunches interacting with longitudinal 
fields in a transfer cavity. In both cases the driving beam is simply an 
external source of rf energy. Concepts 4 through 8 involve the production 

_ _ _T_ of electromagnetic energy internal to the structure. Concepts 4 and 5 are 
-the-standard wakefield accelerator-mechanisms in which -a high-charge driving 
bunch is injected into an appropriate metallic structure. Electromagnetic 

"-wakefields set up behind the driving bunch can in turn be used to accelerate 
a trailing lower-charge bunch. Figure 2 shows the details of concept 4, in 

- which a ring driving beam is used. In concept 5 both beams are injected on 
the axis of a more-or-less conventional periodic accelerating structure. Both 
of these wakefield schemes will be discussed in detail in the following 
sections. In concept 7 a driving bunch is injected into a plasma, setting 
up intense plasma oscillations and associated electromagnetic fields behind 
the bunch. ThisAis a 

jCj!% dqii-7 o a wakefield acceleration method, U will be dis- 
cussed briefly in a later section. 
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Table I 

. . -. Some Driver and Structure Combinations 

Driver Structure 

A. External Drivers 

1. 

2. 

3. 

Discrete microwave tubes 

Laser 

Low energy, high current 
parallel external beam 

Disk-loaded or other 
periodic metallic structures.,';/-- 
Metallic grating or other tr '? L 
periodic open resonator. 
Disk-loaded or other 
periodic metallic structure. 

B. Internal Drivers 

4. Coaxial ring driving bunch Radial-li?e wakefield trans- _ 
former with annular and axial 
beam apertures. &- ;sp'L 

5. Collinear driving bunch Disk-loaded or other periodic '- 
structure with axial beam 
aperture. 

6. Laser-switched photodiode 
- $--$ 

Radial-line transformer. 
7. Driving electron bunch Plasma - c-y-= A ~-__ 

-. 8. Laser Plasma 4z- ~'""s--;. -- 

L 

Concept 6, sometimes called switched-power acceleration, is illustrated 
in Figure 3. In this method, photocathodes arranged in a ring at the outer 
perimeter of a radial tranceion line are charged from a dc power supply. 
Short laser pulses triggeriphotocathodes in synchronism with the accelerated 
beam travelling on the axis of th$,,,F$;ycture, but with an appropriate fixed 
time advance. The intense current,from the photocathode crossing the gap of 
the radial transmission line induces an electromagnetic pulse.which travels 
inward toward the axis of the structure. As the radius of thering-shaped 
pulse decreases, the volume occupied by the electromagnetic fields also de- 
crease and f;-dfm conservation of energy& the field strength must increase. 
This "transformer actionH produces a large ratio between the longitudinal field 
strength on the axis of the structure and the field in the neighborhood of the c _ 

ST_ photodiode (which in turn is approximately equal to the dc charging voltage 
-dimed b 

P 
the longitudinal gap g>- This transformer ratio-is given approxi- 

mately by - 
VL 

.r;,--~s* 1 . l!--+-l A,“- / - Y 1 i: < 
(3) 
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where r is the rise time of the electromagnetic pulse, b is the radius d- 
& the pgotocathodes,a g is assumed that both g and cr are approximately 
equal to the axial hole radius Q/. It is && that thg switched power 
concept is closely related to thFring*beam wakefield accelerator scheme 
%hown in Figure 2. 

6 . 
Concept 8 is the laser beatwave accelerationmechanism, in which two 

laser beams having a frequency difference equal to the plasma frequency drive 
intense plasma oscillations. The fields associated with these oscillations 
can in turn be used to accelerate a trailing electron bunch. Only the wake- 
field acceleration schemes will be discussed m detail in this paper. 
For a more complete description of the other acceleration mechanisms, and for 
the current status of analytic and experimental work in th%+?areas,the reader 
is referred to Refs. 2 and 3. 

Comparison of Acceleration Concepts 

It is reasonable.tp ask what physical limitations there are %& the 
structure figure of .%&, the elastance. Suppose a uniform longitudinal 
accelerating field E is present inside a cylindrical region of radius a 
and is zero outside this radius. Since magnetic fields are also necessa?$f 
for propagation of electromagnetic energy, assume also that an equal amount 
of stored magnetic 

= 7-r a2 
ener y 

r! 
is present. The stored energy per unit length is 

then u em eff ~~ Ezland the elastance per unit length is.- 
* . . 

- 

&2’ 1 
3.$x$ v 

c-- - =-- 
w - 

&?vr T6, A& 
=- 

~44 ig l (4) 

_. We see that the elastance increases inversely as the square of the energy 
confinement radius. As an example of the application of the concept of do 
effective radius for energy confinement, consider the SLAC disk-loaded 

- _ structure, with an elastance of 77 V/PC-m. The effective energy radius from -. Eq. (4) is 2.17 cm, while the actual beam hole radius is 1.17 cm. Since energy 
stored outside of the beam aperture region is of no use for accelerating 
particles, a figure of merit for the structure is aeff /a = 1.85 where 

afeo is the physical, or geometric, hole radius. From thEejefinitions,of 
e astance it is seen that to obtain a .- . high value for e 5 ‘! * 

onlv ne 
:f- :L; 

essary 
w r4 +- + Ll9urL 7-h I-lo 1; to go to a structure withrsFall transverse dimensions, ic';)r -;k cw 3-& iiF& a sk'ort operating wavelength*- “.!I&$$& with s 'L XB2. 

The ratio a,,,/a tells how effective & structure;atng ,. 
--e-y--~~~$%-% imensien~ormaled-ou~ ,;)A :~':*;jar pL,,;~q 7i(*c\em$r:& 
J.yr_ \rr 3 tiPCl’-w--c c-h>q kje4fl $41 bat k i: x-., 

2 
2. 

In Table II some structures are compared for the various acceleration 
concepts that have been discussed. A rough estimate of the driver efficiency 
is also included. We.see that the rf, wakefield and switched power accel- L 

_ eration schemes all have values of a eff /a in the range 1 - 2. The rf 
-=.-acceleration method has the advantage of fi?"gh efficiency, although conven- . - 

tional microwave tubes with very high peak output power do not exist at very 
- short wavelengths where the elastance is highest. The two-beam and wakefield 

acceleration schemes were devised v to get around this wavelength 
limitation oncconventional sources. 

i (;ho fl~fl, qa.apv- . -- 
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In concluding the discussion in this section, we note that all internal 
beam accelerating schemes (under B in Table I) suffer f;~~ai&~n$~~n>l 
difficulty. The accelerated beam "sees" 

: +v4bQJF-SC 
the wakefield?tf the driving be?&? / 

i directly,esrth-Sengit~~nal-anhtraasue field c-s7 In effect, 
the transverse-deflecting fields are of the same order as the accelerating 

. field. Thus the driving beam must be oriented with exquisite precision in 
the tbatransverse direction, and in addition must be azimuthally extremely 
homogeneous, in order not to produce deflecting fields which are unacceptably 
large. In an external beam scheme, the rf is generated 
accelerating structure and only the accelerating 
into the structure. __.. -~ 

,I-‘- 
iLm ‘,,,-+ L”,,A bfa6w 

Table II 

Comparison of Acceleration Schemes 

Scheme aeff aeff'ageo a eff" nD 
- 

RF (SLAC 
structure] 2.17 cm 1.85 0.21 0.5 

_. 2.7 mm 1.34 --- 0.1 

Switched power 2) 2.7 mm z 2 --- few %/pulse _ 
_..._ _ 
-. Plasma 

wakefield3) 0.2-0.6 mm 1.0 l-2 0.1 

Plasma 
beatwave%' 0.3-3 mm 3.4 3-6 < 0.1 

Notes: 1) The Voss-Weiland proposal (Ref. 4). 
2) Based on calculations by I. Stumeg(Ref. 5). The efficiency can be 

improved'$$?&ultiple laser pulses to the photocathodes (Ref.6). 
3) Based on data in Ref. 7. 

_ 
.T. 

.- - 
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'WAKE POTENTIAES IN CAVITIES AND PERIODIC STRUCTURES 

Delta-Function Wake Potentials 

In this section we consider wake potentials for closed cavities 

and periodic structures. The delta-function wake potentials for such 

structures are an important concept. These wake potentials are the 

longitudinal and transverse potentials experienced by a test charge 

moving at a fixed distance s behind a unit period having charge 

passing through the structure. The test charge is assumed to move along 

a path which is parallel to that of the driving charge, and both test 

and driving charges are assumed to move with a velocity v * c. For 

V&C the expression for the wake potentials are in general much more 

complicated and the wake potential concept is less useful. The geometry 
_. 

of the problem is illustrated in Figure 4. 

Expression for the longitudinal and transverse delta-function wake 
- 

potential for the general case are introduced in Ref. 7. These potentials 

are simply the integrated effect of the longitudinal and transverse forms 

acting on a test charge as it passes through a structure (e.g. from 

=1 to z2 for the test charge T in Fig. 4) for the case of a unit point 

driving charge. 

_. _ _=_ 

- 

c 
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Under certain conditions, which will be spelled out in detail later, 
i 

it can be shown 839 that the longitudinal and transverse wake potential 
. 

can be written in terms of the properties of the normal modes of the 

charge-free cavity in a relatively simple way: 

where 

and 

- 

Wz(r’,r,s) = 21Z(s)C kn(r',r)cos y 
n 

wl(r’,r,s) =2fl(s)Ck,l(r’,r)sin~ 
n 

k,(r, r) = Vi(r’) VA-) 
1 

4u?L 
(6a) 

k,l (r, r) = V; (4 VA. V&J 
1 4U,w,/c . <jS> 

- 

Here wn is the angular frequency the nth mode, and V,(r) is the voltage 

that would be gained by a nonperturbing test particle crossing the cavity 

in which energy Un is stored in the nth mode. Assuming the electric field 

for the n th mode varies with time as exp(iwt) and the position of the test 

particle is given by z~ =.ct, this voltage is 

Vn(r) = ] dt E,(r,z) exp y 
(’ > 

The conditions under which eqs. (5) are valid for the longitudinal 

and transverse wake functions are discussed in detail in Refs. 6 and 7, and 

(7) 

are summarized in Table I. We see that if the driving charge and test particle 
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follow different paths in a closed cavity of arbitrary shape, neither 

54. (5a) nor (5b) give a valid description of the wake potentials. If the . . -. 

. particles follow the same path in a closed cavity of arbitrary shape, 

Eq. (5a) is valid for the longitudinal wake potential but Eq. (5b) does not 

correctly describe the transverse wake potential. Formal expressions can 

indeed be written down for the non-valid cases, but the integrals are much 

more complicated, and the wake potentials for a given mode do not separate 

neatly into a product of an s-dependent factor and a factor which depends 

only on r. 

- Note that Eqs. (5a) and (5b) are related by 

LGV, 
--=vvIwz . 

C% 
(8) 

. This relation between the longitudinal and transverse wakes is sometimes 

termed the Panofsky-Wenzel theorem. 
10 It was originally derived to calculate 

- _ the transverse momentum kick received by a nonperturbing charge traversing - 

a cavity excited in a single rf mode. 

Table III 
Cases for which Eqs. @$) and ( $J ) give the wake potentials in the limit u = c 

- 3 Case Eq. (#Jb) Valid 
for W, for WI 

(a) Test charge and driving charge No No 
follow different paths in a closed 
cavity of arbitrary shape. 

_ _ _=_ 

- 

(b) Test charge and driving charge 
follow the s&me path in cavity o6 
arbitrary shape. 

(c) Velocity v is in the direction 
of symmetry of a right cylinder 
of arbitrary cross section. 

Yes No 

Yes Yes 

(d) Both driving charge and test 
charge move in the beam tube 
region of an infinite repeating 
structure of arbitrary cross section. 

Yes Yes 

(e) Both particles move near the 
axis of any cylindrically 
symmetric cavity. 

Yes Yes 

- 



The wake potential formalism, using properties of the charge-free 
a. 

Cavity modes, *makes it possible to calculate useful quantities for the 
. 

charge-driven cavity. An important example is the longitudinal wake 

potential for the case in which the test charge and driving charge follow 

the same path. Equations (5a) and (6a) reduce to 

0 s<o 

W,(r, s) = c k,,(r) cos y X 1 s = 0 
n 2 s>o 

(9) 

- 

The potential seen by the charge itself is 

V(r,O) = -q WZ(r,O) = -qc h(r) 
n 

Vn’nr,O) = Vn(0) =--, k, . (lob) 

The energy left behind in the nth mode after the driving charge has left the cavity 

is 

U~==-qv,(o)=q2k, . 

(loa) 

(11) 

The parameter k, is the constant of proportionality between the energy lost to 

the nth mode and the square of the driving charge, hence the name loss parameter 
or loss factor. 

9 
Note from Eq. (Xq that an infinitesimal distance behind a driving point 

. _ _T_ charge the potential is retarding for the nth mode with magnitude 
L. - .- ic 

- 
V,JO+) = 2V,,(O) = -2q k, . (KJa) 

As a function of distance s behind the driving charge, the potential varies as 

; 
- 

Vn(s) = vn(o+) wns cos <- = -2q k, cos wx . (12%) 
c 
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i Equation (12a) expresses what is sometimes termed the fundamental theorem ,- . . __ 
11 

. of beam loading: the voltage induced in a normal mode by a point charge 

is exactly twice the retarding voltage seen by the charge itself. 

The case of a periodically repeating structure is of obvious importance 

in accelerator design. Although real periodic structures are of course never 

infinite, practical structures at least a few periods in length seem to 

fulfill condition (d) of Table III. Thus the wake potentials can be computed 

by a summation over normal modes. For the case of a cylindrically symmetric 

structure, all modes depend on the azimuthal angle $ as e im$ . The wake 

potentials can then be written8 for s > 0, 

- 

~vzrn = 2 (;)” (;)-cosmc#a~k$,$ cosk$!? 
n 

WI, =2m (z)” (b)m-l (ic08mr$- Jsinmd) 

c 
xc 

k(“) wnns m(L sin- . 
n w,,alc c . 

(13a) 

Cl=) 

Here i and 4 are unit vectors and kc”) ’ mn 1s the loss factor per unit length calculated 

at r = a, where a is the radius of the beam tube region. That is 

kp) ~ lEZdr = a)]2 
4un 

where E zn is the synchronous axial field component for the nth mode and 

_ _=. u 
-n 

is the energy per unit length. The longitudinal cosine-like wake potential 
. - 1. 

per period for the SLAC structure is shown in Fig. 5. Note the very rapid 
- 

fall-off in the wake immediately behind the driving charge, from a peak wake 

of 8 V/PC per period at time t = s/c = O+. The wake seen by a point charge 

would be just one half of this wake, or 4 V/PC. The sine-like transverse dipole 

(m = 1) wake potential for the SLAC structure is shown in Fig. 6. This figure 
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illustrates the fact that the total wake potential is obtained by summing a 

finite number of modes that can be obtained using a reasonable computation 
a ,+- _. -. 

time,and then adding on a so-called analytic extension to take into account . 

the contribution from very high frequency modes. Details are discussed in 

Ref. 12. 

Transformer Ratio for a Point Driving Charge 

The transformer ratio is defined in this case as the maximum accelerating 

gradient anywhere behind the driving charge diodes by the retarding gradient 

experienced by the driving charge itself. In a single mode it is seen from 

Eq. (12) that for a single mode the transformer ratio R is 
- 

R = 
Max [V,(s) 1 vn co+) 

VJO> = Vn(O> = 2 * (13) 

. It is readily shown that this factor of two also follows directly from conser- 

vation of energy. 11 We will show later that this restriction on the transformer 

'- ‘ratio for a point charge does not necessarily apply to an extended driving - 

charge distribution. 

A physical wake for a real cavity is a summation over many modes. 

Perhaps the modes might add up to produce a transformer ratio greater than 

two, even for a point charge. We note, however, that the wake for each mode 

varies with s as W = 2kn cos(wns/c>. At s = O+ the wakes all add in n 

phase, and the sum of the wakes for all the modes gives a retarding potential 

_ _ _T_ which is exactly twice the retarding potential seen by the driving charge 

itself at s = 0. At any value of -s where the net wake is accelerating, the 
- 

cosine wakes for the individual modes can never do better than add exactly 

together in phase, as they do at s = 0 + . Thus 

(W(s)l 5 -pf,(s = o+) = 2y343 = 0) , 

?I n (14) 
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and the transformer ratio for a real cavity with many modes, driven by a point 

charge, is equal to or less than two. In practice it will be considerably less 

a than two, since the modes will never come close to adding in phase anywhere . . 
-- + except at s = 0 . . It is easy to show that Eq. (14) also follows from con- 

servation of energy. 13 

If the driving charge and the accelerated charge follow different 

paths through the cavity, the situation becomes more complicated. We first 

note from Eqs.(5) and (6) that the longitudinal wake potential is unchanged 

if the paths of the driving charge and the test charge are interchanged. If 

we now apply conservation of energy to two charges ql and q2 following 

different paths, we can show that 

I~~n(s)l = I~~Zl(~)l 5 2[rul(o) w2(o)11’2 , 

- 

where It’l2(s) is the wake along path 2 produced by a charge travelling on path 1, 

and so forth. If we define a transformer ratio Rl2 by i 

and similarly for R21, then for any value of s 

-.-.v. _ 

- 

R,2,2[$$“2=2[~]‘:2 

and 

R12 X21 I4 . 

Wake Potential in a Charge Distribution 

(15) 
- 

(17) 

_ _T_ Once the wake potential for a unit point charge is known, the potential 
L. 

at any point within or behind an arbitrary charge distribution with line 
- 

density p(s) = I(t)/c can be computed by 
co 

V(s) = - Wz (s'-s) p (s') ds' 

S 

(lb) 
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OF .?‘ t . . __ 
V(t) = - J 

Wz(t-t') I(t')dt'. (18b) 
-co 

Here W=(T) = Ws(s/c), where 'c is the time of delay after passage of the 

point driving charge. Similar expressions hold for the transverse 

potential within a charge distribution. Figure 7 shows examples of the 

net longitudinal potential, using the delta-function wake potential of 

Fig. 5 in Eq. (18a), for a gaussian bunch of unit charge in the SLAC struc- 

ture. - Note the reduction in amplitude of the net wake potential, over the 

supression of higher modes, as the bunch length increases. 

Let E_ be the maximum accelerating gradient behind a driving charge a 

distribution. It is useful to define three low parameters for the distri- 

bution as follows: 

KR = 

_..._ _ 
- Ka = 

K Y 
?J 

E2 

4;: 
Ea 
2q 

. . . 

(19a) 

(19b) 

(19c) 

Here u is the total electromagnetic energy per unit length deposited by 

the driving charge. The three loss parameters are related by kz = k k 
RY * 

For a single mode kR does not depend on the charge distribution, and kR = k . n 
_ .=.For a gaussian bunch interacting with a single mode, the loss parameters 

L. 

- 
ka and kU are given in terms of kg = kn by 

- f.lJ202 
k,(o) = kn e n t = kne 

-4lT29 x2 n (20a) 

-a2cr2/2 
k,(o) = kne = kne 

-2lTop2 n (20b) 
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f-or each mode. Thus as the bunch length increases, coupling to higher 

modes is rapidly suppressed by the exponential factor. For the SLAC 
. 

structure, 
kap 

= 0.70/V/pC/cell for the fundamental mode, where p is 

the cell length. The amplitude of the accelerating mode voltage per cell 

excited by a gaussian bunch with total charge q is therefore 

VI - = 2kap = 1.40 e-2n2a=/X: 
9 

V/pC/cell . 1 

For o /ho = 0.05, 0.20, and 0.40, this gives Vi/q = 1.33, 0.64 and 0.06 

- V/pC/cell. These values agree well with the computer calculation shown 

in Fig. 7. 

The plot for a/X0 = 0.4 in Fig. 7 also illustrates the phenomenon 

of auto-acceleration, in which fields induced by particles at the front of 

. the bunch can accelerate particles at the tail of the same bunch. 

-. 
Transformer Ratio and Efficiency for a Charge Distribution 

The transformer ratio for a charge distribution is 

E 
R=a, (21) 

where Ea is the maximum accelerating gradient behind the bunch and Em the 

maximum retarding gradient within the bunch. It is useful also to.define 

_ _ _T_ an efficiency for the stransfer of energy from the bunch to the energy per 
- ..~ - 
unit length u is the wakefield. - 

- 

U 
rl =- . 

q “, 

(22) 
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Equations (21) and (22) can be combined with Eq. (19) to obtain 

i ,?- . . __ We ’ 

. 
k=R a 

EaR 
q ~ = 4qkR ' 

WAKE POTENTIALS ON A COLLINEAR PATH WITH A CHARGE DISTRIBUTION 

In'the last chapter the wake potential due to a point driving charge 

traversing a cavity was considered under rather general conditions. We now 

confine our attention to the case in which the driving charge and test 
- 

particle follow the same path through the cavity or structure. 

For a point charge we found previously that 

__ 
V(t) = -2qxk,, COSW,,~ . 

n 

If such a charge having initial energy qVo is just brought to rest by the retarding 

wake potential at 1 = 0, then Vo = q C k, and 
n 

2Vo C k, cos w,t 
V(l) = - “Ckn . 

- 

(24) 
n 

If the structure .supports only a single mode, then V(t) = 2Vo cos w t. n 

However, a physical bunch, even a very short bunch consists of a large number 

of individual charges which are not rigidly connected. Thus the leading charge 
G 

_ _ _T_ in such a physically real bunch will experience no deceleration, while the 
L. 

trailing charge will experience the full induced voltage, or twice the average 
- 

retarding voltage per particle (assuming the bunch length is short compared to 

the wavelengths of all modes with appreciable values of kn). The wake 

potential for a short charge distribution extending from t =.O to t = T, 

interacting with a single mode, is illustrated in Fig. 8a. Within the bunch 
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the potential is given by 

t 
i ,-- . . -. V(t) = -T I(f) &' , ;~ J . 0 

(25) 

where- V 0 is the average energy loss per particle in the distribution. 

This can be seen by substituting Eq. (25) in 

T 

v, = v(t) = i J v(t) I(L) dt , 
0 

and working out the double integral. Note from Eq. (25) that for t = T 

at the end of-the distribution V(T) = -2Vo. Therefore V+ = 2V 
m 

o, " = I-2voj= 2vo 
- - 

and the transformer ratio is R = Vi/V- = 1. m 

The potential in and behind a long charge distribution is shown 

schematically in Fig. 8b. We consider first the case for a single mode. 

From tiq. (18b) with W=(t) = 2kn cos tint, 
-. 

t 
Vn(t) = -2k, 

/ 
I@‘) cosw,(t - t’) & . (26) 

--to 

Assume now that the bunch extends in time from -T to +T. Within the bunch 

(-T < t < T) the retarding potential is 

t 

J 
t 

Vn-(t) = -2k, COSW,~ I(d) cos w,t’ dt’ + sinw,t I(f) sinw,t’ dt’ . 
-T 

/ 
-T I 

Following the bunch (t' >-T) the accelerating potential is- _ _ _T_ 
L. - 

I T T 

V,,+(t) = 2k, cosw,t J I(t) cos w,t’ dt’ + sin w,t J I(t) sinw,t’ dt’ 
-T -T I 

(27) 

(28) 
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If the bunch is symmetric about t = 0, the second integral in Eq. (28) 

vanishes, and V.+(t) reaches a maximum value given by 

. T 

v,’ = 2k, 
J 

qt’) cosw,t’ dt’ . (29) 
-T 

The retarding potential at the center of such a symmetric bunch is given 

0 

V-(O) = -2k, J I(C) cos w,t' Ia' = -5 v,' . 
-T 

(30) 

If V-(O) happens also to be the maximum (absolute) value of the retarding 

potential, then If(O) 1 = v- m' and the transformer ratio is R = Vi/V- = 2. m - - 
If V-(O) is not a the peak of the retarding potential, then Vi > IV-(O)] and 

R < 2. Thus for symmetric bunches interacting with a single mode, the trans- 

former ratio cannot exceed two. This upper limit is reached only if the 

maximum retarding potential is reached at the center of symmetry of the 
_. 

distribution. Otherwise, the transformer ratio is less than two. If the bunch 

=.--.- -is not symmetric, the preceeding argument does not apply. The transformer ratio - 

can then in principle be arbitrarily large, as we will see shortly. 

The limitation R 2 2 tends to apply for symmetric bunches even in the 

case of a physical structure with many modes. For example, in Fig. 7, showing 

gaussian bunches in the SLAC structure, the transformer ratios for a/X0 = 0.05, 

0.20, and-O.40 are seen to be 1.4, 1.9 and 1.4 respectively. It is possible 

in principle to imagine a structure in which several modes cooperate to 

14 _ produce R > 2 for symmetric bunches. However it is not probable that the _T_ 

1.imxation R = 2 can be exceeded by'.a significant amount in any physically 
- 

realizable structure. 
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Symmetric Driving Bunches 

,=- 
Let us now turn to the case of an asymmetric driving bunch. Take as 

. 
an example a triangular current ramp in a single mode cavity. Let I(t) = Iwt 

for 0 < t <T and I(t) = 0 otherwise. For simplicity let the bunch length be 

T = 27~N/w, where N is an integer. Then within the bunch 

t 

V-(t) = 2kIw J 2kI 
t’cosw(t - t’) dt’ = -7 (1 - coswt) , 

0 

whereas behind the bunch 

T 

V+(t) = 2kIw J t’cosw(t - t’) dt’ = 2kIT sinwt . 
0 

Thus V: = 4kI/w, VG = 2kIT = 4rkINlw and 

v,’ R,= F = aN 
m 

__ 

(31a) 

(31b) _ 

(32) 

The wake potential for a current ramp of length N = 2 interacting with a 

- single mode are shown in Fig. 9a. 

In a real structure with many modes, one might expect that the trans- 

former ratio will be less than that given by Eq. 32. The potential excited 

in the SLAC structure by a current ramp with N = 2 is shown in Fig. 10. 

Within the bunch -the retarding potential has a behavior close to the single 

mode calculation, f(t) QJ 1 - cos Wt. However, some energy goes into higher 

modes, as is evident by ripples on the cosine wave behind-the bunch. This 

--'causes a degradation of the transformer ratio from the single mode prediction L. 

R = 277 to R = 4.86. - The degradation worsens as the bunch gets longer, as can 

be seen in Fig. 11. 
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The efficiency for energy extraction from a driving bunch extending 

from t = 0 to t = T in which all of the electrons have the same energy 
i ,>- . . -. 

eV 0 = eV- is . m 
T 

v=-L 

9vG / 
I(t) V-(t) dt . 

0 (33) 

For a linear current ramp interacting with a single mode, substitution 

of Eq..(31a) together with appropriate expressions for I(t), Vi and q 

into Eq. (33) g ives an efficiency of 0.5 if UT = 2~rN. A higher efficiency 

and a higher transformer ratio could be obtained if the retarding potential 

- could be made as flat as possible across the current distribution. In the 

limit V-(t) = V- = constant, Eq. (33) gives an efficiency of 100%. In Ref. m 

14 it is proven that the potential can be exactly flat only for a current 

distribution which consists of a delta function followed by a linear current 

_. ramp, where the proper relation exists between the value of the delta function 

and the slope of the current ramp. In this limit the transformer ratio is 

14 - given by 

R = [l + (~TN)~] ‘I2 
, 

f 
Delta function plus 

current ramp, 

single mode (34) 

Here N = wT/27~ = CT/X, and N can now take non-integer values. For large 

N the transformer ratio approaches R C+ 2rN and the efficiency approaches 

100%. The transformer ratio for the delta function alone (N-to) is R = 1, as 
_ 

ST_ we know is the case for all short bunches, and the efficiency is 0.5. An 
L. 

approximation to this distribution, in which the wake potential is driving - 

negative by an exponentially decaying spike and then held constant by a 

rising current ramp, is illustrated in Fig. 9c. 

- 
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A third distribution of interest is a linear current ramp preceeded 

I 
20 

i by a quarter wavelength rectangular pulse. The response to this distribution 
. 

is shown in Fig. 9b. The transformer ratio in the case of this "doorstep" 

distribution is 14 

l-;+2xN 
2 Ii2 )I (35) 

In the limit of large N transformer ratio again approaches R % 2~rN. For 

long bunches the transformer ratio and the efficiency are again approximately - 
- 

twice that for the linear current ramp alone. Except for particles in the 

first quarter wavelength of the bunch, all particles experience the same 

retarding potential. At the end of the doorstep (N = l/4), R = $?and 

T-j = 2/n. 

As a numerical example, consider an accelerator operating at h = 1 cm 

__.- with a desired gradient of 200 mV/m. A SLAC-type structure at this wavelength c 

would have a loss parameter on the order 2 x 1Ol5 V/C-m. With a transformer 

ratio of 20, driving bunches with an energy of 100 MeV would need to be injected 
^ 

every ten meters. The charge per bunch as given by Eq. (23b) is 

EaR 
q = 4kn - = 0.5 1Jc , 

assuming that most of the energy goes into a single mode and that the efficiency G 

----i-s close to 100%. The bunch length is approximately RA/@ = 3.2 cm or 100 ps, L. - ..~ - 
and the peak current at the end of the bunch is 10 kA. Many practical questions 
- 
must be addressed, such as the feasibility of creating properly shaped bunches 

with very high peak currents. The deflecting fields induced if the driving bunch 

-- 

wanders off the axis of the structure are also a serious problem. 
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The Plasma Wakefield Accelerator 

,-- 
The plasma wakefield accelerator is another type of collinear acceleration 

-. -. 

. scheme in which the metallic rf structure is replaced by a plasma medium. 

If the plasma is cold, one expects that only a single mode, the oscillation 

at the plasma frequency, will be excited. Thus a plasma is.in essence a 

single mode structure inwhich the axis of symmetry is defined by the driving 

beam. 

Figure 12 shows the result of a simulation 15 in which a triangular 

bunch one wavelength long is injected into a plasma. The transformer ratio 

as measured from the figure is R XT, in agreement with the theoretical 

prediction for a triangular bunch given by Eq.( ). 

Figure 12: Wakefie Id of a tri angular bunch in a plasma, 
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Transformer Ratio For A Ring Beam 

Consider first a circular bunch of radius a passing between two - 

parallel metallic planes spaced apart by a distance g % a. The energy 

deposited between the two plates, initially contained in a volume Vl % T a2g, 
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will at some later time t be distributed over a spreading ring-shaped 

r.egion of radius b = ct, thickness % 2a and volume V 2 Q, (2nb)(2a)g = 4nabg. 

Thus the ratio--of field strengths will be 

vl 
‘3 4 

Rl % T (1 0 =$ . 

This also gives the approximate transformer ratio at transverse distance 

b from a single bunch passing between the two plates. The transformer ratio 

for a ring-shaped beam of radius b can now be obtained by considering that 

the ring is made up of n = A /A = 4bfa beamlets, giving for the net 21 
'/2 

- transformer ratio R = n Rl = 2(b/a) : 

-RF-L J-L- 
. 

- .- . 
- 

. . . ” ’ 

3unch I 
- - 

- Second- 
-Bunch r - - 

-L. 

- 

- MY-E r 1 I-- 

Figure 14: Qualitative picture of the field induced by a ring bunch 
passing through a pillbox cavity. 
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If now an outer cylindrical wall is added, as shown in Fig. 14, the energy 

that would propagate outward away from the axis is directed toward the axis, 

ghis increase-R by a factor of II- 2 , giving 

R = 2(9 
% 

. 

This transformation is in agreement with that given by Eq. (3), introduced 

earlier for the switched radial transmission line, under the assumption ang. 

The Wakefield Transformer 

The wakefield transformer, illustrated in Fig. 2, consists essentially 
- - 

of a series of pillbox cavities, of the type shown in Fig. 14, having a ring 

gap near the outer radius for the driving beam and a hole on the axis for the 

accelerated beam. A wakefield transformer of this type was originally proposed 

by Voss and Weiland. 16 In reference 4 the transformer ratio is computed for 

a wakefield transformer of this kind with a = 2mm, b = 26 mm and g = 1.5 mm, 

using a particle tracking code. The peak energy gain on the axis is calculated 
- .- _ 
- 

to be 20 times the average energy loss in the ring driving bunch. However, the 

energy gain on the axis divided by the peak energy loss in the driving bunch 

. _ (our definition of transformer ratio) is about 12. Putting the transformer 

dimensions into Eq. (18) we obtain R = 10, in substantial agreement with the 

results from the tracking code. 

An experiment is underway at DESY (Deutsches Elektronen Synchrotron 

in Hamburg) to test this type of crucial wakefield transformer principle as L 
_ _ -3. 

- a-means to obtain high accelerating gradients for future linear colliders. 

- The eventual goal is a collider in the 1 TeV energy range operating at a 

gradient on the order of 200 MV/m. In the prototype experiment presently in 

progress, a ring-shaped bunch with a charge of 1 UC will be injected at 

8 MeV into a wakefield transformer to accelerate a second bunch from 8 MeV 
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to over 50 MeV at a gradient of 100 MV/m or greater. Details of the experi- 

ment, and the current status, are given in Refs. 3, 4 and 17. 
i ,=-. . . -. 

. 

PROTON WAKEFIELD ACCELERATION AND TEST FACILITIES 

In the last section it was noted that the transformer ratio E , 

defined as the (unloaded) energy gain in the accelerated bunch divided by 

the average energy loss in the driving bunch, is typically larger than the 

transformer ratio R based on the peak energy loss in the driving bunch. 

For relativistic electrons the ratio R would normally apply, since a driving 

bunch of electrons injected with uniform energy would deteriorate rapidly 
- 

once electrons in the region of peak decelerating fields have been brought 
- 

to rest. For non-relativistic particles (few hundred MeV protons) the 

situation is different. The particles can move back and forth within the 

bunch; with the lead particles and trailing particles continuously changing 
_. 

places. By this process of "mixing", it is possible for all of the particles 

-to experience the average decelerating gradient. This is the basis for the 
- 

proton wakefield accelerator (WAKEATRON) proposed by A. Ruggiero. 18 

For a gaussian bunch interacting with a single mode with loss para- 

meter k 0 ' it was shown previously that the accelerating gradient behind 

the bunch is 

Ea = 2 Q koe 
-w20:/2 

the average loss, on the other hand, was shown to be _ _ _T_ 
L. 

- -u2c12 
E- = a/Q = Q k. e t - 
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Therefore 

i ,?- . . . 

E 
Rra=2e 

w2$/2 
. 

E- 
(37) 

. 

For a gaussian or very symmetric bunch it was shown that the transformer 

ratio R Z E /E-m a 5 2, while from Eq. (13) we see that the transformer 

ratio E based on the average energy loss in the driving bunch, can in 

principle, increase without limit. On the other hand, the charge required 

in the driving bunch must also increase as R increases: 

- 
Ea 

Q = K e 
w%s:/2 Ea E 

= 
4k ' (38) 

0 0 - 

A facility (Advanced Accelerator Test Facility") has just been completed 

at Argonne National Laboratory to test some of the wakefield acceleration 

techniques that have been described here. A 22 MeV electron linac can produce 
. . . -- 

driving bunches of 1 - 2 X 10" electrons with pulse lengths of 5 - 150 ps and 

an emittance of 7 1T-mm-mr. A second bunch (witness beam) can be injected to 
- .- _ 
- 

probe the longitudinal and transverse-wake potentials in the range 0 - 2.4 ns 

behind the driving bunch. Initial experiments to test the WAKEATRON and 

plasma wakefield accelerator techniques are currently in the planning stage, 

and tests of other new acceleration concepts have been proposed for the future. 
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Figure 1: Conceptual diagram of an Accelerator. 
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Figure 4: A driving charge Q, moving at constant velocity V 
parallel to the z-axis, enters a closed cavity at A(r',z=O) at 
t=O and leaves at B(r',z=L). A non-perturbing test particle T 
also moves at the same velocity v, but at transverse position r 
and at longitudinal distance s behind Q. 
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Figure 5: A ‘longitudinal delta-function wake potential per 
cell for the SLAC disk-loaded accelerator structure at time 
t=s/c behind a point driving charge. 
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Figure 8: Potential in and behind a charge distribution interacting 
with a single mode for (a) a short bunch, and (b) a long bunch. 
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Figure 9: The voltage induced by three different asymmetric 
current distributions interacting with a single mode. 
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Figure 10: The potential induced by a linear current ramp 
interacting with the modes in the SLAC structure. 
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-Figure 11: The transformer ratio for a linear current ramp 
in the SLAC structure as a function of bunch length. The 
dashed line gives single mode results. 
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