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ABSTRACT 

. 

We present the exact solution to the problem of diffusion in an arbitrary 
hierarchical space. We derive rigorous upper and lower bounds for the dynamic 
exponent describing the decay of the autocorrelation function. We show that 
the upper bound is saturated by both uniformly and randomly multifurcating 
hierarchical trees, and identify a class of highly unbalanced trees that saturate 
the lower bound. We conclude that the speed of relaxation is a measure of the 

--- 

complexity, or lack of self-similarity of the underlyng tree. We point out that -- - 
complexity may be revealed by the temperature dependence of the dynamic 
exponent, and in particular by the nature of the transition from exponential to 
power-lay decay. 
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1. INTRODUCTION 

; 
A large variety of natural and artificial systems have an exact or approximate 
hierarchial structure [Simon (1962), Rammal et al. (1986)l. Examples range 
from the reporting schemes in social organizations, to the way macromolecules 
are built out of atomic constituents or organisms out of cells, to the way 

- - individual spins can be collected into larger blocks at the critical point of 
ferromagne ts. More recently it has been realized that a hierarchical 
organization of states appears spontaneously in the low-temperature phase of 
the mean-field theory spin-glass [Sherrington and Kirkpatrick (1975), Mezard - 
et al. (1984)], and it has been conjectured that the same holds true for glasses, 
hard combinatorial optimization problems [Kirkpatrick and Toulouse (1985), 
Bachas (1985), Bouchaud and Le Doussal (1986), Sorkin et al. (1986), Fu and 
Anderson (1986)], the conformational substates of proteins [Ansari et al. 
(1985), Stein (1985)], and other complex frustrated systems. 

- 

- 

A common feature of all these systems is that because of the existence’of many 
different time scales, they appear to relax slower than exponentially when 
perturbed [Kohlrausch (1847), Williams and Watts (1970), Palmer et al. 

(1984)]. To model this behavior several authors have considered diffusive 
processes on hierarchical structures. The earliest variant proposed by 
Huberman and Kerszberg (1985) and further analyzed by [Teitel and Domany --- 
(1985), and Maritan and Stella (1986)], consisted of a particle diffusing over a 
hierarchical array of energy barriers in one dimension. Allowing for long-rang 
hoppings leads to the problem of diffusion in a truly ultrametric space, which 
has been analyzed by a number of authors [Schreckenberg (1985), Ogielski and 
Stein (1985), Paladin et al. (1985), Qiang (1986)]. Finally, a third related 
process is the random walk on the backbone of a tree, which has been used to 
model the observed stickiness in the chaotic transport of particles [Meiss and 
Ott (1985), Grossman et al. (1985)l. 

A_major limitation of all these treatments is that they only apply to the simple 
case of uniform hierarchical structures, described by trees whose branches at 
any given hierarchy-level are totally indistinguishable. The intrinsic self- 

- .- similarity of such trees allows for the application of renormalization group 
techniques, so that ultradiffusion is in this case only a variant of the 
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extensively studied diffusion on fractals [deGennes (1976), Alexander and 
Orbach (1982), Rammal and Toulouse (1983)]. Hierarchical structures need 
not, however, be self-similar. For instance, it is hard to imagine how the 

metastable states of a spin-glass could be represented by the indistinguishable 
leaves of a uniform tree, when different free energy valleys are known to carry 
different weights [Mezard et al. (1985)l. A n in a more general context, it is d 

- _ precisely the lack of self-similarity, or the appearance of different interactions 
at every new level of the hierarchy, that accounts for the complexity of 
hierarchical systems such as biological organisms and social organizations. It 
is therefore interesting to determine how hierarchical dynamics may depend on _ 
the underlying tree structure. This is the subject of this paper, a summary of 
which has already been published elsewhere [Bachas and Huberman (1986)]. 

We will restrict ourselves here to the problem of diffusion in a truly ultrametric 
space. In section 2 we will solve this problem exactly, without making any 

- assumptions concerning the structure of the underlying tree. We will obtain, 
in particular; a closed expression for the average autocorrelation function, 
whose asymptotic decay describes the rate of relaxation of the system. 

- 
A central thesis of this paper, is that the dynamic exponent v that characterizes 
this asymptotic decay has the qualitative features of a measure of physical 
complexity introduced by Huberman and Hogg (1986): namely it is sensitive to 
the absence of self-similarity, rather than the randomness, or detailed 

-. - information content of the underlying tree. To be precise, we derive a rigorous 
upper bound for v, and show in sections 3 and 4, that it is saturated by both 
uniformly and randomly multifurcating trees. Such trees are therefore optimal 
in that they lead to fastest relaxation. In section 5 we also derive a lower bound 
for v, and identify a class of non-self-similar unbalanced trees that saturate it. 
All these results have recently been shown to hold also for the critical 
percolation threshold by [Bachas and Wolff (1987)1, which can be related to the 
complexity of games. 

- 
-A corollary of our results is that in thermally activated processes the 
temperature dependence of the dynamic exponent is not universal, but varies 

- .- with the underlying tree structure: in particular the transition to instability is 
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continuous for self-similar trees, and discontinuous for unbalanced ones. This 

is explained in section 6 which also contains some concluding remarks. 

-- 

- 

:: ;:i 

- 

-. - 
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2. THE GENERAL SOLUTION 

Ultradiffusion is described by the dynamical equation 
-. 

- 

dP, 1V 

1 dt=,+ lJ E. pJ 

(2.1) 

where i=l, . . . ,N labels the states of the system, Pi(t) is the probability of 
finding the system at state i at time t, and the symmetric transition matrix c 
satisfies the ultrametric property 

(2.2) 

- for any three distinct states i, j and k. If E represents hopping rates between 
sites i and j, E-q. (2.2) implies that the two smallest hopping rates out of a triplet 
are equal. The diagonal transition elements are fixed by the requirement that 
probability be conserved, i.e.; 

- 

“ii= - L LJ 
Jti 

(2.3) 

-. - The ultrametric property (2.2) is equivalent to saying that the states of the 
system can be represented as the leaves of a generic tree, where the hopping 
rate between any two of them, say i and j, is only a function of the nearest 
common ancestor A of i and j on the tree 

Eij = Eji = EACij, 

with cA decreasing monotonically as one climbs along any path towards the 
‘. root. By appropriately stretching the tree, we may always assume without loss 

of generality that cx = exp[-h,], where h, is the height of the branching point A 
- .- from the bottom of the tree, as shown in Figure 1. We shall refer to such a tree ,, 
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A log n(h) 1 
s(h)= - 

=ah bgin(:hih,I 
(2.4a) 

Ah 

6 
* -‘. -. 

as a “metric tree”, to stress the fact that both its topology and the heights of its 
-branches matter. There is one hierarchical transition matrix and one 
ultradiffusion problem for every metric tree. 

An important remark is in order here: although the assumption of symmetric 

transition probabilities may seem overly restrictive this is not the case, since 
_ we can effectively increase the weight of any state by letting it multifurcate 

appropriately at low altitude as shown in figure 1. 
- 

Before proceeding to an exact solution of equation (2.1), let us first introduce 
some useful notation and te&&nology: we shall denote by B, the unique nth 
ancestor of any branch-point or tree-leaf B (B,=B by convention, B, is the 
father, B; the grandfather, and so on, up the the patriarch or root). N, will 
stand for the total number of final descendants or tree-leaves generated by B 
(Ns= 1 if B is itself a leaf), and S, for the number of sons, or immediate 
offsprings. We also introduce the characteristic function 

XI(B) = 1 if i 1s a descendant ofB 
0 otherwzse 

where i=l, . . ., N runs over the leaves of the tree. For convenience we will 
assume that branchings may only occur at integral multiples of some minimum 

--- 

adjustable height interval Ah, and will occasionally refer to all branches at 
height h =m*Ah as the mth generation. If n(h) is their total number, we 

define the silhouette slopes, which measure the rate of population growth at 
height h by: 

-. - 

We shall refer to its average asymptotic value - 
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h’ 

S 
l im h 

S’h%++m (h’-h) 
(2.4b) 

as simply the tree’s silhouette. Large and small values of silhouettes 

correspond to asymptotically fat and thin trees, respectively. 

We are now ready to obtain the complete set of eigenvectors and eigenvalues of 
any hierarchical transition matrix C. To this end consider first the action of c 

~_. on the characteristic function of some branch-point or tree-leaf B: 

$ ei;XJ (B)=- 5 
j=l 

J=l cti [ I-X;iBl]= 

-h 
NB. e 

(A( z,B, if XI(B) =O 
= 

root 
- 1 (NB -NB ). eehBn if Xi(B)=1 

II=1 II n-l 

(2.5) 

--- 
where A(i,B) is the nearest common ancestor of i and B, and by slight abuse of 

-- - notation 

root 
1 

n=l 

stands for a summation over all of B’s ancestors, up to and 
including the root. 

We next define the vector 

V$B,$= j) X,(B) - No I 2-x (B7 
- 

B B 

(2.6) 

for any two brothers B and .B. Since B n = Bn for all n >O, and A(i,B) = A(i,B) for 
- .- any i that is neither a descendant of B nor of B, we easily deduce from Eq. (2.5) I 
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that V(B,B) is an eigenvector of c, with eigenvalue A that only depends on the 
common father of B and fi, i.e.: 

1 -hB 
h(B,)=- - = -N, e ’ n 

zB1 
1 n=2 

(2.7) 

- 
Consequently, there are +SB,(SB,-~) degenerate eigenvectors of type (2.6), - 
corresponding to all pairs of sons of Bl. A convenient basis for the subspace 
they span consists of the following vectors, one for each son of Bl: 

X;(B)- +- XI (B,) 
B1 

(2.8) 

- These satisfy the linear relationship 

-1 N, V(B) = 0 
. . -brothers B 

- 

so that only (SB,-1) of them are linearly independent. Since 
--- 

-- - 1.’ (S ,-1)=&l 
branch poznts B 

there is a single missing eigenvector of the NxN transition matrix e. This 
corresponds to the steady-state of equal probability for all sites, which we 
denote by 

(2.9) 

Going back to equation (2.1), consider a particle that starts out at-time zero at a 
- .- given tree leaf L. Writing the initial condition as 
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root 
Pc(t=0)=6Li= x vc by 

n=O 

we immediately deduce that at later times 

root -t/CL 

P,(t)= z Vi (L,- 1) e 
1 

“+; 
n=l 

(2.10) 

From- this we can exactly calculate any quantity of interest. We will 
concentrate on the autocorrelation function, i.e., the probability that the 
particle returns to its point of departure; this reads 

- root 
c 1 1 (,(t)=Jj + 1 N-- e 

) 

-t/XL 
n 

n=l L 
n-l 

NL 
n . . 

(2.11) 

We will be mainly interested in this quantity averaged over all initial 
conditions L, which can be written: --- 

PW= ; + rB 

branch pocnts B 

where, for later ease of reference, we recall that 

1 -hB 
-hB 

-=N, e e ’ 
- xB n-l 

(2.12) 

(2.13) 

From Eqs. (2.12) and (2.13).it easily follows that for finite trees the decay of the 
- .- autocorrelation function to its equilibrium value is always exponential, and - 
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dominated by the largest characteristic time, 

1 +h 
root 

lJ =-. e 
root N 

For infinite trees, on the other hand, either one or both of the following 
- - scenarios may take place: a) Some characteristic times may vanish, indicating - 

that relaxation is unstable in part or all of the tree, which can thus be collapsed 
to a single state, and b) some characteristic times may accumulate to infinity, 
leading to slower than exponential relaxation at long times. The leading 

~_. asymptotic behavior of the autocorrelation function is in this case determined 
by the asymptotic behavior of the spectral density 

- 

s,-1 
p(t)= CL - F(MBB) 

branch points B 
N 

(2.14) 

as -c-+00. In the following sections we will analyze this behavior for trees on 
which relaxation is everywhere stable. . . - \ 

-- - 

-. - 
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3. UNIFORM TREES 

; 
We begin with the simplest example of an infinite, regular, uniformly 
multifurcating tree, for which each member of every generation produces b 
offsprings. This is shown in Figure 2. Some of the results of this section have 
already been derived in [Schreckenberg (1985), Ogielski and Stein (1985), 

- _ Paladin et al. (1985), Qiang (1986)]. If Ah is the height interval between _ 

successive generations, the silhouette, (eqs. (2.4 a,b)) is given by 

(3.1) 

Using the fact that NB~= b”-N,, we can easily calculate from Eq. (2.13) the 
inverse characteristic time corresponding to any branch point B of the mth 
generation, with the result 

. . 
- 

provided e ah> b, that is s< 1. For sz 1 all characteristic times vanish and 

relaxation is unstable. Assuming s< 1, we finally obtain the autocorrelation - 
--- 

function, Eq. (2.12), in the form 

--  -  

6  

where 

--v 
t 

unrform (3.2a) 

S 
V =- 

untform l-s 

- 
-and 

_ -- 

(3.2b) 
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(3.2~) 

with the corrections to the asymptotic behavior (3.2a) falling off exponentially 
at large t [Erdelyi (195611. 

Note that, in contrast to the prefactor D, the dynamical critical exponent 
vuniform is only a function of the silhouette and is therefore invariant under 
b+ba, Ah+a-Ah. For instance, a tree that tetrafurcates at every unit height 
interval has the same power law decay as one that bifurcates every half unit 
interval (see Figure 2). One may also relax the condition that the branching 
ratio and height intervals be generation-independent (but still insist that all 

- members of a given generation be indistinguishable). By appropriately 
bounding p(t) from above and below, it is straightforward to show that if the 
silhouettes can be defined and lies between 0 and 1, the dynamic exponent is 
still given by expression (3.2b). The prefactor D however, can in this case 
acquire oscillatory and/or logarithmic time-dependence. 

By allowing non-constant height intervals among successive generations, one 
can also study the limiting cases of vanishing or unit silhouette. Indeed: (a) if 

- the height hm of the mth generation grows faster than linearly with m (so that 
s=O> the autocorrelation function decays slower than any power of time, 
implying a l/f-frequency spectrum (up to logarithmic corrections). We shall 
refer to such trees with vanishing silhouette as “brooms”; we will later show 
that ultradiffusion may lead to a l/f-like spectrum only when the underlying 
tree is a broom. (b) At the other extreme, the slowest rate of growth of hm 
leading to finite characteristic times is given by 

_ -h,= mlogb +alogm, witha>l 

It is clear that in this case s= 1, and the autocorrelation function reads: 
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where <(a, m+ 1) is the Riemann zeta function, c is a non-universal constant 
- - and D(t) decays slower than the leading stretched exponential. The asymptotic - 

behavior (3.3) is the well known Kohlrausch law. 

As opposed to the power-law.decay, both the Kohlrausch and the logarithmic 
relaxation processes seem less generic since they occur at special values of the 
tree’s silhouette. 

- 

- 

The expression (3.2b) for the dynamic critical exponent shows that fatter trees 
relax faster. In order to study the effect of the tree’s structure on dynamics, it is 
therefore reasonable to only compare trees with a fixed silhouette (thus 
avoiding a heavyweight-featherweight bout). We will in fact, restrict ourselves 
to trees with a fixed silhouette slope 0 <s(h) =s< 1. The following result then 
shows that stable relaxation is fastest on uniform trees: 

Theorem 1 (Optimality of infinite uniform trees) - The dynamic critical 
exponent of any tree with fixed silhouette slope: 0 <s(h) = s< 1 is bounded from --- 
above by.vuniform = s/l-s, provided there exist some x< 1, such that no branch 

-. - point B has descendants growing faster than ex(hs-h) with height. 

Remark: This assumption ensures stable relaxation everywhere on the tree. 
Indeed, if some branch-point B has descendants growing like e(hs-h) or faster, 
then relaxation among these descendants is unstable. The associated diffusion 
problem should therefore be reformulated on a new tree, obtained by collapsing 
the subtree generated by B to a single state. 

Eoof of Theorem 1: We first break the expression (2.12) into a sum over 
generations 



I 
14 

-- 
m=l B:hB=m. Ah 

- We then use the fact that the average of exponentials is larger than the 
exponential of the average to obtain 

~-. Am. etm 

where Am is the net population increase at the mth generation: 

Am= * x 
B:hB=mAh 

(SB-l)=N eMsmhh (esAh-l) 

(3.4a) 

(3.4b) 

. . 
- while 1;m-l is the average inverse characteristic time of the mth generation: 

--- 

-1 .1 
T =. 

m -- - A 
m 

(3.4c) 

Now, for any B belonging to a generation older than m, let d,(B) stand for the 
number of descendants of B at the mth generation. The assumption of stable 
relaxation ensures that d,(B)sex(hs-m.Ah). Using this, and Eq. (2.13) in (3.4~) 

one can obtain an upper bound for rm-l as follows: 

- .- 

B.h 
B 

f Ah(s&)T,’ = B h Trn nh N, e-hB (1-e-Ah) (dm-lo-dm(B’) 
B’ 

e-(m+n) Ah x(n+l)Ah e 
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(3.5) 
-1 4 T 

( c em(s-l)Ah 
m - 

-- 

with 

- 

~_. Using inequality (3.5) back into (3.4a) we finally obtain 

F(t)>(esAhBl) zl eesmAh qj[ -t. c em(s-LiAh] =E t-’ 

With 5 a constant, which completes the proof of our theorem Q.E.D. 

. . A possible application of this result is in hierarchical organizations, or - 
computer networks, in which information signals are transmitted through 
diffusion. What we have shown is that uniform structures are in this case 
optimal. Note however that our result concerns only the asymptotic behavior --- 

of the average autocorrelation function, and hence does not in general apply if 
-. - one is interested, in either a particular initial condition or in small finite trees. 

For the latter we can, nevertheless, prove a similar but weaker optimality 
result, as follows: 

Let T(M,B) be the class of all finite trees with M generations, and an average 
overall branching ratio b per generation. For a given tree T C T(M,b) order its 

characteristic times T;~ in decending order. We say that T1 relaxes faster than 
T2 if for their first non-matching characteristic times ~;B”‘<IB(~). Then 

- 
-Lemma 1 (Optimality of finite uniform trees). Among all trees in T(M,b) 

for which each member of every generation has at least two sons, 
the uniform tree relaxes fastest. 
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Proof The smallest inverse characteristic time ~~~~~~~~ b”e-“‘Ah is the 
same for all trees in T(M,b). Consider next the inverse 
characteristic times corresponding to the b members B(l), . . . Btb’ 
of the (M-11th generation: 

- 
-1 -(M-1)Ah + bM -M Ah 

=B(c) 
= N 

B(‘) e . 

These have in general different but non-vanishing multiplicities, since by 
assumption SB(i) > 1. Their sum 

i x-1 
B(L) 

= bM ,-tM-1)Ah + bMcbBIJ e-MAh 

r=l 

is a constant-in T(M,b). Hence, to maximize their minimum, they must all be 
equal, i.e., N,(l) =. . . = NB(b) - - b”-l; the proof of the optimality of uniform trees 

. . - can now be easily completed by induction. 

--- 

-- - 
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4. STRUCTURAL NOISE 

-- 
We now turn our attention to uniformly random trees, constructed by allowing 
the multifurcation number of every branch at every generation to be an 
independent random variable with probability distribution P(X). These can be 
considered as uniform trees, with branching ratio 

- 

II 

<x> = x p(X)X 

x=1 

per generation * and with some structural noise. Our main result is that such 
noise is irrelevant in that it leads to at most logarithmic modifications of the 
autocorrelation decay, and thus leaves the dynamic exponent unchanged, i.e., 

S 
V =- 

random 1,s 
; s= ;Log<x> -cl (4.1) 

The reader not interested in the technical details of the demonstration can skip 
-. - the remainder of this section. 

-*- If <x> is not an integer, it can be made into one by raising it to a power 
and appropriately resealing the inter-generation gap, as discussed in the 
previous section. 
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To start with; we briefly review some basic facts from the theory of branching 
processes [Harris (1963)]. Let X, be the number of descendants of a given node 
after n generations, and let PJx) be its probability distribution. This clearly 

satisfies the iteration equation 

- T- P(k). -t P ’ Pn(X) = L 
xl..ixk=l 

.-l(xl)~~~pn-l(xk)~ 5c x + . . . . +x 
k=l ’ 1 k i 

(4.2) 

In terms of the generating functionals 
_ 

G,(S) = 2 P,(X) s” 
x=1 

and since convolution amounts to multiplication, eq. (4.2) becomes 

GJs)=g GnmlW =g%) i J 
. . 

- 

where g(n) is the nth iterate of the generating functional g(s) ofp(X). 

Since g( 1) = 1 for normalization, we easily find that the average value of X, is _^- 
given by .’ -. - 

<Xn> = n= <X>n 

Define the random variable W, = X,-,/C X > n. The basic result we will need is 
that, provided the second moment of P(X) exists, W, converges as n--+00 with 
probability one and in mean square to a random variable W with finite 
variance, and with an absolutely continuous distribution p which satisfies the 

-sGtionarity condition that follows from eq. (4.2). 
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-- 

m 

p(w)= <x> 1 P(k), 
k-l 

co 

0 
dz,, . dzkwl P(‘l)-‘P(ik-1) 

- . p ( w<x> - zl.. - Zkel 
J 

(4.4) 

In words, this means that in a random branching process, the population has 
the expected exponential growth up to a random prefactor. 

~_. 

To illustrate these facts, consider the simple example of an exponentially 
decaying distribution given by 

P(X)= l-1 cx 
( 1 

for Xc2 + 
C 

where c < 1 and <X > = l/l-c. Its generating functional 
. . - 

(1 -c)s s 
g(s)= l-es = <x>-s(<X>-11) 

belongs to the class of fractional linear generating functionals, which are closed -. - 
under iteration. One therefore finds 

S 
G,(s) = 

<X>n -s(<XBn-l) n <X>“-1 
(4.5) 

from which we deduce that W, converges exponentially fast in n to a random 
variable with distribution p(W) = e-w. 
- 

. Going back to the problem of diffusion, we would like to average the 
autocorrelation function .over all trees with the appropriate probability 

- .- distribution. Since averaging over all trees automatically takes care of - 

--- 
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averagingover initial conditions, it will suffice to consider expression (2.11) for 
the autocorrelation function, which we rewrite for convenience as: 

m m 
P,(t)= 1 Sn= 2 Nil 

n=l n=l n-l 

- 

+ 1 N, -N, 
m>n m m-l 

(4.6) 

According to our previous conventions, the above summation runs over all 
branch-point ancestors of the initial leaf L. We may however, also take the 
summation to run over all generations, in which case L, denotes the member of 
the nth generation on the unique path from L to the root, and hI+,=n.Ah. If 
L, is not a branch point (i.e., if it has a unique son) then 

AN, = N, LN, =o 
n n n-l 

and L, makes a vanishing contribution to the autocorrelation function, as it 
should. --- 

The asymptotic behavior of the average autocorrelation function P(t) is 
determined by the large n behavior of the average summand S,; in order to 
perform this average, the trick is to note that S, only depends on the 
independent random variables: 

-aKd on all 
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w”,z % m+l 
form2n 

<X>m 

- 

whose probability distributions converge at large n to p(w) and 
P( 1)4(w) + p(w) respectively, where 

js(w”)=P(2) &?I + P(3) p*pm + 

with * denoting convolution of probabilities. This latter distribution follows 
from the fact that with probability P(1) no new line of descsndants other than 
the one leading to L emanates from Ln, in which case Wn=O, while with 
probability P(k+ l), k new lines do emanate and subsequently grow as 

_ (practically infinite) independent random trees. We can thus write for large n: 

. . I 

m 
dw -tw<x> n-1 e- n. 4h 

5,-<x> -n+l - p(w)e 
<x> - n+l w 

- I 
Ix) 

<X>-n 
dw _ p(w)e- tw<X>n e - 

n 4h 

<X>-R w 

(4.7) 

In the above expression, we kept the vanishingly small cutoff of the w- 
integrations that comes from the requirement that NL, = on/< X > “2 1; this is 
I& necessary for the z-integrations which, as will become clear in a moment, 
are convergent as G-+0. If this were also true for the w-integrations, the 
summand would obey the homogeneity relation 

_- .-- 

--- 



22 

S- n+l(t) = <x>-1sQt<X>e-4h) 

from which we could easily deduce by a change of variables 
(z=t.<X>n.e-n*4h) that 

- 

m  

F(t)= 2 s;(t) - t 
-” 

random 

n=t 

(4.8) 

with 

We will now show that a more careful treatment of the w-integration cutoff, 
leads to at most logarithmic modifications of the above power-law decay. 

- To this end we first prove the following lemma: 

Lemma 2: p(w) is either bounded, or else diverges at most logarithmically, 
as w+O. ’ 

--- 

-. - 
Proof: Assume p(w)-c-w-a as w-+0, with l>a>O (since p must be 

normalizable). Plugging this into the stationarity condition (4.4) one 
then obtains 

P(l)C w. ( -a 
c f w-‘l= <x>. <x> ) i 1 +o(W’-a) 

I 

* 
t. 

and hence 
- 
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but 

1; 
<X> =P(l)+2P(2)+3P(3)+ . .s P(1)+2(1 -p(l)) 

so that <X > + <X >a-1 52. This cannot be satisfied by any <X > > 1 which 
in turn implies that we have derived a contradiction. Thus p(w) cannot diverse 

- - faster than logarithmically as w-*0. 

Note that one can likewise show that I?(*) diverges at most logarithmically as 
ti+O, which justifies our throwing away the ti-integration cutoffs. 

Converting the sum over generations to an integral, and changing variables to 
z = t. 2 X > n.e-n.Ah, we can write the average autocorrelation function at 
large in the form 

F(t) -t 
-” 

pzrform 

. . 

m  dz ‘uniform ‘w dw j -2 
2 I v - p(w)Az,w) 

0 
(f) 

untform w I 

- 
with f(z,w> a bounded function that decays exponentially at large z. Since p(w) 
is integrable as w+m, and has at most a logarithmic singularity as w+O, we 
easily conclude that the term in square brackets has at most a logarithmic -- 

time-dependence at large t. 
-. - 

This completes our demonstration that uniformly random trees have the same 
dynamic exponent as completely ordered uniform trees. One could also verify 
this assertion directly by calculating the exact average autocorrelation 
function in the special case of the exponential distributions given by (4.5). 
Similar results have been obtained by Kumar and Shenoy (1986). 
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5: COMPLEX HIERARCHICAL STRUCTURES 

-. 
Both the uniform and the totally random trees are self-similar hierarchical 
systems, whose parts (or subtrees) are at least on the average identical to the 
whole. Huberman and Hogg (1986) have argued that they are therefore 
equally simple structures, which should minimize any physically relevant 

- _ measure of a tree’s complexity. Complexity is in this sense tantamount to lack 
of self-similarity, or to diversity at all levels of the hierarchy. This is to be 
contrasted to the information theoretic measure given by Shannon’s entropy 
defined by the size of the smallest algorithm describing how to construct an 
exact replica of a given tree, and hence maximized by random trees. 

Our results place the above ideas in a precise physical context. Indeed, we have 
demonstrated that for a given tree-silhouette, self-similarity leads to a 
maximum value for the dynamic critical exponent v, and hence guarantees 

- fastest relaxation. In this section we will obtain a saturated lower bound for v, 
and will in particular show that non-self-similar structures do indeed lead to a 
slower power-law decay. Thus complexity or structural diversity is reflected in 
the rate of relaxation, and -v is a physically sensible measure of it. Similar 

f. 
results have also been obtained in the context of percolation by Bachas and 
Wolff (1987); with the word “complexity” given in that context a precise 
operational meaning. . -- 

- Consider a particular unbalanced tree, constructed by allowing the left half 
members of every generation trifurcate, while the right half members give rise 
to a single son each, as shown in Fig. 3a. This is clearly a non-self-similar tree 
and cannot be analyzed by renormalization-group techniques. Since the total 
population doubles at every step, its silhouette is given by 

- 

As we will now show, its dynamic critical exponent is v =s, meaning that 
relaxation is slower than for the corresponding self-similar structure for which 

__ .- we previously found 
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s . 
v =- 

uniform 1 --s 

Intuitively, this is because different parts of an unbalanced tree relax at 
different rates, and it is the slowest processes that dominate at long times. 

To calculate the average autocorrelation function P(t) for our tree of Fig. 3a, 
assume first that the total number of generations is M (M will be taken to ~0 in 
the end). We will label the jth from the left node of the ith from the bottom 
generation by the coordinates (x = M-i, y = log j); the tree is then represented by 
an orthogonal triangle, as shown in Fig. 3b, with a hypotenuse slope equal to 
the silhouette times the intergeneration height interval: log 2 = sehh. 
Consider now the descendants of a given node (x,y) with yz0; these will 
trifurcate either until they reach the bottom of the tree, or until they enter the 
right-half of their generation, from which point on they will continue as single 
dead branches until the end; these two cases correspond to regions 1 and 2 
respectively, in Fig. 3b. The number of fertile (i.e., trifurcating) generations 
following (x,y) is 

:i 

T(x,y) = 
M-x rnregion 1 . 
(X- l)log2-y 

log 32 
f 1 rn regzon 2 

(5.1) -- 

where the f 1 ambiguity is due to the fact that (at most) one generation of 
descendants of (x,y) may be partly fertile and partly infertile. We will in the 
sequel neglect this ambiguity, since it does not affect the result for the dynamic 
exponent. Clearly, the number of final descendants or tree-leaves generated by 
node (x,y) is 

N(x,y)=3T’xJ) - 
(5.2a) 

For y = 0 and in region 2, the number of final descendants is actually modified , 
but we may still express its rate of change with x as: 
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z (x,0) = 2 . 3T(x’o) (5.2b) 

We are finally in a position to calculate the inverse characteristic time 
corresponding to the node (x,y), as given by eq. (2.13). Converting the sum over 

- - ancestors to a line integral, as shown in Fig. 3b, and using eqs. (5.1, 5.2) we - 
find: 

(5.3) 

in region 1 

- xlog2-y 

-r;-‘(x,y)=3 log3/2 e-Ah(.v-xJ+ 

I 

x 
y & ,-AhcM-d3’ 

z log2-y+cx-z~log3 
) 

log 3/2 

x- - 
log 3 (5.4) 

--- 

-. - 
Y X-- riog 2 

+ 
I 

log3 & e-AhtM-r) 3’Og3a in region 2 
0 

where once again we have dropped various finite multiplicative constants, 
which cannot modify the leading power-law in the asymptotic behavior of the 
spectral density, eq. (2.14). Note also that the first term on the left-hand-side of 
eq. (5.4) should be changed to 

_ 2M ,-Ah(M -x) 

ify=O. .- - 
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These expressions simplify considerably if one takes the limit M+m, and notes 
that for almost all nodes (but a set of measure zero) both x and y > > 1. If 

- _ one then finds easily that all inverse characteristic times diverge, implying 
that relaxation is unstable everywhere on the tree. Let us therefore consider 

Up to finite multiplicative constants and exponentially suppressed additive _ 
terms, we then find: 

-A.h,M-x 

t70g2-y 
in region 1 

3 logm -A&M-x) 
e in regzon 2 

It is not straightforward to analyze the asymptotic behaviour of the. average 
autocorrelation function, eq. (2.12), which can be written as: 

P(t) = 
II 

dx dy 2. e-th(xy’ 

Regions1 and 2 ’ 

-” -” -. - 
= D,t ‘+D,t 2 

where the two terms in the last expression correspond to the integration over 
regions 1 and 2 respectively. One finds: 

s 
vl= log2 ; v2=s 

--s 
log3 

(5.6) 

(5.54 

- 
-The second of these two exponents, being smaller, dominates at long times and 
thus describes the asymptotic decay of the average autocorrelation function. 

- .- We have underlined the word “average”, because for any given initial condition 
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1; 

decay can be much faster; if for example our particle starts out on a tree-leaf in 
the left-half of its generation, it can be shown that the autocorrelation function 
dies out with exponent VI, which incidentally is the exponent obtained for a 
tree that trifurcates uniformly every height interval Ah. Figure 3b may 
actually mislead the reader to think that such “fastly-decaying” initial 
conditions should dominate the average, but this is not the case*: the prefactor 

- _ D2 does not vanish. 

The dynamic exponent for the unbalanced tree of this section obviously 
satisfies _ 

S 
vfs ’ Vunrform = l-s 

. . . . . 

Thus rearranging the branches of a uniform tree (without changing its 
silhouette, i.e. adding new branches) can indeed slow down relaxation. Is there 
a limit to this slowing-down effect or can we go all the way to a logarithmic 
time decay (l/f noise) by appropriately complexifying the tree’s structure? The 

. . . following result answers this question: 
- 

Theorem 2: The dynamic critical exponent of any tree is bounded from below 
by its silhouette: VIS. . -- - 

-. - Proof: From equation (2.13) it follows easily, since NBZ 1, NB, >NB,-, , that: 

-1>, -hB 
‘B - 

for all tree-nodes B. Thus we can bound the average autocorrelation function 
as follows: 

-*?&ote that in Fig. 3b, y is a logarithmic scale, so that practically the entire 
population of tree-leaves is concentrated in the lower left corner of the triangle. 
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-hB 

tree nodes B 

J-(sB-l)e-t. e = 

- = i (e~’ AhmIIe-n. S. Ah, ,-teen’ Oh 

n=l 

z t 
-S 

Q.E.D 

-.. -. 
This simple theorem thus demonstrates that the unbalanced tree of this section 
saturatesthe lower bound for the dynamic exponent, and leads to the slowest 
allowed relaxation. We should point out that this slowest-relaxing tree is not 
unique: for instance any tree for which the bth-fraction of each generation 

- b-furcates (with b some integer), while the remaining members continue as 
dead branches to the end, would give the same dynamic exponent. The 
prefactor D, as well as the critical silhouette above which relaxation is 

. . unstable, do however depend on b. 
- 

--- 

-- - 
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6. DISCUSSION 

1; 
Figure 4 summarizes our results. The dynamic exponent v is maximized by 

both uniform and random trees, and minimized by the unbalanced trees of 
section 5. The same qualitative behavior is obtained if instead of v one plots a 
measure of the tree’s complexity defined by counting the number of non- 

_ isomorphic pieces at every generation of the tree as shown by -Huberman and 
Hogg (1986) . More recently it has been shown that the critical threshold for 
percolation on a tree, which can be interpretated as the complexity of winning 
strategies in a game, is also minimized by uniform and random trees and 
maximized by the trees of-section 5 [Bachas and Wolff (1987)]. We may 

-_ 
therefore say that the rate of relaxation is sensitive to the physical complexity 
or lack of self-similarity, rather than to the structural noise or Shannon 
entropy of the underlying tree. It would be interesting to see whether 
quantitative relations among these various complexity measures can be 

. obtained. 

- 

Besides slowing down relaxation, the complexity or absence of self-similarity 
has-another, more spectacular effect, when one considers thermally activated 
processes. Assuming in this case that the hopping rates are given as 

-. - 

-Avij. 
eij = e .’ T 

(6.1) --- 

with AV,j an energy barrier, we easily conclude from the definition (2.4) that 
the silhouette is proportional to the temperature. Therefore the temperature 
dependence of the dynamic exponent is given by: 

T -. , T<T 

’ 
V 

least complexcn = fcvT 

i 
T>T c 

(6.2a) 

- 1 

for self-similar (uniform or random) trees, and 
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; 

c. T ; i’ T<T’ 
V 

most complex (n = 

C 

9 T>T’ 
c 

(6.2b) 

- 

for the most complex trees of section 5. This is illustrated in Fig. 5a,b. Note in 
particular that the transition to instability is continuous in the former case and 
discontinuous in the latter. 

Before proceeding we should point out that ultradiffusion is not just a naive 
model of the relaxational dynamics of systems with many time scales. It can be 
actually considered as a universal description of such dynamics, in two 
different-ways: 

a) In real space one may describe the spreading of an excitation by lumping 
together in larger and larger blocks the degrees of freedom that relax at 
characteristic times ‘ci < t2 < . . . , as has been suggested by Palmer et al. 
(1984). Note that for systems with disorder the ensuing hierarchical tree 
is in general non-uniform. . . - 

b) In configuration space one may describe relaxation as a stochastic motion 
of an ensemble of particles in a valley landscape of metastable states --- 

[Dotsenko (1985)]. At sufficiently low temperature, the hopping rate 
-. - between two such states is: 

- mlnmm (LJ) 

T 
‘V = e 

where minmax (ij) is the minimum over all paths from i to j, of the maximum 
energy barrier encountered along the path. This satisfies the ultrametric 

property 

minmax (iJ) 5 max 
1 

minmax (i,k); minman (j, k) 
I 
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since one can always go from i to j via k, and hence defines a hierarchical 
structure in the space of metastable states. We owe this argument to Marc 
Mezard (private communication). 

It is this second description of relaxation as ultradiffusion in the space of 
metastable states that is relevant for studying the temperature dependence of 
the dynamic exponent. The simple assumption (6.1), however, is a priori 
justified only in the limit of vanishing temperature. As T is raised, it is in 
general invalidated for several reasons: to begin with, entropy comes into play 
and hopping rates are not simply determined by a maximum energy barrier, so 
that ultrametricity of the transition matrix may be destroyed. One may simply 
hope that the ultrametricity of equilibrium states, demonstrated in the mean- 
field spin-glass [Sherrington and Kirkpatrick (19751, Mezard et al. (198411, and 
conjectured in a variety of other systems [Palmer (preprint 1986)], implies also 
an exact or approximate hierarchy of hopping rates among long-lived 
metastable states. 

Even if this is so, free-energy barriers would in general be T-dependent, so that 
the silhouette is not simply proportional to T. Eqs. (6.2a,b) should therefore be 
replaced by: 

V 

c 

and 

s(T) ; T<T’ 
V 

most complex (n 
c 

m ; T>T’ 
C 

* 

(6.3a) -c 

(6.3b) 

where s(T,) = 1 in the first case, and s(T,‘) = log 2/lag 3 for the trees of section 5. 
-The precise form of v(T) now depends on the unknown function S(T). If, 
however, the silhouette changes continuously with temperature, the nature of 
the transition is robust: it is continuous for self-similar trees and 
discontinuous for complex trees. Note incidentally that the transition ,, 
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described i-n eq. (6.2) is unphysical, since relaxation became unstable above the 
critical temperature. This is, however, only due to the long-range nature of 
hoppings, and can be easily rectified: by introducing an expontial T- 

independent cutoff that respects the ultrametric structure of the space, we can 
ensure that the silhouette is bounded from above at all temperatures, and the 
transition is to a region of exponential relaxation. 

- 

It is tempting to compare these predictions of ultradiffusion with what is 
known-for the mean-field spin glass: as shown by Sompolinsky and Zippelius 
[Sompolinsky and Zippelius (1981) and (1982)] relaxation in the latter is 
exponential above the glassy transition, and changes over to a power law with 
exponent: 

v(T)= ; - 
2 

C 

below. Does this imply that the hierarchical tree in the Sherrington- 
Kirkpatrick model [Sherrington and Kirkpatrick (1975), Mezard et al. (1984)] 

. . - is complex? 

More work is necessary to answer such questions, and to unravel the rich --c 
properties of systems that defy the simplicity of scaling laws. 

-- - 
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FIGURES 

1; 

- 

Fig. 1: A generic tree illustrating our notation. The node A has three sons 
(SA =3) and six final descendants (NA=~). A1 is his father and A2 the 
grandfather, that also happens to be the root of the tree. The height of a 
node as measured from the bottom leaves, is minus the logarithm of the 
corresponding transition rate. The node B illustrates how the weight of - 
a state can be effectively increased (by a factor 8 in the figure) by letting 
it multifurcate at low altitude. 

Fig. 2: Regular uniformly (a) bifurcating and (b) tetrafurcating trees; since the 
(asymptotic) rate of population growth with height is the same, these 
two trees have the same silhouette, and hence, as discussed in the text, 
yield the same dynamic critical exponent. 

f 

Fig. 3: (a) An example of a maximally unbalanced tree that saturates the 
lower-bound for the dynamic critical exponent. The left-half members 
of every generation trifurcate, while the right-half give rise to a single 
son each. (b) The orthogonal triangle containing the nodes of this tree, 
when parametrized as explained in the text. The root lies at the origin. 
Region 1 is a regularly trifurcating subtree, while region 2 contains 
those nodes whose descendants trifurcate for awhile, but eventually -- 

enter the right-half of their generation and continue as dead branches 
thereafter. The broken line is the line of ancestors of a typical node A, 
along which we integrate to calculate T;~; its slope is initially 
Aylhx = log 3, until it hits the left-most branch of the tree, from which 
point on it continues straight up to the root. 

Fig. 4: A schematic plot of the dynamic exponent v versus the Shannon 
Entropy, or detailed information content of the underlying tree. Here s 
is the silhouette of the tree, which is held constant, and the broken lines 

- are rigorous bounds. 

Fig. 5.: The temperature dependence of the dynamic exponent, assuming 

- .- hopping rates are given by eq. (6.1), for a) self-similar and-b) maximally 
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complex trees. Note that the transition is continuous in the former case 
and discontinuous in the latter. 
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