
SLAC - PUB - 4075 

i ,z.- September 1986 . . _, 
(T) . 

PERCOLATION AND THE COMPLEXITY OF GAMES* 

CONSTANTIN P. B ACHAS+ 

Stanford Linear Accelerator Center 

Stanford University, Stanford, California, 94305 

and 

WILFRIED F. WOLFF $ 
- 

Department of Applied Physics 

Stanford University, Stanford, California 94305 

ABSTRACT 
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r A large number of natural and artificial systems have an exact or approx- 

. imate hierarchical organization. A useful tool in analyzing them has been the 

renormalization group and the concept of self-similarity. It is, however, precisely 

the absence of self-similarity which characterizes the most complex and interest- 

ing systems. In an effort to classify hierarchical structures Huberman and Hogg 

(Huberman and Hogg 1986) introduced a notion of complexity which measures 

the degree of non-isomorphism at all levels of the hierarchy and which has the 

property of being minimized by both regular (= uniform) and totally random 

trees. A physical manifestation of this notion of complexity is the speed of relax- 

ation of hierarchical structures (Bachas and Huberman 1986): self similar ones 

relax fastest and structural noise is irrelevant. Similar ideas in a different con- 

text, that of forecasting the itinerary sequence in a chaotic system, have also 

been advocated for by Grassberger (Grassberger 1986). 

_...._ _ - 

In this letter we will consider yet another manifestation of this notion of 

-complexity, namely in the context of percolation on arbitrary trees and show 

how it is related to the complexity of games and the time requirement of search 

algorithms. 

Consider a game whose duration is for simplicity taken to be exactly n moves. 

At each move the player is faced with several options some of which lead to a 

forced loss assuming an infinitely intelligent opponent. The remaining non-losing 

strategies form a “winning” tree with n levels of hierarchy. In what follows by 

tree we shall always mean this “winning” tree. Regular trees correspond to simple 

games: an example would be a game in which the player is at each step presented 

with a choice of four colors (red, green, blue and white) and has to pick either 

blue or white to avoid losing immediately. This is to be contrasted with complex 
_ .=. games like, e.g. chess with a fixed number of total moves, for which the tree of 

- non-losing strategies is certainlyLnot regular since certain bad moves might e.g. 
- allow your opponent to checkmate you for the rest of the game thereby limiting 

your options considerably. In this particular case the lack of self-similarity of the 

tree is a manifestation of the complexity and history dependence of the game: 
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r put differently, the checkmate positions commonly found in newspapers are not 

. equally hard. 

Let us now give a precise and intuitive definition of the complexity of a game. 

Consider a monkey which at each step of the game decides at random to pursue 

every one of the available options with probability p. The monkey does not lose 

if throughout the game it has pursued at least one of the non-losing strategies. 

When the number of moves becomes arbitrarily large this can only happen if p 

is greater than the threshold p, for percolation from the root of the tree to a leaf 

at its bottom. The smaller p,, the simpler the game, since the randomly playing 

monkey may pursue fewer options and still not lose. We may thus define p, as a 

measure for the complexity of the game, a definition that we will further qualify 

later on. 

- 

. . 

To study percolation on general trees we will use the fact that the probability 

-Q(t) that no path percolates from the root to a leaf of a subtree t satisfies the 

recursion relation 

_...._ _ - 
Q(t) = (1 - p + p . Q(h)) . . . (1 - P + P - Q(b)) (1) 

where b is the number of branches emanating from the root of t and tl, . . . , tb 

label the corresponding subtrees (see Fig. 1). 

_ .-. 

- 

We first consider the simplest case, namely percolation on regular or uniform 

trees, which have the same branching ratio b at each node of every generation. 

Variations of this problem have already been considered to study the mean- 

field theory of percolation (Essam-Fisher 1961, Essam 1980; Stauffer 1979), more 

recently in the context of spreading activation in computer networks (Hogg and 

Huberman 1986) and also to study the time requirements of certain heuristic 

searches (Karp and Pearl 1983, Stone and Sipala 1986). The probability Qn 

that in a tree with n generations no path percolates then satisfies the recursion 

3 

C 

--- 



i relation -. -. 

. Qn = (1 -p+p.~~-~)~ . (2) 

Equation (2) has the fixed point Q = 1, corresponding to no percolation. This 

fixed point becomes unstable for p > pyiform = l/b, signalling the appearance 

with a finite probability of a percolating cluster from the root to the bottom of 

the tree. 

Clearly, the fatter the tree, i.e. the larger the branching ratio b, the smaller 

the percolation threshold, since fat trees are harder to cut. Although one could 

argue that the complexity of a game should increase whenever some winning 

- strategies are discarded (e.g. keeping only white as a winning choice in the 

aforementioned game) this is a rather trivial effect. Therefore we will in the 

sequel limit ourselves to games whose trees have a fixed average branching ratio 

b per generation or a fixed multiplication rate of non-losing strategies per move. 

This is reminiscent of ultradiffusion where fatter trees relax faster and where one 
. . must fix the tree silhouette in order to study the effect of the tree structure on 

the dynamics (Bachas and Huberman 1986). 

- We shall now show that p, is indeed minimized for regular, i.e. uniform trees 

as it should be since these trees correspond to the simplest games. 

Theorem: The critical threshold for percolation p, in a tree with average 

branching ratio b satisfies 

p, 2 pyiform = 5 . 

Proof: The probability for no percolation on a generic tree with average branch- 

_ ing ratio b satisfies _T_ 

- 

L. 

_&=(l-~+~.Q(tl))...(l-~+p.Q(ta)) 2 (l-~+~.~Q(tl)...Q(ta))~ 

- -where tl,..., tb are the subtrees with roots at the first hierarchy level. The 

inequality follows from the well known fact that the arithmetic mean is always 
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,-- bigger..or-equal to the geometric mean. At the second step we have 

. 

Q(h)--Q(b) 2 l-P+P. 

where ir, . . . , i&4 are the subtrees with roots at the second hierarchy level; this 

follows from the recursion relation (1) and the above inequality. 

Repeating this procedure n times we finally get 

Q 2 f 0 . . . of(o) (n times) 

with f(z) = (1-p+p~)~. The right-handside is the probability for no percolation 

on a uniform tree, which completes the proof. 

- 

We now consider the case of random trees which are constructed by allowing 

the branching ratio z at every node to be an independent random variable with 

. . distribution P(z) and average value (z) = b. After deleting bonds with probabil- 

ity 1 - p the cluster connected to the root is another random tree with modified 

probability distribution 

F(y) = 2P(z) - 
0 

; pY(1 - p)“-y 
Y 

and average branching ratio (y) = p - b; here 0 
i is the binomial coefficient. 

The probability for percolation on the original tree is equal to the probability 

that the modified random tree survives for an infinite number of generations. 

From the theory of branching processes (Harris 1963) it is known that the latter 

_ _ .=. probability is finite when the average branching ratio is bigger than one and zero 

- when it is smaller than one, from which we deduce that the critical probability 

- for percolation on the original tree is given by (y) = pc - b = 1. 

The above argument shows that random trees with average branching ratio 

(z) = b have the same percolation threshold as uniform trees with branching 
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.-- ratio b, We have thus demonstrated that the complexity of a game which was 

. defined as the percolation threshold for the underlying tree is sensitive to the 

absence of self-similarity rather than to the existence of noise. This is in quali- 

tative agreement with the measure of complexity introduced by Huberman and 

Hogg (Huberman and Hogg 1986) as well as with the dynamic exponent that 

characterizes ultradiffusion with long range hoppings (Bachas and Huberman 

1986). 

. 

- 

In order to show that the absence of self-similarity does indeed lead to a 

larger value for p, and thus to an enhanced complexity we shall now consider as 

a specific example the highly unbalanced tree shown in Fig. 2. At each generation 

the left half nodes give rise to 2b - 1 offsprings, while the rest continue as dead 

branches to the bottom so that the average branching ratio is b. We will now 

show that the percolation threshold is equal to one for this particular tree which 

thus describes the winning strategies of a game of maximal complexity. The 

argument runs as follows: if p < 1 then the leftmost path from the root to the 

bottom is cut with probability one at a finite hierarchy level n away from the 

root; the remaining bn - 1 nodes generate subtrees which (2b - 1)-furcate for a 

finite number of steps and then continue as dead branches thereafter. Clearly 

these subtrees cannot percolate if p < 1 so that p, = 1 as claimed above. 

_ _ .=. 

An intuitive explanation why this game is of maximal complexity is that 

there is zero tolerance for errors since the player must either follow the strategy 

corresponding to the leftmost branch or else will eventually be lead to a situation 

where non-losing moves are unique. This same class of trees also leads to slowest 

relaxation in ultradiffusion (Bachas and Huberman 1986); it would be interesting 

to see if there exists -a quantitative relationship between the dynamical critical 

exponent and the,percolation threshold p,, i.e. the complexity of games. 

- Finally we would like to point out another possible interpretation of our 

results, namely in the context of heuristic searches. Following Karp and Pearl 

(Karp and Pearl 1983) one can consider the problem of finding an optimal path 
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i ,=- on a tree-.whose edges are assigned the cost 1 ~with probability p and 0 with 

. probability 1 - p. A ‘uniform cost’ algorithm that performs this task is one that 

starting from its leftmost node expands the front of nodes reachable with a given 

cost from the root of the tree until it finds a leaf at the bottom of the tree. Karp 

and Pearl show that for regular trees this algorithm runs efficiently (linear time 
requirement) if the O-cost edges have a finite probability to percolate and has 

an exponential time requirement otherwise. Since, as shown above, these O-cost 

edges can never percolate on a sufficiently complex tree we would then expect 

the running requirement for these trees to be always exponential. It would be 

very interesting to analyze this problem in more detail but this is beyond the 

scope of this paper. - 

We thank Bernard0 Huberman for many enlightening discussions. 
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. . _ _  F igure  C a p tions  

Fig. 1 . A  t ree t a n d  its s u b t rees tl , . . . ,tb  a t th e  first h ie ra rchy  level ,  u s e d  in  th e  

recu r rence  re la t ion (1). 

Fig.  2 . A n  e x a m p l e  o f a  max ima l l y  comp lex  tree; th e  left-half  n o d e s  o f every  

g e n e r a tio n  g ive  r ise to  3  o ffspr ings, wh i le  th e  rest c o n tin u e  as  d e a d  b ranches  to  

th e  b o tto m . T h e  a v e r a g e  b ranch ing  rat io is b  =  2 . 

-  
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Fig. 2 
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