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ABSTRACT 

Superstring  theories  command  the  study of their various  possible  compactifica- 

tions,  and  their  consequence physics. Thus,  the role of topology is likely to  be  far 

more  central,  in  particular  in  ten-dimensional physics.  Topological  invariants  on a 

chain of oriented  strings  in  interaction  are discussed. Attempts  to link superstrings 

with the reality of the physical world in four  dimensions are discussed. 
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1. INTRODUCTION 

Superstring  theories1  are  natural  candidates for unified theories  contain- 

ing  gravity.  They are supersymmetric: Local supersymmetry  broken (grav- 

itino  mass # 0). Effective low-energy theory  (supersymmetric  gauge  theory: 

rng, mi # 0). They  are anomaly  free,  only if the Yang-Mills symmetry  group 

associated with  them  are SO(32) and E8 X E8.293 They  exist  in  ten-dimensions 

(ten-dimensional Einstein-Yang-Mills supergravity  theory) and  the  fundamental 

equations of motion' 

corresponding to  the modified Chapline-Manton action: 

S = 1 dx e [-5 R - C X ~ - ' ~ H M N P  H M N P  

MI0 (5)  

-pe+F'j M N  P ~ M N  + ~ v M ~ v M ~ ]  

do not involve any  arbitrary  parameter, where capital  letters  are in the range of 

0 to 9, V is the  covariant derivative defined with  the Christoffel  symbol Tic, 
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R is known as the Ricci form as it is just  the  complete  structure  times  the Ricci 

tensor, F is the field strength, g is a  metric  tensor,  and cc is a fermion  zero  mode 

of the Dirac Operator on the  compact manifold. This  action is the boson part, 

including  the  extra Chern-Simons term discovered by Green and  Schwarz2 in the 

definition of HMNP the field strength for the  antisymmetric  tensor field. Extra 

terms include the  supersymmetrizations of the  anomaly cancelling terms which 

may turn  out to be  nonpolinomial,  together  with all possible  higher  derivatives, 

order a' terms  such as R2, etc. In this  paper  these  terms will be  neglected. We 

notice that Candelas et  aL6 have discussed the  compactification of ( 5 )  requiring: 

1. A manifold, Le., a  direct  product M4 X K 6 ,  among M4, the Minkowski 

space,  and some  compact  six-dimensional  manifold (for example, a Calabi- 

Yau Space K 6 ,  Le., a Ricci-flat Kiihler manifold  with SU(3) holonomy 

group) - 
2. Four-dimensional low-energy physics  with a suitable  number of standard 

fermion  generations. 

3. An unbroken N = 1 supersymmetry in D = 4. 

The  same, Gross et ~ l . , ~  in heterotic  superstring  theory  found at the lowest 

nontrivial  order  in al, promising  solutions of the effective field equations for mass- 

less fields, where the  internal six dimensions  compactify on  a  space  with  a Ricci- 

flat  Kiihler  metric.6  These lowest-order solutions  have  the  important  property 

of preserving  an h' = 1 supersymmetry in the effective four-dimensional  theory. 

Corrections  to  the effective  fields equations at higher  orders in a', which will lead 

to modifications of the Ricci-flat Kiihler solutions,  have  been  also  investigated.* 
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Superstring  theories  command  the  study of their  various  possible  compacti- 

fications, and  their consequence physics. Thus,  the  fundamental  and  interesting 

question  would be: How to  compactify  superstrings in order to  obtain  a  four- 

dimensional low-energy theory of our  physical world from  a  ten-dimensional  su- 

perstring?  One  must  find  an  acceptable  compactifying  solution to  the equations 

of motion (1-4) of the ten-dimensional effective theory. The low-energy theory 

of our  physical world is, of course,  four-dimensional and,  therefore, some of the 

ten-dimensional  must  be  compactified. 

There  are various  options for compactifying, which depend  on  the  compacti- 

fication  conditions in order to have  consistent  theories  for  any even dimensions. 

Among these  options, we have: 

1. Compactification  on  manifolds  such as the Calabi-Yau spaces: Le. ,  Ricci- 

flat  Kihler manifolds  with SU(3) holonomy group  which  break the E8 @ E8 

and SO(32) gauge  groups2 down to  many different  subgroups in the  ten- 

dimensional Einstein-Yang-Mills supergravity theory. The (non-Ricci- 

flat)  compact coset spaces, i.e., the six-dimensional  compact  coset  man- 

ifolds K with  torsion  for K = SU(3)/U(1) X U(1),  Gz/SU(3)? which will 

provide  a  perturbative  solution of the classical string field equations  in 

the  compactification of the  heterotic  string theory.  For K = Sp(4)/SU(2) 

x U(l),lo*ll and only that,  the compactification  on K gives three  stan- 

dard  generations,  that  transform  under  the phenomenologically  interesting 

gauge  group SU(5) X s U ( 3 ) ~ x   U ( ~ ) F ,  the last  two  factors  being  flavor 

symmetries. 

The coset space  compactification seems also to be  interesting for type I1 

superstring  theories, which do  not  have  gauge fields in ten dimensions. 
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In this  case,  some of the four-dimensional gauge fields can  arise  from  the 

isometries of the compact coset manifold. 

2. Compactification  on  orbifolds,12J3 LC.,  manifolds with  singularities that 

correspond  to  those  obtained by dividing  a smooth manifold by the nonfree 

action of a  discrete  group.  The  resulting  smooth  manifold is a  rather inter- 

esting  one  called  the K3 surface,  because of being  the only  four-dimensional 

manifold of SU(2) holonomy. (This K3 surface is simply T4 divided by  re- 

flections with blown-up singularities.) 

3. Compactification  on  identification?  or  n~nidentification,'~J' of the  spin 

connection w with  the gauge connection A. 

Here, we will discuss  the first choice. We would like to  note  that  the expres- 

sion of the  action (5 )  leads for the  groups E8 8 E8 and SO(32) to a  superstring 

theory  free of an~rna l i e s ,~ ,~  and  that for the  equations of motion (1-4) corre- 

sponding  to  this  action,  the Bianchi  identities must  be satisfied:I8 

Table 1 gives recent  results for the  superstring  theory of the  groups E8 @ E8 

and SO(32) that  are  anomaly free after  compactifying and  remain  consistent in 

every even dimension. For the  theory  there is a compactification  for which 

one E8 group is broken to E(3 in  four  dimensions  with  zero  mode,  transforming 

as m(27) + (27) chiral  multiplets, in addition to  the 78 gauge  multiplet  with 

a  number of generations Ng : Ng = 31x1 , where X is the  Euler  characteristic 

of K. 
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2. COMPACTIFICATION 

The basic  idea of superstring compactification is to find a  ground state so- 

lution which is a  direct  product of Minkowski space  and Kg, some  compact 

six-imensional  manifold.  Consider the following superstring  equation in two 

d i m e n s i ~ n s ~ ~ ' ~  

where R,b is the Ricci tensor of a  two-dimensional  metric  (a  flat  metric)  obtained 

explicitly that this is order 4 in the field equations,  and v is the  radius of the 

compactified  manifold.  Let us try  to solve this  equation  on  the manifolds  shown 

by Fig. 1. The topology classifies these  manifolds by their  number of handles, 

Le . ,  a  property which does not change  when  one deforms the manifold  without 

breaking it. A relation discoveries by Gauss  shows that his number h is connected 

to  the  integral of the intrinsic  curvature of all  metric defined on  the manifold. 

For example,  in two dimensions for compact  manifolds the  number of handles h 

is given by19 

V 

If R is zero, there is one  handle, so this is possible  only  for the torus.  What is 

the  total  curvature of a  torus?  The first thing  to  notice is that  any  torus  has  the 

same  total  curvature as any  other, Le., any  torus  has zero total  curvature. More 

generally, if M is a closed orientable  manifold (closed string) of handles h with  a 

Riemann  metric,  then 

$$ K d A  = 4 ~ ( 1 -  h) . 
M 
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Namely, if  we have a surface that is  topologically the same as a sphere  with n 

handles attached,  then  the  total curvature K is  given  by 

K(sphere with n handles) = 47r (1 - m) . 

Thus, for the case of the  torus, 

K = 47r(1- 1) = 0 . (11) 

The importance of knowing about manifolds with handles is  this:  Any  closed 

surface (for example, the strings  and  superstring shown by Figs. 2,  3, 4 and 5 )  in 

the three-dimensional space is  topologically  equivalent to a sphere with a bunch 

of handles attached.  Thus,  the surface in  Fig. 5 is  equivalent to a sphere with 

six handles. Thus, we may  see from Eq. (9) that  the  total curvature of any closed 

surface  in three-dimensional space  is an integer multiple of 47r. Furthermore,  as the 

quantity V - E + F (V vertices, E edges, and F faces)  is the Euler characteristic 

x of a surface.  Using this  notation we rewrite our curvature formula as 

which is valid for any closed  surface,  where K and x are  both topological invariants. 

Remarks: 

1. In Eq. (9), (1 - h )  47r is the algebraic area off(s0) (f : so --f C is a spherical 

map) on C, i.e., the sum of the areas covered  positively  minus the sum of 

the areas covered  negatively.  Since 47r is the  area of E, 1 - h represents 

the algebraic proportion of C that is  covered  by f ( s 0 )  (so is the parameter 

surface). 
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2. If h = 0, then J J K d A  = 4n. If P is the set of points where K > 0, then 

JJ K d A  2 4n. Any  field  on  such a surface has at least one singularity, and if 

it  has, at most, a finite number of singularities, then  at least one singularity 

has a positive index. 

M 

M 

3. If h = 1, then J J K d A  = 0. This is the only  case  where it is  possible to 

define a Riemannian metric such that K = 0, and  the only case in  which it 

is possible to define a field of line elements without singularities. 

M 

4. If h is very large, then K is negative on most of the surface. 

Figure 6 illustrates some  closed  surfaces with K curvature, and h handles. 

Since we have compact manifolds with other than one handle, there is said to  be a 

topological obstruction (first Chern class) to solving (7). The superstring  ground 

state equation on a compact manifold just states that  the first Chern class must 

vanish  (Calabi-Yau  manifolds). Equation (7) (differential equation) is a topological 

equation. It is  solved  by the choice M4 x K 6  with the corresponding Ricci-flat 

metric. 
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3. CONNECTION BETWEEN LINKS AND STRING THEORY 

String are piecewise smooth maps of an interval or of a circle S' into a manifold 

M (a space-time). In closed string theories, points in space-time are replaced by 

loops in space-time. A close string a : S' + M is often  called  loop. When points 

are replaced by loops  in string theory,  one obtains  Figure 7 where all graphs of 

loops are described  by the basic interaction (a)3  out of which all Riemann surfaces 

are  constructed [20]. 

By an n-link L = (a', . . . an) will be meant an ordered collection (al ,  . . . an) 
of maps ai : S1 4 M where the image are to be disjoint (a l (S1 )  U cy2(S1) U . . . U 

an(S') = [LI). For each  link L let G(L)  denote the fundamental group of the 

completment M - IL I (the link group). 

Definition: 

Let ILI = a1 U 0 2  be a link of  two components.  Let a1 n a 2  the set of crossings 

of a1 with a 2 .  Then, the linking  number N(L) for a given diagram is  defined as: 

where p runs over all crossings  in the diagram. 

Example: 

E= $1 

E= +1 
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This will  conform with the usual right-hand rule.  In order to do this we asso- 

ciate a sign E to each  crossing, 

Remarks: 

1. Each  closed  loop a', . . . , a, generates the fundamental  group G(L).  

2. N is a topological invariant of links. The  fikt invariants of knots were ob- 

tained by studying the complement of the knot in * and  its associated knot 

group (or link group). 

3.  All knots and knot groups belong to the classical  case (S' C S3 C S4). 

4. An oriented knot (or link) is an imbedded  circle S1 in X3. 

5. One attempt  to detect chirality of a knot N (or oriented link) is the signed 

crossover  number E. A knot N is  chiral if N # r, where denotes the 

mirror image of N ,  obtained by reversing the orientation of 3-space (or 4- 

space). 

In  real  life one works with  pieces of string. If one wants to distinguish between 

different knot types in this  context,  then one must require that  the endpoints of 

the string are essentially kept fixed.  An  special  case of the general problem  is to 

determine when a knot is unknotted. For example, if  we are given a chain of string, 

how can one  tell if there is a knot present? 

It will be assumed that M (= @+' , e-'?' , where e, Sd , T' , G, etc.) is 

an orientable manifold;  fixed orientations have  been  chosen  for M and S', and 

that  the space of maps cr : [ O , T ]  + e-'?', where @-'yl is a supermanifold, 
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may be  written as Q = ( Q B ~ C Y F ) ,  where QB and QF refer to bosonic and fermionic 

coordinates. 

We  wish to describe a chain of oriented strings (considered as a oriented closed 

superstring)  in  terms of the Kiihler  geometry of the superloop space, the space of 

maps from the circle S1 to the manifold M with periodic boundary conditions in 

the fermionic coordinates. A  chain of oriented strings (physically represented as a 

series of graphs of Fynman for strings) is a chain  where all the circles are oriented. 

An oriented circle (or loop) is a circle  where the two senses (right and left) of 

running up have been distinguished. A group of invariance  is associated to a chain 

by the operations of linking up (i.e., the way  of engendering a chain). A chain of 

oriented strings is represented by  Fig. 8. In these figures,  when  loops are central, 

N-loops form a Riemann surface and Q : N 4 e-'?' is a map. 

In a chain of oriented strings (or topologically  equivalent a string  to five rounds) 

we can study  its invariants and  its index of Milnor [21]. 
a) Its invariants are: 

K(abcde) = K(baced) 

= K ( d e c h )  

= K(edcab) 

= K(abcde) , 

where K ( =  Kn) is the chain's function of the n-oriented  string ( n  is the number 

of rounds). 



b) Its index of Milnor m(il . . . Z ' N - ~ ,  nln) are: 

Mabdce = * - Macdbe = 0 3 

according to the following  formulas: 
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4. CONCLUSION AND  DISCUSSION 

Thus,  superstring theories  commands the  study of their various  possible  com- 

pactifications, and  their consequence  physics. For example, in a general Kaluza- 

Klein  compactification on a compact manifold K (Calabi-Yau spaces with a con- 

stant holomorphic 3-form) this involves  overlap integrals of zero-mode wave func- 

tions on I(. In general, direct evaluation of these integrals can be  quite difficult. 

Further, the requirement that  the fundamental group be large enough to allow an 

acceptable &-breaking pattern will reduce the number of considerably acceptable 

manifolds,  in particular  on three-dimensional  manifolds, 

Topological invariants such as Betti numbers, Euler characteristic on  surfaces, 

linking number, etc., could represent a fundamental role  in superstring theories.21 

Some questions are interesting after this study: 

1. Why the unperturbed Calabi-Yau  manifold has vanishing  Ricci tensor? 

2. Since the string theory is valid  for  1-loop diagrams, a surface of genus one 

and for  n-loop diagrams, a surface with n handles, is this  theory valid for a 

chain of oriented strings in interactions? 

3. What is the cohomology  of the direct product M4 x K 6 ,  

according to  the Kiinneth formula [22]? In O(16) x O(l6) heterotic  string 

theory, we have 

H'O(S4 x I() HO(S4) x H y K )  + H4(S4) x H6(I/i) H6(K) 
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Table 1. Summary of the  results of the anomaly  free C3 E8 and SO(32) super- 

string  theory  after  compactifying  remain  consistent  in  every  even  dimension. 

Manifold 
Dimension 

2 

'16,171 

4 
[16,18] 

Present 
Anomalies 

~~ ~ ~~ 

Gravitational 
and 

Yang-Mills 
and 

Mixed Anomalies 
No 

Gravitational 
Anomalies 
Yang-Mills 
Anomalies 

No 
Gravitational 

Anomalies 
Gravitational 

and Mixed 
and 

Yang-Mills Anomalies 
No Gravitational 

and 
Yang-Mills and 

Mixed Anomalies 

Compactification 
Condition: 

J (tr - &Tr F:) = 0 
M 

Yes 

M = 8  

Yes 
M = 6  

Yes 
M = 4  

No 

H = d B  + W3,5 - &W3y 

M = 8  

Theory 
Consequencer 

Anomaly  Free 

Anomaly  Free 

Anomaly  Free 

Anomaly  Free 

Anomaly  Free 

Anomaly Free 
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FIGURE CAPTIONS 

Fig. 1. Riemann  surfaces for interaction  strings. 

Fig. 2. Strings in interaction of the Yang-Mills type. 

Fig. 3. Strings in interaction of the  Gravity  type. 

Fig. 4. Compact  surface  for  superstrings of the 11 type,  and for  heterotic  strings. 

Fig. 5. Surface  topologically  equivalent to topological sphere  with six handles. 

Fig. 6. Closed surfaces  with V vertices, E edges, F faces, x Euler  characteristic, 

K total  curvature,  and h handles. 

FIGURE h K V E F x  
 SPHERE^ 

0 47r 2 8 12 6  SPHERE^ 
0 4-r 2 2 1 1 

TORUS 

2 -4.R -2 2 8 4 TORUS 

1 0 0 1 2 1 

Fig. 7. Diagrams  where  all  points  are  replaced by loops. All graphs of loops are 

described by the basic  cubic  interaction (a)’. 

Fig. 8. A chain of oriented  strings  (or  topologically  equivalent  a  string to five 

rounds)  in  interaction.  Its  Feynman  graphs  and  its  resultant  strings. 
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