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Orbifold compactifications provide a practical approach to string symmetry breaking. 
They have the potential to bridge the gap between string theory and the physics of the 
standard model. 

As is -by pow well-known, string theories con- 
tain an enormous number of symmetries. For ex- 
ample, in their simplest form, heterotic strings 
describe ten-dimensional supergravity coupled to 
ten-dimensional super-Yang-Mills theory, with 
gauge group Es x Es or Spin(32)/Zz. 
How can these symmetries be broken to SU(3) x 
SU(2) x U(1) in four dimensions? One powerful 
approach to string symmetry breaking was pro- 
posed in a beautiful paper by Candelas, Horowitz, 
Strominger and Witten [l]. This group advocated 
compactifying the heterotic string on M4 x K, 
where M4 is four-dimensional Minkowski space, 
and K is a compact six-dimensional manifdld of 
SU(31 holonomv. a so-called Calabi-Yau soace. 
Toioiogical metf;ods were used to show that ;om- 
pactifications on Md x K give rise to chiral fermi- 
ons in four dimensions. 
The problem with Calabi-Yau spaces’is that they 
are very complicated. They are usually described 
as algebraic ‘Garieties in complex projeitive space. 
Their metrics are hard to find. and it is verv dif- 
ficult to compute the masses And mixings di the 
physical spectrum 121. 
An alternative approach to string symmetry break- 
ing is provided by orbijolds [3, 4, 51. Orbifolds can 
be used to describe: 

l toroidal compactification of strings on MIO-d 
xTd, 

l a singular limit of Calabi-Yau compactifica- 
tion, and 

l gauge symmetry breaking by Wilson lines 
and their generalizations. 

As we shall see, orbifolds are very practical spaces 
for string compactification. The cases we con- 
sider give ezocl solutions to the classical string 

_ equations of motion. This is in striking contrast 
to Calabi-Yau soaces. which are solutions onlv if 
their metrics ar; adjbsted order-by-order in the 
string tension 0’ [6]. 

- 
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In the rest of this talk I will give a simple intro- 
duction to orbifolds. What I have to sav is well- 
known to string experts, but it is t ime to explain 
orbifolds to the community at large. I will try to 
do this by stepping through a series of four exam- 
ples, of gradually increasing complexity. I hope to 
show that - despite their name - orbifolds are, in 
fact, very simple objects. 
To begin, let us define an orbijold 0 to be the 
quotient space formed by dividing a manifold M  
by the action of a discrete group 5: 0 = M/S. 
For our purposes, we will take M  to be flat, either 
Rd or Td. If 5 acts freely on M, the resulting 
orbifold 0 = M/S is a smooth manifold. If the 
action of 5 has fixed points, 0 is an orbifold, with 
singularities located at the fixed point sets. 
For our first example, I would like to consider the 
orbifold 0 = R*/Z x Z. The group Z x Z is --c 
generated by the lattice translations 

91 = e*niP,R, , g* = pifiR2 , (1) 

where RI and R2 are two vectors on the plane. The 
group action has no fixed points, so the orbifold 
0 is a smooth manifold. In this case, it is obvious 
that the orbifold 0 is the torus T* (see Figure 1). 

Fig. 1. The torus T* can be viewed as the 
orbifold R*/Z x Z. 

Let us now consider t,he propagation of closed 
strings on this space. Clearly, closed strings can 
propagate consistently on the covering space R*. ., 
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-However, not all string configurations on R* are 
legal string configurations on T2. The only legal 
configurations on the torus are the tronslotionally 
invariant configurations on the plane. In the lan- 
guage of quantum mechanics, the physical states 
must be invariant under gr and gz: 

PER 1 phys ) = 1 phys ) , (2) 
for i = 1 or 2. The condition (2) forces the 

- _ momenta to be quantized, with eigenvalues Pi = 
MiJ&, for Mi E Z. 
For point particles and open strings, that is the 
end of the story. The physical states on the 
torus are the translationally-invariant states on 
the plane. For closed strings, however, there is 
more to be done. Extra sectors must be ,added to 
the string Hilbert space. These sectors describe 
shijted strings - strings that are open on the plane 
but closed on the torus. The shifted strings obey 
the boundary conditions 

p(n) = x’(o) + N’& , (3) 

for N’ E Z. The N’ = 0 sector contains to honest- 
t-God closed strings, on the plane and on the 
torus. The N’ # 0 states are open on the plane 

- but closed on the torus. They are “soliton” states, 
and they are absolutely necessary for the modular 
invariance of the string. For 0 = R*/Z x Z, there 
are an infinite number of soliton sectors, labelled 
by the winding numbers Nr and N*. In each sec- 
tor of Hilbert space, the physical states must be 
invariant under gr and gz. 
Thus we have seen that string propagation on the 
torus can be identified with string propagation on 
the orbifold R*/Z x Z. For a less trivial example, 
let us now discuss the orbifold 0 = T*/Zz, where 
T* is the torus generated by RI and $2, and Zz 
acts on the torus by a A rotation about the origin. 
As shown in Figure 2, this rotation leaves four 
points invariant. At each fixed point, there is a 

-- - conical singularity of deficit angle A = A. 
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Fig. 2. The orbifold T*/Z2 has four fixed points. 
How can strings propagate in the presence of these 
singularities? In the neighborhood of any one sin- 
gularity, spacetime resembles a cone, with deficit 

-awle A = z at the apex. For an arbitrary deficit 
angle, string propagation would probably be in- 
consistent, for a string encountering the singular- 
ity would develop a kink. However, for the spe- 
cial deficit angles A = 27r - 27r/N, this is not so. 

For these special angles, N copies of the cone ex- 
actly cover the plane. Because of the symmetry 
restriction, the N-fold symmetric string configu- 
rations on the plane are legal string configurations 
on the cone. 
To illustrate this, let us return to the case N = 2, 
or A = A. Then two copies of the cone tile the 
plane, and rotationally-invariant string configura- 
tions of the plane are legal configurations on the 
cone. Because of the rotational symmetry, strings - 
slip smoothly across the singularity, preserving 
the winding number about the singularity, mod- 
ulo two. This is illustrated in Figure 3. 
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Fig. 3. Rotationally-invariant configurations 
on the plane are legal configurations on a cone 
of deficit angle A = A. String propagation 
preserves winding number, modulo two. 

As before, we must also consider twisted sectors. 
The twisted sectors on the cone are analogs of the 
soliton sectors on the torus. For the case at hand, 
the twisted sectors obey the boundary condition 

Xi(n) = g . x’(0) , (4) -c 

where g generates a rotation by A = rr. The 
boundary condition (4) fixes the center of mass 
of the string to lie at the apex of the cone. A typ- 
ical twisted string is shown in Figure 4. Note that 
it has winding number one, modulo two. Twisted 
strings are open strings on the plane, but closed 
on the cone. For the orbifold 0 = T*/Z2, there 
are twisted states located at each of the four fixed 
points of Figure 2. 

::jl IO-86 
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Fig. 4. Twisted strings wrap once around the 
singularity at the apex of the cone, modulo two. 
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Other orbifolds 0 are constructed by dividing a 
torus Td by a group 5 of automorphisms of Td. 
The group 5 is a point group of the torus, and 
its action typically leaves fixed points or even 
fixed tori. By appropriately choosing the torus 
Td and the point group 5, many interesting com- 
pactifications can be studied. All one has to do is 
follow the general procedure, valid for all orbifolds 
0 = M /5: 

- - (1) First, pass to the covering space M. 
(2) Then construct all strings that obey the 

boundary conditions Xi(s) = g . Xi(O), for 
each element g E 5. 

(3) Finally, project onto the $-invariant sub- 
space of states. _ 

The twisted sectors are necessary for the modular 
invariance of the string. 
Let us now move on to discuss our third exam- 
ple, thebrbifold 0 = T6/Z3. This space is known 
as the Z-orbifold [3]. When Md x 0 is used as a 
background for the heterotic string, both- gauge 
and spacetime symmetries are broken. The Z- 
orbifold produces a quasi-realistic spectrum, with 

- N  = 1 supersymmetry in four dimensions, and 
chiral fermions in 27-dimensional representations 
of Es. 
We shall begin by taking the six-torus T6 to 
be the direct product of three identical two-tori. 

- One of the two-tori is shown in Figure 5. We 
. choose to describe T” by three complex coordi- 

- nates, (21, z2, 2s). In terms of these coordinates, 
the Zs generator g takes the following form: 

g = diag (c*+, e*d3, e**i/3) . (6) 
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Fig. 5. The orbifold T6/Z3 has three fixed 
points in each plane. 

The action of g leaves three fixed points in each 
plane, so there are a total of 27 fixed points. Each 
fixed point gives rise to its own twisted sector. 
N&e that g is an element of SU(3), so the orb- 

-ifold 0 = T6/Z3 h as discrete SU(3) holonomy. 
Therefore T6/Z3 is a singular limit of a Calabi-Yau 
space. It produces a tachyon-free spectrum, 
with unbroken N = 1 supersymmetry in four 
dimensions [ 31. 

To describe gauge symmetry breaking, we 
associate an Es transformation h E Es with each 
element g E 5, and we project onto states invari- 
ant under g’ = gh. For the case at hand, we choose 
h to lie in the center of the SU(3) subgroup defined 
by Es + Ee x SU(3). This breaks the gauge sym- 
metry to Es x SU(3), and is the orbifold analog 
of symmetry breaking by Wilson lines. 
The massless spectrum for the Z-orbifold is col- 
lected in Table 1. As expected, the states form 
N = 1 supersymmetry multiplets. The untwisted 
states contain the spin ($, 2) gravitational multi- 
plet and the spin (k, 1) gauge field multiplets, with 
unbroken gauge group Eex SU(3) x Ek. There 
are also spin (0, t) matter multiplets, in various 
representations of the gauge group. The twisted 
states are localized at each of the 27 fixed points 
in the internal space. They also form N = 1 su- 
persymmetry multiplets. As seen in Table 1, this 
simple example gives 36 generations of ordinary 
quarks and leptons - plus lots of extra particles. 
This spectrum is not ideal, but neither is it absurd. 
One might hope that more complicated orbifolds 
will give more realistic results. 

For our final example, we investigate string prop- 
agation on the orbifold 0 = Ta/Z6. This is a 
particularly interesting example, because M2 x 0 
describes a four-dimensional cosmic string embed- 
ded in a Z-orbifold background [7]. The question 
of strings propagating on a cosmic string back- 
ground is of interest for its own sake, and also 
because it gives rise to various subtle issues re- 
lating to compactification on manifolds of SU(4) 
holonomy. 

To describe the orbifold 0, we use complex co- 
ordinates (zi,zz,zs, w). The zi are as above, 
and w describes the zy-plane of four-dimensional 
spacetime. In terms of these coordinates, the Ze 
element g is taken to be 

g = diag ceir/3, eir/3, eir/3, -1) . (7) 
Table 1 

Z-Orbifold: The massless physical spectrum. 

Eljx SU(3) 
Sector Number Spin x EL 

Untwisted 1 (5, 2) (1, 1, 1) 

1 (f, 1) (78, 1, 1) 

1 ($1 1) (1, 8, 1) 
1 (4, 1) (1, 1, 248) 

3 (0, ;) (27, 3, 1) 

10 (0, $1 0, 1, 1) 

Twisted g, g* 27 (0, f) (27, 1, 1) 
81 (0; ;, (1, $3 1) 
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This group element gives rise to a conical sin- 
gularity of deficit angle A = rr, located at the 
origin of the w-plane. If we take the tori in the 
a-directions to be tiny, and that in the w- 
direction to be huge, this background looks, for 
all intents and purposes, like the exterior space- 
time surrounding an infinitesimally thin cosmic 
string source, of tension p = 1/8G. The cosmic 
string runs up and down the z-axis, and is located 

- _ at the origin of the zy-plane in four-dimensional 
spacetime. 

The group element g lies in SU(4), so this back- 
ground is~an eight-dimensional version of a Calabi- 
Yau space. As such, we expect it to be super- 
symmetric and tachyon-free. The complete string 
spectrum can be calculated as described above. 
The tachyon is indeed absent, so the cosmic orb- 
ifold is stable at tree level. Furthermore, the mas- 
sive spectrum turns out to be supersymmetric, 
with unbroken gauge group O(10) x W(3). 

Table 2 
Cosmic orbifojd: the up-moving, massless 
physical spectrum. 

O(10) x SU(3) 

Number Spin _ x EI, Lz 
Untwisted Sector 

1 (:I 2) (1, 1, 1) (odd, even) 

1 (51 1) (45, 1, 1) (even, odd) 

1 G1 1) (1, 8, 1) (even, odd) 

1 ($9 1) (1, 1, 248) (even, odd) 

1 (iv 1) (1‘3, 1, 1) (odd, even) 

1 09 1) m  1, 1) (odd, even) 

1 (;I 1) (1, 1, 1) (even, odd) 

3 (0, f) (16, 3, 1) (even, odd) 

3 (03 ;, PO, 3, 1) (odd, even) 

3 (09 )I (1, 3, 1) (odd, even) 

Twisted Sector g, gs 

- - 

Twisted Sector g2, g4 

Twisted Sector g3 

1 F ) (10, 1, 1) 1 - 

The computation of the massless spectrum is a lit- 
tle more subtle. This is because the massless spec- 
trum is difiercnt for states moving up and down 
the cosmic string. The crucial point is that the 
cosmic string breaks four-dimensional Lorentz in- 
variance. Massive states moving up the z-axis can 
be reversed by an unbroken Lorentz transforma- 
tion, so the massive up- and down-moving spectra 
are identical. Massless states cannot be turned 
around, so the up- and down-moving spectra are 
free to differ - as indeed they do. 
The massless physical spectrum for the cosmic 
orbifold is presented in Tables 2 and 3. The 
states are organized into representations of O(10) 
x SU(3), and their spins and multiplicities are 
indicated as well. Note that strings in sectors 
twisted an odd number of times have no coordi- 
nate zero modes. They are effectively bound to 

Table 3 
Cosmic string: the down-moving, massless 
physical spectrum. 

O(10) x SU(3) 

Number Spin x EL Lz 
Untwisted Sector 

1 cpv 2) (1, 1, 1) (even, even) 
1 (;7 1) (45, 1, 1) (odd, odd) 

1 ($9 1) (1, 8, 1) (odd, ‘odd) 

1 ($1 1) (1, 1, 248) (odd, odd) 
1 (53 1) (1% 1, 1) (even, even) 
1 ($3 1) m  1, 1) (even, even) 

1 ($9 1) (19 1, 1) (odd, odd) 

3 (09 f, (1% 3, 1) (even, even) 

3 (03 $1 (10, 3% 1) (odd, odd) 

3 (09 +I (1, 3, 1) (odd, odd) 
1 

I 1 

3 

Twisted Sector g2, g’ 

i:~ 

Twisted Sector g3 

- - - 

-- - 



the cosmic string, and behave like genuine two- 
dimensional objects. Therefore we do not indi- 
cate their spins, only whether they are bosons 
or fermions. On the other hand, strings in sec- 
tors twisted an even number of t imes do have c+ 
ordinate zero modes in the zy plane; States in 
these sectors are ordinary four-dimensional msss- 
less particles. They are not bound to the string, 
so we are free to list their spins. 

- _ It is important to remember that the coordinate 
zero-mode wave functions transform under the 
holonomy group. This implies that there are dif- 
ferent sets of states associated with even and odd 
angular momenta about the z-axis. In a com- 
pactification down to two dimensions, where the 
dimensions transverse to the string are “small,* 
the states of non-zero angular momentum are 
viewed as having finite mass, and are not included 
in the massless spectrum. In a cosmic string in- 
terpretation, where two of the transverse dimen- 
sions are “large,” all angular-momentumstates are 
treated-on the same footing. 
In Tables 2 and 3, we have classified the states ac- 
cording to their spins and their O(10) x SU(3) rep- 
resentations. We see that the up-moving states are 
not supersymmetric, but that the down-moving 

- states are. This is a generic feature of chiral strings 
compactif ied on manifolds of SU(4) holonomy. As 
discussed earlier, there is no problem with this, 
since the cosmic ‘string breaks four-dimensional 
Lorentz invariance. 

- Since we are describing a cosmic string embedded 
in the Z-orbifold background, we expect states far . 

- from the string to be identified with those of the 
Z-orbifold. This suggests that states in the even- 
twist sectors should fall into multiplets of N  = 1 
supersymmetry, with gauge group Es x SU(3). A 
glance at the tables shows that if we ignore the 
distinction between even and odd orbital angu- 
lar momenta, as is appropriate for states far from 
the string, the even-twist states do fall into Es 
x SU(3) representations. The states are precisely 
those of the Z-orbifold. 
This spectrum as an interesting, almost realistic 
example of a cosmic string that can be built in 
string theory. It is very different from the type 
of string expected in grand unification models, for 
there is no topology to guarantee the stability of 
the solution. The fact that supersymmetry is bro- 
ken for the massless up-movers can be shown to in- 
duce a non-vanishing contribution to the vacuum 
energy, once string loops are taken into considera- 
tion. This contribution is properly interpreted as 
a correction to the tension p of the cosmic string. 
This correction acts as a line source for the dilaton 
field, and results in dilaton emission. 

What then is the final fate of the cosmic string sc+ 
lution when string loop corrections are included? 
There are at least two possibilities. One is that the 
configuration decays by dilaton emission to a con- 
figuration with no deficit angle. Another is that 
there might be a solution to the string equations 
of motion with a renormalized but non-zero deficit 
angle, and a spatially varying dilaton field. 
It would be very interesting to find such a 
solution. It might help develop an understand- 
ing of how the cosmological constant and dilaton 
vacuum expectation value are determined once 
supersymmetry is broken. In cosmic string com- 
pactifications, supersymmetry is broken in the 
most innocuous possible way - only the mass- 
less modes are not supersymmetric. Analyzing ra- 
diative corrections and their effect on the dilaton 
field should be much simpler here than in a string 
theory where supersymmetry breaking affects all 
string modes. In addition to providing a useful 
laboratory for addressing these purely string- 
theoretic questions, it is possible that the renor- 
malized values of the string energy density and 
deficit angle might be such that these strings are 
of cosmological interest.. 
In this talk I have given a simple introduction to 
orbifolds. The orbifolds presented here are consis- 
tent, exact solutions to the classical string equa- 
tions of motion. I haveshown how the singularities 
in orbifolds can be thought of as cosmic-string- 
like singularities in spacetime. Much work needs 
to be done to more fully explore orbifold com- 
pactifications of string theory. As far as I know, 
there is still no acceptable orbifold compactifica- 
tion with gauge group SU(3) x SU(2) x U(1) in 
four dimensions. It would be wonderful to arrive 
at a standard-model orbifold, in order to make 
some connection between string theory and the 
world in which we live. 
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