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Abstract 

The Dirac form fac/ors FFN ’ of fiucleons are analyzed to leading ordef 
in the strong coupling constant as(Q2) and leading twist using perturbative 
&CD. !l?he effects of different choices of the nucleon distribution amplitudeh 
on the leading twist result are explored. These results are compared with 
recent experimental data for the proton. We show that it is possible to fit 
the data for Fr in the range 10 (GeV/c)2 5 Q2 5 30 (GeV/c)2 by evaluating 
the strong coupling constant as(Q2) at th e exact gluon kinematics for each 
diagram of the process within the integrals over momentum fraction which 
g&ern the perturbative QCD prediction. 
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1. Introduction 

’ The study of quantum chromodynamics,(QCD) by both perturbative 
and nonperturbative means has progressed rapidly over thd past several 
years, and QCD now seems compatible with experiment in several areas’. 
Nonetheless convincing ev?ence for the validity of QCD by precise calcu- 
lations of strong interaction dynamics has not yet been forthcoming. One’ 
potentially stringent test of any theory of the strong interaction would be to 
correctly calculate the hadron form factors which control exclusive processes 
such as hadron pair production, electro- and photo-production, and elastic 
lepton-nucleon scattering. Since the proton and neutron are components of 
ordinary matter, knowledge of their structure is of basic general interest in 
high energy physics, and has been the focus of much work in both experiment 
and theory. Recent experimental measurements’ of the cross section for elas- 
tic electron scattering from the proton have improved the precision of the 
data in the range of momentum transfer squared 10 5 Q2 5 30 (Gey/c)2. 
The proton Dirac form factor F[(Q2) d ominates the elastic scattering cross 
section at high Q2 and so can be extracted from these data. 

Perturbative QCD calculations for nucleon form factors have been done 
by several previous author&lo. Taken together, these calculations indicate 
that the leading order, leading twist QCD result for Fr is sensitive to the 
form chosen for the distribution amplitude for the momenta of the quarks 
in the proton, and to the method used to evaluate the argument of the 
running strong coupling constant os(Q2). At the same time, nonperturbative 
methods for calculation of hadron properties have advanced substantially 
in the past few years. Suggestions have been made for the form of the 
distribution amplitudes for mesons and nucleons on the basis of the method 
of QCD sum rulesgel and from lattice QCD calculations14. There are also 
hints that distribution amplitudes can be calculated directly from hadron 
momentum-space wavefunctions and show the same general features as those 
calculated from QCD sum rules and lattice techniques, once the basic spinor 
structure of the theory is taken into account15. 

Examination of the behavior of the proton Dirac form factor as extracted 
from the new experimental data2 bears out the basic QCD expectations of a 
logarithmic departure of F: from the l/Q4 falloff expected from dimensional 
scaling arguments. This encourages the pursuit of a lowest order perturba- 

tive QCD analysis. The dominant logarithmic correctionsiin the lowest order 
come from two powers of the QCD running coupling constant as(Q2), corh 
responding to the renormalization group corrections to the propagators of 
the two exchanged gluons. Other logarithmic corrections come from the 1 
evolution of the quark distribution amplitudes, as discussed below, but are 
suppressed due to the fractional powers of the corresponding anomalous di- 
mensions. This is different from th,e analogous QED case, which has a well 
known boundary condition a M l/137 at the subtraction point for any renor- 
malization scheme. For form factor calculations in the strong interaction, it 
has been shown16 that the argument of the running coupling constant should 
be taken as the square of the momentum transfer of the exchanged gluon in 
order to make the perturbation theory meaningful. This was argued from 
the convergence of the perturbation series and can be justified in any process 
which doesn’t involve triple or quartic vertices in the lowest order. 

Up to now the evolution of the running coupling constant has only been 
applied to nucleon form factor calculations for the process as a whole, ignor- 
ing differences between individual subdiagrams. This is unfortunate, as for 
light quarks the gluons can be exchanged over a wide range of momentum 
transfer, with four momenta that in general differ from diagram to diagram. 
Approximate attempts have been made9 to account for the distribution of 
momenta among the gluons by evaluating the running coupling constant 
as(Q2) at intermediate values of the full Q2 of the photon. So far, however, 
there has been no convincing method for making the choice of the interme- 
diate arguments. 

The purpose of this paper is to present a more careful analysis of the 
perturbative QCD approach to calculation of both normalization and depen- 
dence on momentum transfer of nucleon form factors. The effects of different 
choices of the distribution amplitude @(x, a”) for the momenta of the quarks 
in the nucleons are studied. An improved analysis of the argument Q2 in 
momentum transfer squared of the running strong coupling constant 08(Q2) 
is given. It is found that agreement with the data for the proton Dirac form 
factor F[ may be obtained by evaluating the coupling constant at the ex- 
act gluon kinematics for each diagram of the process within the integrals 
over momentum fraction which govern the perturbative QCD prediction. It 
is necessary to introduce a cutoff into the formula for os(Q2) to prevent 



the coupling constant from becoming infinite for vanishing gluon momenta. , 
The sensitivity of the leading twist result to different choices of the’cutoff , 
is explored. Results for Fr for th e neutron are also given jand compared 
with previous ‘calculations. Since the neutron and proton h&e a common 
hadronic wave function, these predictions for Fr are parameter-free and pro- 
vide a potentially useful tdol for discriminating among the various models of 
the nucleonic wave function by experiment. 

, 
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2. Theoretical Framework 

We begin with a brief review of the perturbative formalism for exclusive 

, 5534Al 6-86 

processes. Applying light-cone perturbation theory, the QCD expression for 
nucleon form factors can be factoredl’ . m the asymptotic momentum transfer 
limit into a convolution of three amplitudes: 

Figure 1. Factorization of scattering amplitude for exclusive pro- 
cesses involving nucleons. The distribution amplitudes + contain 
the nonperturbative dynamics of the nucleon. The hard scattering 
kernel TH is calculated in perturbation theory. 

0) 

where [dz] E dzldz2dzz6( 1-C; zi). The photon transfers a four-momentum 
q to the nucleon. For spacelike processes Q2 E -q2 is a positive quantity, and 
Fl and F2 correspond to total ,helicity conserving and total helicity flip in- 
teractions, respectively. The variables Xi and yi represent the fraction of the 
nucleon longitudinal momentum carried by each of the quarks in the initial 
and final states. The function Q(z, @) is the probability amplitude for the 
nucleon to exist as three valence quarks with momentum fractions xi, colin- 
ear up to the momentum scale GZ E rnk ziQ. The equivalent distribution 
amplitude for the final state is @*(y, ai), with Gz E mini YiQ. (Hereafter 
we will suppress the subscript on Q whenever it can be understood in con- 
text.) These distribution amplitudes contain the nonperturbative dynamics 
of the nucleon. Th e ar scattering amplitude TH(z, y, Q2) contains the h d 
main dynamical dependence of the perturbative calculation and can be cal- 
culated in terms of quark-gluon subprocesses. This factorization is indicated 
graphically in Fig. 1. 

The nucleonic distribution amplitude @N(Z, 6”) may be written in terms 
of its spin, flavor, and orbital components in the symmetric form 

* fN(G2) 
@~(a, x2, x3, ci”) = - 

86 
utul&N(% s2, =s, g”, 

+ulutdth(X,, 21, X3, a”, (2) 

-uTutdl [d&l, x3,X2, a”) + 4N(s2, ‘% s19 8’11) 

for the proton. For the neutron, u should be interchanged with d, with 
an overall change of sign. (Since the color factor eijk is antisymmetric, the 
total nucleou wavefunction is antisymmetric as required.) This effective rep- 
resentation can be easily derived from the form given in Ref. 3 by gathering 
terms according to the ordering of the flavors. Equation 2 contains an arbi- 
trary phase which will not affect the final answer. However, it is important to 
note that the phase of the nucleon spin down state is opposite to that of the 
spin up state. This relative phase difference is important to 6x the overall 
sign of F2 compared to that of Fl in calculations to non-leading twist. The 
dimensional constant fN is set by the value of the nucleonic wave function 
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at the origin and has been calculatedgpll to be fN(j.4;) = (5.2 f 0.3) X 10v3 1 

(GeV/c)2 at &$ M  1 (GeV/c)2. 
. 

I 
Diagrams that must be evaluated for the calculation of the/hard scatter- 

ing kernel for nucleon form factors are shown in Fig. 2. The notation (z c-t y) 
in Fig. 2 indicates that the 

I 
initial and final quark lines are to be exchanged 

to obtain the remaining diagrams. Only some of these diagrams contribute 
to the leading twist result, as shown in Table 1 below. 

Cdl 

23 
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* 

(el 

I, 

+ ( x <--> y I 

Figure 2. Diagrams which must be evaluated in the leading order 
calculation of nucleon form factors. The contributions of each of 
these diagrams to the leading twist result depend on the helicities of 
the quarks and are listed in Table 1. The photon is shown attaching 
to the first quark in each of these diagrams. The contributions of 
diagrams in which the photon attaches one of the other two quarks 
can be obtained through the use of permutation symmetries on the 
expressions for the diagrams given above. 

2.1 DIRAC FORM FACTORS TO LEADING TWIST 

The Dirac form factors FFN can be written in a convenient form by 
expanding Eqn. 1 and inserting the distribution amplitudes from Eqn. 2. To 

6 

leading twist, we only n*d to retain terms, in which the helicity of all three 
quarks remains unchanged during the interaction. Adopting the notation 

#‘123(x) = dNtxl> X2? 239 Q2) and 2rl23(x) = &32(x) + $231(X), the QCD 
expression for the proton Dirac form factor is k 

F:p(Q2) =g / [dxl[dYlfN(~:)fN(6;) 

h23(+#123(Y) [eu(tltl Tl itit) + editi T2 

+~TI~s(x)TI~s(Y) [eu(ttll TI Ittl) + eu(ttll T2 

+ ed(ttll T3 1 

tit) + ed(titl T3 bit)] 

ttu 

where the symbols (tltl q [tit) G (utuldt I q I utuldf) indicate 
the initial and final quark helicities for an interaction in which the photon 
couples to the i’th quark. The quark charges are e, = 213 and ed = -l/3 for 
the proton. For the neutron, e, c) ed. Equation 3 can be further simplified 
by the use of permutation identities such as (tit1 Tl Itlt) = (Jttl T2 lltt 

)(1 f-t 2), where the symbol (1 H 2) indicates that the variables associated 
with the first and second quarks are interchanged. By gathering the terms as 
coefficients of the factors (tltl Tl Itlt) and (Jttl Tl Iltt) with appropriate 
changes of the dummy variables of integration in the distribution amplitudes: 

F:(Q2) =$ J[dXl[dYlfNtQf)fN(4:, 

(0 e~(hzs(~)4r&) + 2Tls2(x)Tm(~) + ~TsI~(x)TsI~(Y)) 

+ edh21(Xhh21(Y)] (tit1 Tl Itit) 

+[edm(z)hs(Y) + 2edh(x)h(Y)] (It?/ TI ll?T)} + (x ++ Y)) . 

(4 
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wavefunction @(z iy  z l) up to a maximum four-momentumticale 8 in z l such 
that Q  = miq(xiQ) is  thb minimum momentum transfer in the process. The 
function @(x,  G ”) re p resents the probability amplitude for finding the valence 
quarks ,to be colinear up to the momentum sca le 6 with longitudinal mo- 
mentum fractions x i of the total momentum of the hadron. Unfortunately b 

the distribution amplitude for nucleons is  not yet well known, but sugges- 
tions have recently, been made for its  form based on the use of QCD sum 
rules ‘-ll. Although these suggestions may be preliminary, they provide a 
useful starting point for perturbative calculations and can be used to gen- 
erate testable predictions of the theory. In this way, electromagnetic form 
factors can provide a sensitive method for investigating. the valence quark 
distribution amplitudes of nucleons. 

Table 1. Leading twist contributions to terms in the scattering am- 
plitude for nucleon form factors. The diagram indices refer to F ig. 2. 

Diagram Contribution to (IJII 2’1 IIlI) Contribution to’(lffI 7’1 Iltt) 
I 

I 

(4 
a,((1 - x1)(1 - YI)Q~)~&sYsQ~) 

Q4(1 -  ~l)~(l- Y~)~XSYS 
0 

(b) 
a,((1 -  x1)(1 -  y l)Q2)4x2~2Q2)  

Q4(1 -  ~ l)~(l- ~1)~~2~2 
0 

(4 0 0 

(4 0 0 

(4 0 0 

(f 1 
+~Y~Q~)~s(xsYsQ~)  

-Q4(1 -  X1)(1 -  yS)x2y2SSyS 
0 

(4 0 
c+2y2Q2)~s(~s~sQ2)  

Q4(1 -  23)(1- y2)~2y2~3yS 

Table 1 gives the leading order, leading twist contributions for each 
diagram in F ig. 2 to the terms (tltl Tl Itlt) and (JIIl Tl Ilft). 

’ 3. Distribution Amplitudes 

3.1 OVERVIEW  AND HISTORY 

Detailed analyses for exc lusive processes require knowledge of the va- 
lence-quark distribution amplitudes 4 (Xi 9 6”) of the hadrons’. The distribu- 
tion amplitude is  defined as the integral of the light-cone momentum-space 

3.2 MODEL FORMS FOR 4~; EVOLUTION 

In the present work we take three different models for the nucleon dis- 
tribution amplitude from recent suggestions in the literature. Chernyak and 
Zhitnitskyg proposed a form for #N(z, g”) designed to have the moments 
predicted by their analysis of QCD sum rules. Gar i and StefanislO  proposed 
a different form based on their calculations of the leading twist QCD results 
for Fr and FF at Q2=20 (GeV/c)2. Most of the moments of the distri- 
bution amplitude of Gar i and Stefanis are in agreement with the sum rule 
predictions, but some moments are far outside the range of allowed values 
calculated in Ref. 9. The QCD sum rule constraints on the moments of 
4~ were recalculated by King and Sachrajdall, who obtained results sub- 
stantially s imilar to those of Chernyak and Zhitnitsky, but different in some 
details. King and Sachrajda also proposed a model form for 4~ to match 
their moment predictions. 

The three models for #N are given in Table 2 as coefficients ai of a 
decomposition in terms of the first s ix  Appel polynomials Ai( The Ap 
pel polynomials are eigenfunction solutions of the evolution equation3 for 
dN(z, g”). The model forms are given at a squared momentum transfer 
sca le pi = 1 (GeV/c)2, which corresponds to a typical value of Q2 in the 
interaction9 of roughly 20 (GeV/c)2. T  o evaluate the distribution amplitudes 
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or evolve them to other values of Q2, the formula I 

where 4as(z) ~l?Ozlz2s3 and G2 = min(ziQ)2 
i 

is used, along with the corresponding evolution in fN 

fN(a2) = fN(P:)($$)2”3p) (6) 

Here p = 11 - 2nf/3 h as the value 9 for nf = 3 flavors. The coefficients of 
the Appel polynomial decomposition of the model forms were obtained by 
direct numerical integration using the expression31’ 

The coefficients listed in Table 2 are consistent with the moments listed 
in references 9, 10, and 11 within the precision to which the moments were 
presented by those authors. The Appel coefficients are given here to three 
significant digits in order to accurately represent the proposed polynomial 
forms for the distribution amplitude. The QCD sum rule predictions for the 
moments are in general only known to one or two significant digitsg*ll. 

3.2.1 Main Features of Model Distribution Amplitudes 

The models decomposed in Table 2 are all very asymmetric in the dis- 
tribution of momentum among the valence quarks of the nucleon. In the 
distribution amplitude of Chernyak and Zhitnitsky (CZ), roughly 70% of the 
nucleon momentum is carried by the first quark. (See Eqn. 2 for interpreta- 
tion in terms of spin and flavor ordering.) The model of King and Sachrajcla 
(KS) is slightly more asymmetric than that of CZ, but is otherwise similar. 
As will be seen shortly, this increased asymmetry in momentum balance leads 
to a larger value of Ff than that calculated with the other models. The clis- 
tribution amplitude of Gari and Stefanis (GS) is qualitatively different from 
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Table 2. Coefficients bf Appel polynomial decompositions of the ny- 
clean distribution amplitude &(z,‘g2) for the models of Chernyak ’ 
ancl Zhitnitsky (Ref. 9) [CZ], Gari and Stefanis (Ref. 10) [GS], and 
King and Sachrajcla (Ref. 11) [KS]. The decompositions given are j 
for the model forms at an effective scale ~1: kc 1 (GeV/c)2. Evolu- 
tion of the distribution amplitudes to other values of G2 is described 
in the text. 

i ai [CZ] a; [GS]’ a; [KS] Ni bi 4 (4 

0 8 1.00 1.00 1.00 101 

1 0.410 0.391 0.310 2112 2019 x1-x3 

2 -0.550 -0.588 -0.370 7/2 24/9 2-3(21+x3) 

3 0.357 -0.749 0.630 63/10 32/9 2 - 7(x1 + x3) 

+8(x; + x;) + 4x123 

4 -0.0122 0.0176 0.00333 567/2 40/9 xl - x3 - (4/3)(x; - xi) 

5 0.00106 0.574 0.0632 81/5 42/9 2 - 7(51+x3) 
+(14/3)(x! + xi) + 14x1s: 

those of CZ and KS. In the model of GS, most of the nucleon momentum 
is distributed roughly equally between the first and third quarks, and only 
about 15% of the momentum is carried by the remaining quark. 

3.2.2 Dependence of F[ on Form of 4~ 

Before proceeding to the numerical results, we give here a qualitative 
description of the way in which the leading order QCD result depends on 
the form of the distribution amplitude. 

Inspection of the leading twist formula in Table 1 for the contributions 
to Fl shows that there are roughly six powers of terms like xi, (1 - xi), 
yi, or (1 - yi) in the denominator of TH(x, y, Q2). To leading twist, the 
masses and transverse momenta of the quarks are ignored and the integration 
limits are 0 and 1 in the momentum fraction variables. This situation would 
lead to divergent integrals if the endpoint singularities were not cancelled by 
sufficient powers of xi, etc., in the numerator from IN and dN(y). The 
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asymptotic form das(z) =  120 ~1x223 introduces just enough powers of xi 

and yi to prevent the endpoint singularities in TH from causing the integrals 

to be divergent. 

When the symmetric asymptotic form is modified by multiplicative 

asymmetric factors as in Eqn. 5, the integrals are still convergent, but the 

presence of additional probability amplitude near the endpoints produces 

an increase in the result for Fl. In fact, it has been shown 314j5 that use of 
the asymptotic distribution amplitude daS(z) by itself yields F: = 0 if the 

difference between the arguments of os(Q2) is ignored. With highly asym- 

metric distribution amplitudes such as the ones listed above, it is possible to 

obtain results for F[ in agreement with experiment. Numerical results for 

this calculation and for Fr of the neutron are given in the next section. 

The model forms for 4~ given above are also all highly relativistic in 

the sense that no constraints are placed on the range of allowed values of 

the momentum fraction variables xi. In contrast, the variables xi take on 

only discrete values in the nonrelativistic distribution amplitude 4NR(z) =  

6(x1 - ml/M)6(22 - ma/M) appropriate for nucleons made of very massive 
quarks. The nonrelativistic distribution amplitude completely avoids the 

singular region of TH and in fact produces a negative leading twist result for 

Fr in the asymptotic Q2 limit 4*81g. When higher twist effects18 due to the 

quark masses are included, the nonrelativistic result for Fr becomes 

F;(r)= ; (;[6+23r4k2]) where r E Q2 
4M2’ (8) 

The constant C can be estimated by requiring F:(O) to be the charge of the 

proton according to the method given in Ref. 18, yielding the replacement 

c/r4 +  (1/3)(8c2/[27(r +  E)~])~ with E 3 9zfN(rS/(2&M2) M  l/4. With 

this formula, Ff becomes positive at low momentum transfer, crosses zero at 

Q2 M  15 (GeV/c)2, and is negative at high momentum transfer, but remains 

one or two orders of magnitude below the experimental data for values of Q2 

above about 1 (GeV/c)2. F’g 1 ure 3 shows the nonrelativistic QCD result in 

comparison with the data for Q4Ff(Q2) as extracted from elastic electron- 

proton cross section data assuming GP - GP E - M/ ~1 p. Other higher twist effects 

due to transverse momentum can be neglected in the massive-quark limit, so 

0 

I I I I 

- 0 Previous Data 
l SLAC E-136 

0 
0 

Non-relativistic QCD resu 
9 w/ higher twist tern 
< 
- 

I I 1 I 

10 20 30 
Q2 [(GeV/c)'l 

Figure 3. Comparison of leading order QCD calculation using non- 
relativistic distribution amplitude ~NR E 6(z1 - ml/M)6(22 - 
m2/M) with data for Q4F:(Q2). Higher twist terms proportional 
to the quark masses are included using the formulas of Ref. 18. The 
data are from References 2, 19, and 20. When binding energy ef- 
fects are included as described in the text, the nonrelativistic QCD 
result is roughly consistent with the trend of the data at very low 
momentum transfer, but does not match the data above Q2 = 1 
(GeV/c)2. 

Eqn. 8 represents the complete leading order result for Fr when the nonre- 

lativistic distribution amplitude ~NR( ) x is used. These considerations show 

11 12 
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that a highly relativistic form such as the ones given above must be used to 

obtain results for F[ that are consistent with experiment. 

4. Numerical Results 

4.1 as(Q2) OUTSIDE INTEGRAL 

As can be seen by inspection of the terms in Table 1, a correct treat- 

ment of the leading twist calculation would require cys(Q2) to be evaluated 

separately for each exchanged gluon in each diagram that contributes to the 

result. Up to now the leading twist calculation has only been done with the 

strong coupling constant czs(Q2) evaluated outside of the integral, generally 
at some intermediate argument of Q2. The integration in Eqn. 1 can be done 
analytically in that case 21. To check and verify the previous results3*‘11’, we 

have repeated the previous calculations and present also a new result for Ff 
as calculated using the distribution amplitude of King and Sachrajda”. 

To treat the calculations with different distribution amplitudes cdnsis- 

tently, we evaluated the two leading powers of 09(Q2) at intermediate values 

of the argument using the formula ai(Q2) = czs(Q2/36)cz9(Q2/9). This for- 

mula was proposed by the authors of Ref. 9 to roughly match the gluon 

momenta expected for the most probable values of the quark momentum 

fractions in their model for 4~. The basic features of the model form of KS 

are very similar to those of the model form of CZ, although (contrary to a 

statement in their paper), the KS model is slightly more asymmetric. Gari 

and StefanislO used the same formula for &i(Q2) as proposed by CZ, even 

though the model they propose for the distribution amplitude has a sub- 

stantially different shape. For consistency, we have used the same definition 

for &i(Q2) for all three models in the treatment given in the following sec- 

tion. In a later section, an improved treatment is given which eliminates the 

ambiguity regarding the proper arguments with which to evaluate a5(Q2). 

Results of our calculation of the proton and neutron Dirac form factors 

with the replacement of fi: for the two powers of czQ in the terms of Table 1 

are given in Table 3 under the heading ‘cys outside integral”. The pub- 

lished results of references 9 and 10 are also listed in Table 3 for comparison. 

We verify the numerical results given in Ref. 10, but find small numerical 

differences2’ with those of Ref. 9. The remainder of the table gives our re- 

14 

sults for F: and Fr at Q2 = 20 (GeV/c)2 with an impioved treatment of 

the argument of os(Q2) as discussed below. The integration uncertainty on 

our results is approximately rfO.02 (GeV/c)4. 

Table 3. Results of numerical integration of Eouation 4 for the pro- - 
ton and neutron Dirac form factors FFN at Q =20 (GeV/c)2 un- -2 

der various assumptions. The two columns at the left are previous 
calculations and are listed here for comparison. The middle three 
columns give our results using &$(Q2) G ozs(Q2/36)cys(Q2/9) M 0.3 
evaluated outside the integral. 

47rl[B WQ2/A2)1 
The one-loop formula a9(Q2) = 

was used for these calculations, with the value 
A2 = 0.1 GeV for the QCD scale parameter. The rightmost columns 
are our results with an improved treatment of the running coupling 
constant as described in the text, using an effective dynamical gluon 
mass squared of rnz = 0.3 (GeV/c2)2. 

Previous Calculations 

og (Q2) Outside Integral 

Model: CZ%= GSlC CZ GS KS CZ GS KS 

4 P 

(G:V;)’ 

-Q4Fr 
(GeV/c)l 

-F? 

Ff 

1.10 0.86 0.88 0.89 1.28 0.86 0.94 1.28 

0.57 0.07 0.43 0.09 0.52 0.42 0.10 0.53 

0.5 0.08 0.49 0.10 0.41 0.49 0.10 0.41 

T CY~ Outside Integral czJ Inside Integral 

af(Q2) E CZ~(~)CY~(~) rni = 0.3 (GeV/c)2 

4.1.1 Comparison with Proton Data, czs(Q2) Outside Integral 

Figure 4 shows the leading twist QCD results for the three different 

models for 4(z,G2) h w en the coupling constant is evaluated outside of the 

integral. Although the magnitude of Fr is approximately correct at Q2 M 20 

(GeV/c)2 with these models, the dependence of the result on Q2 does not 

agree with that indicated by the data. 
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Figure 4. Leading twist QCD calculation of Fr(Q2) with the strong 
coupling constant os(Q2) evaluated outside of the integrals using 
the formula &.i(Q2) = czs(Q2/36)os(Q2/9) and A = 0.1 GeV. The 
magnitude of the QCD result is approximately correct within the 
factor-of-2 uncertainty quoted by the authors of References 9 and 
11. The notation is explained in the text. 

It would be possible to improve slightly the apparent agreement of these 

predictions with the proton data by comparing them instead with values of 

the magnetic form factor GL(Q2) = F[(Q2) + J’;(Q2). (Here Fl is the 

form factor corresponding to total helicity flip of the proton in spacelike pro- 

cesses.) To leading twist, Fi(Q2) = 0 an i is impossible to distinguish the d t 

calculation of GpM from that of $‘. Nonetheless the leading twist calculation 

seems to be more readily identified as Ff, since it includes only interactions 

in which there is total helicity conservation. The comparisons with the data 

are given here under that assumption. 

We note in particular the disagreement of the results using the dis- 

tribution amplitude of Chernyak and ZhitnitskyQ (labeled CZ in Fig. 4) 

with the results published by those authors. The slope with Q2 of the 

curve they give does not match the slope given above, though the calcu- 

lation was done using equivalent assumptions. To reproduce the CZ curve 

as shown in their publication9 one would have to use the quantity &f(Q2) E 

as(Q2/3f+(Q2/9) t o calculate the magnitude of the form factor, but use 

of(Q2) with the full Q2 argument to obtain the Q2 evolution, which would 

clearly be inconsistent. 

4.1.2 Calculation for Neutron Fl, cxs(Q2) Outside Integral 

Unfortunately it is difficult to attempt a comparison of the leading twist 

QCD results for Fr with data, since no experimental separation of the neu- 

tron form factors has been performed above Q2 fi: 3 (GeV/c)‘. Experimental 

data do exist23 for electron scattering from deuterium from which the elas- 

tic electron-neutron cross section can be extracted up to Q2 = 10 (GeV/c)2. 

References 24, 25, and 26 contain examples of fits to proton and neutron form 

factor data in terms of the parameters of vector meson dominance models for 

the photon-nucleon coupling. The data do not yet allow a model-independent 

separation of FT and FF to be made at high Q2. 

We present the leading twist QCD results for FF in Fig. 5. The values of 

FF calculated using the model distribution amplitude of GS are about four 

times smaller in magnitude than those calculated with the models of KS or 

CZ. The parameters of the GS model (Ref. 10) for d(z, 6”) were chosen in 

order to yield such a small result for FT. 

4.1.3 Effect of Evolution on Fl 

Using Eqns. 5 and 6, we studied the effect of evolution on the leading 

twist result for F: as given by integration of Eqn. 4. With either the model 

of CZ or that of KS, evolution of 4~ as given by Eqn. 5 produced no effect 
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Figure 5. Leading twist QCD calculation of Fr(Q2) with the strong 
coupling constant Q~ (Q”) evaluated outside of the integrals using 
the formula 6z(Q2) = as(Q2/36)a8(Q2/9) and A = 0.1 GeV, as in 
Fig. 4. 

on the results to within the numerical integration accuracy of approximately 
&2% in the range lof interest for comparison with the experimental data 
(10 5 Q2 I 30 (GeV/c)2). The Q2 d p d e en ence of Fr calculated with the 
model of GS differed slightly from that calculated with the other two models, 
as shown in Fig. 4. Inspection of the coefficients in Table 2 shows that the 
model of GS requires a large coefficient for As(x), which is the highest order 
Appel polynomial in the decomposition. Presumably this is the reason for 

*_.I 
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the increased Q2 variatiok of the form fact ? r results whei’the model form 
of GS is used. On the other hand, the pr&ence of such a ‘large coefficieht for 0 
the last term of the truncated expansion would indicate that the expansion 
should pioperly be carried to a larger number of terms. Thus the evolution 1 
of the model form for 4(x, 6”) of GS may be less reliable than that of the 
other two models. 

The variation of fN goes as 2/?7 powers of the ratio ,of coupling con- 

stants ~s(~2)/~s(~~I) a an can be calculated outside of the integral to a good 
approximation, since the main Q2 dependence of the integral in Eqn. 4 is 
cotitainecl in the two powers of CX~ in TH, as listed in Table 1. 

4.2 IMPROVED TREATMENT OF as(Q2) 

More reliable results for the magnitude and Q2 dependence of the nu- 
cleon form factors should be obtained when the arguments of the strong 
coupling constant are correctly evaluated as indicated in Table 1. An im- 
mediate problem arises if this is attempted with the usual one-loop formula 

4Q2) = 4d[P log(Q2/A2)1, since the leading twist formulas given in Ta- 
ble 1 allow os to be evaluated at zero momentum transfer. Conceptually this 
is disastrous from the point of view of perturbative &CD, since as Q2 + 0 
the assumption that the interaction can be modeled by minimal gluon cou- 
pling breaks down. In this case, however, the scale in Q2 is set by the photon 
momentum, and if the momentum carried by one of the gluons is very small, 
then that of the other gluon must be large. In such a situation other tech- 
niques may be applied to evaluate the nonperturbative modification to the 
contribution from the endpoints of the integration. In particular, Cornwall27 
has proposed the introduction of a cutoff in the formula for a, in the form 

as(Q2) = 4n/[Pg((Q2 + 4m3,‘A2)1 (9) 

where mg is interpreted as a dynamical gluon mass, with a value of typically 
about 0.5 GeV/c 2. For Q2 >> mf, this formula coincides with the one loop 
version, but at very low momentum transfers, this formula ‘freezes” the 
coupling constant to some finite (not necessarily small) value. 

With such a formula, the integrations of Eqn. 4 become possible, and 
as(Q2) may be evaluated within the integrals. We emphasize that similar 



results should be obtained using any form of cutoff which prevents 08(Q2) 

from becoming infinite. We chose to use the formula of Eqn. 9 because of its 

simple analytical form and because it has arisen in a higher order analysis2’. 

4.2.1 Comparison with Proton Data, c+(Q2) Inside Integral 

Figure 6 shows the results of the improved calculation for three values of 

the dynamical gluon mass mg, using the distribution amplitude of Chernyak 

and Zhitnitsky. We see that the calculation agrees very nicely with the data 

for the value rni = 0.3 (GeV/c2)2. Figure 7 shows the results of the same cal- 

culation for the three models for d(z, Q”) d’ lscussed above, using the values 

rni = 0.3 (GeV/c2)2 and A = 0.1 GeV in the Cornwall formula for 08(Q2). 

The normalization of the leading twist result for Fr is different for each of 

the three models for (p(z, Q”), b u within the factor-of-two range of accuracy t 

suggested by the authors of references 9 and 11 for the normalization uncer- 

tainty presently expected from the QCD sum rules. The slope of the result 

with Q2 is compatible with the trend of the data for all three models. 

We conclude that the inclusion of rr, in the integral with the kinemati- 

tally correct arguments as discussed above dramatically improves the agree- 

ment of the leading twist QCD result with the experimentally observed values 

of F[(Q2). The QCD results become sensitive to the value chosen for the 

dynamical gluon mass mg and to the exact choice of the model for the nu- 

cleon distribution amplitude d(z, 6”). With the distribution amplitudes of 

Chernyak and ZhitnitskyQ and Gari and Stefanis, optimum agreement with 

the data is obtained for rni w  0.3 (GeV/c2)2 when A = 0.1 GeV. If the 

model of King and Sachrajda is chosen instead, then the data support the 

choice rni M  0.6 (GeV/c2)2. 

To check whether the observed sensitivity of the results to the choice 

of mg was due to the neglect of higher twist terms, we repeated some of 

the calculations of Ff using the arguments of 09(Q2) that correspond to the 

gluon propagators with the inclusion of terms involving the quark masses. 

The effect on the magnitude of Ff was less than 5%, so higher twist terms 

were neglected in the argument of 08(Q2). 

It is clear from Figures 6 and 7 that the leading twist QCD prediction 

for Ff would begin to deviate from the trend of the data below Q2 M 10 

(GeV/c)2. At low momentum transfer we would expect effects due to the 

2 mg = P .3- 

mg2=0.5 
- 

a, Inside Integral 
0 
0 CZ Model for &  

P a 1 I I I 
0 10 20 30 

Q2 [(GeV/c)2l 
Figure 6. Leading twist calculation of Fr(Q2) with the distribution 
amplitude of Chernyak and Zhitnitsky (Ref. 9) and with the ar- 
guments of the running strong coupling constant 08(Q2) evaluated 
at the correct values for each diagram as listed in Table 1. The 
results are shown with three choices for the dynamical gluon mass 
as applied using the formula for a8 proposed by Cornwall (Ref. 27) 
and A = 0.1 GeV. 

intrinsic transverse momentum of the quarks to become important, as dis- 

cussed in Ref. 23. 
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experimental values of J$ woula provide 
ii 

i” n independent test of the calcu- 
lations, since in principle there are no free parameters’ left which could be 
adjusted to obtain agreement with ,the data once the values of mg and A 
have been fixed by comparison with the proton data. As Fig. 3 shows, the ) 
magnitude of the leading twist QCD result for Fr is substantially smaller 
when the distribution amplitude of GS is used than when the model forms 
of CZ and KS are used. New experimental data for the neutron form factors 
could help to distinguish between the models for the nucleon distribution 
amplitude. 
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Figure 7. Leading twist calculation of the proton Dirac form factor 
with three different models for the distribution amplitude 4(x, a”) 
and with the arguments of the running strong coupling constant 
os(Q2) evaluated as in Table 1. The results are shown for the value 
rni = 0.3 (GeV/c2)2. 

4.2.2 Calculation for Neutron Fl, 09(Q2) Inside Integral 

The results of equivalent calculations for the neutron Dirac form factor 
with the improved treatment of os(Q2) are shown in Fig. 8 as calculated 
using the different models for the nucleon distribution amplitude. We em- 
phasize that the perturbative QCD calculation of FF is exactly the same as 
that for F:; only the charge factors in Eqn. 4 change. A comparison with 

4.2.3 High Q2 Predictions 

Although the measurement of nucleon form factors at very high momen- 
tum transfer (above Q2 N 100 (GeV/c)2) may b e inaccessible experimentally 
for many years, we give the QCD predictions for F: and Fl in Fig. 9 and 
Fig. 10 as obtained using the three models for 4(x, Q”) and the procedure 
discussed above. 

4.2.4 Dependence of Results for as(Q2) Inside Integral on A 

The choice of mg which fits the data is dependent on the value of the 
QCD scale parameter A used. The results reported here have been given 
for the value A = 0.1 GeV. When the running coupling constant os(Q2) is 
evaluated inside the integral, the results indicate that the most of the log- 
arithmic dependence on Q2 disappears. The slope of the results with Q2 
is thus only slightly dependent on the choice of A, and the magnitude of 
the Dirac form factors is roughly proportional to [10g(mi/A2)]-2, modulo 
small logarithmic corrections from the evolution of the distribution ampli- 
tudes. At Q2 = 20 (GeV/c)2, as can be seen in Table 3, the overall mag- 
nitudes of the nucleon form factors as calculated with 08(Q2) inside the 
integral and the Cornwall form os(Q2) F 4z/[@log((Q2 + 4mi)/A2)] (rni = 

0.3 (GeV/c2)2, A = 0.1 GeV) g a ree with those calculated using os(Q2) out- 
side the integral and the one-loop formula as(Q2) = 47r/[J3 1og(Q2/A2)] with 
t$Q2) E as(Q2/36)as(Q2/9). Th e e ec ive ff t value of the strong coupling 
constant is approximately 0.3 at Q2 = 20 (GeV/c)2 with either of these two 
formulas. 
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Figure 8. Leading twist calculation of the neutron Dirac form factor 
with three different models for the distribution amplitude 4(z, 6”) 
and with the arguments of the running strong coupling constant 
os(Q2) evaluated as in Table 1. The results are shown for the 
value rni = 0.3 (GeV/c2)2. Experimental data on the neutron 
form factors at high momentum transfer would help to distinguish 
between different models for 4(z, @“). 

5. Conclusions 

In this paper, we have explored the calculation of nucleon Dirac form 
factors using leading order perturbative &CD. By comparing the leading 
twist QCD results for the proton Dirac form factor F: with recent exper- 
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Figure 9. Perturbative QCD predictions for F: at very high mo- 
mentum transfer with improved treatment of the arguments of 
aS(Q2). The notation and conditions are the same as in Fig. 7. 

imental results’, one can make the following conclusions. The qualitative 
prediction of the perturbative QCD for the Q2 dependence of the form fac- 
tor is impressively consistent with the experimental data above Q2 ~(5-10) 
(GeV/c)2. The normalization of the form factor is very much dependent on 
the assumed form of the nucleon distribution amplitude d(z, g”), which de- 
scribes the momentum distribution of the quarks within the nucleon, while 
the Q2 dependence is in general less sensitive to the choice of distribution 
amplitude. It seems that a highly relativistic form must be used for #(z, G”), 
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Figure 10. Perturbative QCD predictions for FT at very high 
momentum transfer with improved treatment of the arguments of 
os(Q2). The notation and conditions are the same as in Fig. 7. 

as the nonrelativistic distribution amplitude produces results for Fr that are 
far below the experimental data, and change sign near Q2 k: 15 (GeV/c)2, 
in contradiction with the observed behavior of the data. Furthermore, an 
asymmetric form for 1$(2, Q2) must be used in order to achieve the observed 
magnitude of F[. We used the three different distribution amplitudes re- 
cently proposed from QCD sum rule calculations. 

Secondly, the slope of the QCD prediction with Q2 does not match the 
trend of the data if the argument of os(Q2) is evaluated outside of the inte- 
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I grals over the momentum fraction variables x; and yi for the initial and final 
quark momenta. We have attempted.to improve the calculation by’evalu- 
ating the strong coupling constant at the exact gluon kinematics for each 
diagram of the process according to the procedure dictated by the renormal- ) 
ization group basis of the theory l6 Because the leading twist expressions for . 
the gluon propagators are singular at the endpoints in xi and yi, when the 
arguments of os(Q2) are evaluated ,within the integrations it is necessary to 
modify the one-loop expression for os(Q2) to prevent it form becoming in- 
finite when the gluon momentum transfer ranges to zero during integration. 
Some form of cutoff of oQ ( Q2) is necessary in order to keep the leading order 
perturbation theory sensible. In the calculations presented above, this cutoff 
was implemented using a form proposed by Cornwal12’, which postulates in- 
troduction of an effective dynamical mass mg for the gluons. We emphasize 
that similar results should be obtained using any form of cutoff which keeps 
cys(Q2) finite at low Q2. 

When the improved method is used, agreement with the data for F[(Q2) 

in the approximate range 10 5 Q2 5 30 (GeV/c)2 can be obtained. The 
value of mg which produces the best agreement is dependent on the choice 
of the model form for 4(x, 6”). When the distribution amplitudes proposed 
by Chernyak and Zhitnitskyg or Gari and Stefanis are used, the magni- 
tude and trend of the proton data are well fitted for the choices (rni M 
0.3 (GeV/c2)2, A M 0.1 GeV). These two model forms yield very differ- 
ent predictions for the neutron Dirac form factor FT, however. Use of the 
distribution amplitude of King and Sachrajdall would require rni B 0.6 
(GeV/c2)2 in order to fit the proton data. 

The range of values of the effective gluon mass (mg M 0.5 to 0.8 GeV/c2) 
obtained in this analysis is consistent with values given by Cornwal12’ (mg = 
0.5f0.2 GeV/c2) and with the results a lattice QCD calculation2g (mg M 0.52 
GeV/c2) and a recent discussion of dynamical mass generation in QCD30 

h M 0.65 GeV/c2). The correctness of the approach presented here could 
be tested by experimental separation of the form factors of the neutron at 
high Q2. Such experimental data would also help to distinguish among the 
various proposed models g*loJ1 for the nucleon distribution amplitude. 

Finally, it should be observed that the sensitivity of the above results 
to the choice of cutoff parameter indicates the potential importance of eval- 



uating the effects of higher twist terms in perturbative QCD calculations for 
exclusive proceyses. Although we checked that higher twist te;ms werk not . 
important in th,e gluon momentum transfer aiguments of a,(p2) (see Sec- 
tion 4.2.1), such terms could affect the main QCD calculation significantly 
by modifying the hard scattering kernel TH to be less sensitive to the end- 
points of integration. As id the present situation approximately 40% of the. 
result for Ff’ comes from the region within 1% of the endpoints in x; and 
yi, higher twist terms which alter the endpoint behavior of TH could have a 
large effect on the answer and should be investigated. 
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