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ABSTRACT . . - 

The proportionality between black hole entropy and area is derived from 

classical thermodynamics. The relationship between the classical and quantum 

formulas is shown to be similar to that of black body radiation. Classical ther- 
-. - modynamics is shown to imply certain characteristics for classical waves which 

are normally thought to be quantum mechanical in origin. 
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1. Introduction 

Historically the formulas’for the entropy and temperature of many systems 

were first derived using classical thermodynamics. Later the formulas were re- 

_ fined using quantum mechanics. For example, black body radiation obeys the a - 
classical Stefan-Boltzmann Law 111 

E/V = oT4, (14 

- s/v = f$T3, (1.2) 

where E is energy, T is temperature, V is volume and S is entropy. o is an 

- integration constant which, when evaluated quantum mechanically, is found to 

be 
7r2 QZ- 

15h3 ’ 
(1;3) 

. . - 
(G = c = kg = 1). 

For black holes on the other hand, the corresponding Bekenstein-Hawking’2’31 

formulas 

--- 

1 -. - TBH = - 
87rcgH’ (1.4 

SBH = CA, (l-5) 

1 
S=,, 

were first derived quantum mechanically. Here 

- A = 47r(r: + a2) = (area), (l-7) 

gH = 21’(rLA r-) = (surface gravity), - (1.8) 
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rf=MkdM2-a2-Q2, (1-g) 

a = J/M, (1.10) 

- 
and M, J, and Q are the mass, angular momentum, and charge of the black a 
hole. (It is sometimes said that Bekenstein’s original argument was “classical.” 

However, this argument makes essential use of energy quantization and Fz appears 

in it explicitly, so it is not classical in the ordinary sense.) _ 
The fact that (1.4) and (1.5) have never been derived from classical thermo- 

dynamics makes them appear different from (1.1) and (1.2) . This has perhaps 

contributed to the idea that gravity has a somehow deeper relationship to ther- 

modynamics than do other branches of physics. The classical derivation of (1.4) 

_ and (1.5) is straightforward. It relies on slight variations of thought experiments 

which have become standard in the literature. One must just insure that at each 

step, only classical reasoning is in fact employed. Since the derivation is based 

- on the axioms of thermodynamics, the conclusions will be valid in the “classical . . . - 
regime ,” a term which will be made precise in the next section. 

’ 2. Derivation 

-- - I adopt a 19th century viewpoint: No quantum mechanics, no statistical 

mechanics. Just as the classical derivation of (1.1) and (1.2) required the as- 

sumption that a black body’s temperature and entropy are definite functions of 

its energy, volume, and pressure, I will assume that a black hole’s entropy is a 

function of its macroscopic parameters. Taken together, various “no hair” the- 

orems strongly imply that isolated black holes evolve asymptotically toward a 

limit which is completely described by 3 parameters, which may be taken to be 

mass, angular momentum and charge.[41 Thus 
- 

SBH = SBH(M, J,Q>- (2.1) 

By means of Penrose processes,[““’ one can alter a black hole’s parameters 
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arbitrarily, provided that the area does not decrease. These processes involve 

interactions with point particles and hence no exchange of entropy with the 

environment. Thus, two black holes with the same area must have the same 

entropy, since otherwise one could violate the second law by Penrose processes. 
- * This implies that the entropy of a black hole is a function only of its area: 

SBH = f(A). (2.2) 

Differentiating (2.2) and substituting (1.7) through (1.10) gives 

dS = f’(A)dA = 8Tf’(A) (dM - RdJ - @dQ) gH 

where 

. . 

-  

Q  = 4rr+Q 
A ’ 

and f’ is the derivitive of f with respect to its argument. 

-. - Rearranging terms in (2.3) gives 

dM = rdS + RdJ + @dQ, 

where 

(2.3) 

(2.4 

P-5) 
:- 

P-6) 

P-7) 

- I now restrict to the case of a Schwarzschild hole (J = Q = 0). This is 

not necessary, but it simplifies the argument and is sufficient for the purpose at 

hand because by (2.2) , the entropy of any black hole is equal to-that of the 
._ .- Schwarzschild hole with the same area. 
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- 
It follows immediately from (2.6) that a Schwarzschild hole must radiate 

every .massless field at a temperature r defined by (2.7) . If it did not radiate 

or radiated at a temperature above or below 7, or in a “non-thermal” manner, 

one could arrange to reduce net entropy by placing it in an appropriate bath of 
- - thermal radiation, possibly with a system of filters. 

Thus r is indeed the temperature of the hole measured at infinity: 

_ 
TBH=T= (2.8) 

By “thermal” radiation I mean only that the flux is that emitted by a black 

body whose energy distribution is some definite (but from a classical standpoint, 

unknown) function of temperature and frequency U(W, T). This distribution may 

depend on the type of massless field. Actually, of course, it is not strictly speaking 

this flux which is observed, but black body flux as observed through the angular 

momentum barrier filter.“’ Only if the black hole produces such a filtered ther- 

mal flux can it be in equilibrium with black body radiation and thus avoid the 

possibility of declining net entropy. 

One may now consider doing an experiment first proposed by Geroch[” . One 

adiabatically lowers a perfectly reflecting box filled with electromagnetic radia- 

tion at a temperature T >> TBH to a Schwarzschild radius r, close to the event 

horizon. One then exchanges radiation with the hole and, again adiabatically, 

raises up the box. The local temperature at which the exchange takes place must 

be 

T,(M) = TBH(M), 
X 

where 

P-9) 

- x = 41 - 2M/r, (2.10) 

.- . 
is the red-shift factor. Otherwise, again, one could arrange to lo-wer the net 

entropy through the exchange. 
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Geroch’s thought experiment was originally subject to the following quantum 

mech&zicaZ objection by Bekenstein”’ : Bekenstein asserted that one cannot lower 

the box arbitrarily close to the horizon because it must have some finite height. 

If the height of the box were less than b = h/T, the contents would not have a 
- * Planckian distribution. This objection was not well-founded. The geometry of b 

the box is irrelevant; one could just as well use a two-dimensional box. All that 

matters about the distribution is that it is thermal, not necessarily Planckian. 

However, there is another possible essentially classical objection which evidently 

does not appear in the literature: One might argue that for the box to be nearly 

perfectly reflecting, it would have to be nearly infinitely massive. The presence of 

such a massive box would alter the gravitational field. Thus, on classical grounds, 

Geroch’s apparatus would not be a test apparatus. In Appendix A, I show that 

this effect can, in principle, be kept very (though perhaps not arbitrarily) small 

for electromagnetic radiation. On the other hand, it prohibits the adiabatic 

_ lowering of boxes filled with gravitational waves. For this reason, I use only 
. . - boxes with electromagnetic radiation in this derivation. 

Now compare the result (2.9) to the gravitational “pull” (geodesic deviation) 

gX felt by a local stationary observer, 

-. - 
gx(M) = -2 z gH(M). 

X 

Combining equations (2.8) , (2.9) , and (2.11) gives 

TX(M) = 8$(A) gx(M) 

(2.11) 

(2.12) 

If the temperature measurement T,(M) could be shown to be local, both in the - 
sense of measuring locally and in the sense of measuring an eflect which is local 

in origin, then by the principle of equivalence, T,(M) could depend-only on the 
- .- local “pull” felt by the observer, gx(M), and not on the presence, absence, or 
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size of a nearby black hole. One could then conclude from (2.12) that 87rrf’(A) is 

a universal constant of nature, or 

f’(A) = < = constant. (2.13) 
- 

In order to understand why T,(M) is indeed a local physical quantity even 

though one often hears that Hawking radiation is a global effect, it is necessary 

to disentangle conflicting notions of the opposition “local/global.” “Local” in 

the equivalence principle sense means “small on the scale of the background 

curvature.” There are three length scales in the problem: 

(i) M = (scale of the background curvature) 

(ii) & = (acceleration length scale) 

(iii) Xx = (typical thermal radiation wavelength) 

. . 
- The last two scale as x while the first does not. This implies that by moving 

sufficiently close to the hole, one may make the wavelength arbitrarily small 

compared to the background. curvature. Thus the measurement is local. The -a 

temperature measurement made by an accelerated observer in flat space would 

-- - also qualify as local, since in this case the background curvature scale is infinite. 

On the other hand, temperature measurements at corresponding wavelengths in 

the neighborhood of relativistic stars would not qualify as local. This is because 

the weak energy condition places restrictions on the equation of state of such 

stars, which in turn place a definite lower limit on the star-surface red-shift factor, 

a limit which is of order unity. [With sufficient ingenuity, one may construct 

“stars” whose surface red-shift factor is arbitrarily small[” . However, it turns 

out that thermodynamics conspires to prevent one from using the equivalence 

p%ciple to establish an ambiant temperature near such “stars”. This is discussed 

in Appendix B.] 

t 

[Now that these scales have been defined, it is possible to make precise what 
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is meant by the “classical regime.” Unless A, can be made to satisfy 

M > Xx >> h f , (2.14) 

the above thought experiment cannot actually be carried out without quantum 
- - gravity becoming a factor. Of course it is impossible to define this scale from - 

within classical thermodynamics.] 

The eflect is also local in origin. The observer is incapable of seeing global 

effects (that is, effects arising from the black hole as a whole) because these 

exist on a scale M which is large compared to his acceleration scale, l/g,(M). 

Of cdurse, the observer “sees” an event horizon, but he attributes this to his 

local acceleration and not to any global phenomena. Global .effects represent 

a correction of order x to this conclusion. That is, it is just this horizon which 

makes it difficult for him to perceive global effects. Global effects can be observed 

only by those whose acceleration scale is large compared to the global scale. When 

- it is-said that Hawking radiation is a global effect, what is meant is that it is ‘an 
. . - effect of the large scale structure of space-time, in particular, the existence of an 

event horizon. In the case being considered, the event horizon is close on the 

scale of the background curvature, so that it is a local effect in the equivalence --- 

principle sense even though it is a global effect in the sense of the structure of 
-. - space-time. 

Thus the principle of equivalence is indeed applicable, so that (2.13) is valid. 

Integrating this equation gives 

f(A) = (A + C. (2.15) 

Since a vacuum (or a black hole with M = 0) has vanishing entropy, one finds 

SBH = c-4 (2.16) 
- 

1 
T - 

BH = WgH’ 
(2.17) 

The constant c cannot, of course, be evaluated within the framework of clas- 
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sical thermodynamics, but neither is there justification for the claim, sometimes 

made,. that classically it it should be set to infinity. If one lets FL + 0 in (1.6) 

then the entropy of the black hole diverges and its temperature vanishes. The 

black hole would then be truly black. It would absorb but not radiate. Thus, 
- - it is said, Hawking radiation is a quantum mechanical phenomenon. However, A 

exactly the same thing could be said about black body radiation. If one lets 

h + 0 in (1.3) and holds the energy constant in (1.1) , then the black body’s 

entropy also diverges, its temperature also vanishes, and it also becomes truly 

black. In fact, the quantum mechanical formula for the entropy of any system 

diverges in the limit tL --+ 0. Classical thermodynamics implicitly assumes that 

entropies are finite. This assumption is not stated explicitly because it is con- 

sidered self-evident, but it is necessary for numerous formal manipulations. This 

means that while classical mechanics is consistent with the limit FL + 0, classical 

thermodynumt’cs is not. In this sense, thermodynamics “knows something” about 

quantum mechanics. More will be said about this in the next section. 
. . . - It should be noted that the black hole formulas bear a closer resemblance 

to. the black body formulas than they do to those of the ideal gas. In both 

the black body and black hole the integration constant appears in both the *- 

-- - 
entropy and temperature formulas, and when this constant is evaluated quantum 

mechanically, it contains an inverse power of ii. This contrasts with the ideal gas 

formulas’11 

- 

E=;NT 

VT3i2 
S = N[ln N + C] 

C=31n25+5 
2 2&P 2 

(2.18) 

(2.19) 

(2.20) 

where the energy-temperature formula does not contain the integration constant 
.- .- and ti appears logarithmically. 
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The similarity between the black hole and black body is evidently due to the 

fact that both are ultra-relativistic. 

- 
3. Quantum “Predictions” 

Classical thermodynamics, when combined with classical gravity, predicts cer- 

tain quantum-like characteristics for classical waves. First, as a black hole radi- 

ates into a vacuum, its area decreases. This violates the Hawking area theorem[“’ 

which in turn rests solely on the assumption of the weak energy condition. Thus, 

there -must be frames in which the energy density dips below zero. This must 

apply separately to gravitational, electromagnetic, and spinor fields. 

Second, by considering the interaction of classical spinor (Dirac) waves with 

a rapidly spinning, uncharged black hole, and inverting an argument originally 

given by Unruh[“’ , one may show that the second law implies some sort of 

- “exclusion principle” for spinor waves. 

Unruh originally derived the formula for spontaneous emission of neutrinos 

from Kerr black holes, 

-. - 
dN - = &(l - R(w,z,m))e(n - “), 

dwdt m (3-l) 

where w is the frequency, m is the azimuthal quantum number, R is the barrier 

reflection coefficient, and N is the number of neutrinos escaping in the (Z,m) 

mode. Even classically, w/m is the energy per unit angular momentum. It was 

already known that 

%44m) < 1, (3.2) 

. 

even for the low energy neutrinos considered by Unruh. That is, if one shines low - 
-energy neutrinos on the Kerr hole, they will be partially absorbed even though, 

according to (2.6) this tends, to reduce the entropy (and area) of the- hole. (This 
._ .” contrasts with the case of scalar, vector, and tensor waves which super-radiate 
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_ -_ 
in this range). Unruh observed that the spontaneous emission would cause the 

hole’s area to increase, and because phase space was only “falling into” the hole 

at a rate 

- 
dwdt 

d(Phuse Space) = F, (3.3) - 
the Pauli exclusion principle would prevent one from shining neutrinos on the 

hole any more rapidly than they are spontaneously emitted. Thus the Hawking 

area theorem would not be violated by (3.2) . 

One may reverse this argument by making the assumptions of this paper (the 

validity of the second law, nothing about quantum mechanics) the starting point. 

Consider an experiment where one shines neutrinos characterized by 

Aw-m$l-w>O, (3.4 

on a Kerr hole in the presence of (possibly zero) spontaneous emission. Let the 

energy absorbed from the incoming waves be 
. . - d&b dwdt = Cl- +in, 

and the energy emitted by the spontaneous emission process be -- - 

d&m 
J----& = (1 - qaout, 

Then the net influx of energy is given by 

g = (1 - q(%z - aout), 

P-5) 

(3.6). 

P-7) 

By equations (2.6) , (3.4) , and (3.7) the rate of entropy gain by the hole will be 

d&H -= (1 - R)(aout - ain)Aw 
dwdt TBH 

P-8) 

This quantity will be non-negative if and only if - 

aout 2 %a* (34 

.- _ From this one may conclude first that oout is positive definite, that is, there is 
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spontaneous emission. And second, it follows that there must be some principle 

of physics which prevents one from shining neutrinos on black holes with greater 

than some definite intensity. 

- 
Thus both the existence of negative energy for all waves and some sort of 

exclusion principle for Dirac waves appear as natural consequences of classical 

thermodynamics and classical gravity. 

_ 

4. Conclusion 

Black hole thermodynamics can be derived from classical thermodynamics. 

The relationship of the classical -and quantum formulas appears quite similar to 

the corresponding relationship for black body radiation. From this standpoint, 

black hole entropy does not appear to be in any way special. If it had turned out 

that the derivation of black hole thermodynamics depended in an essential way on 

- microscopic physics (quantum mechanics), then it would have been reasonable 
. . - to hope that one could use these thermodynamic relations to infer something 

about the complete microscopic picture (including quantum gravity). But since, 

as has been shown, black hole thermodynamics (like all other thermodynamics) 

is logically independent of microscopic physics, this approach to quantum gravity 
-- - may prove difficult. 
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APPENDIX A: Lowering Boxes 

Using the phenomenological Drude model[“’ , one may establish a lower 

bound on the mass of a cavity, CL, in terms of its quality factor, Q, 

- ,a 

p>>Qg (g 
ravitationul coupling) 

a (electromagnetic coupling) 
= Q$$k, (Al) 

where a is the shortest dimension of the cavity, L2 is the area of the remaining 

dimensions, and mp is the mass of the proton. This follows immediately from 

the formulas for conductivity, 

Ne2 
u= m,(q-iw)’ 

for skin depth, 

6 = (27raw)-4 
. . 

- 
for cavity quality, 

(cavity volume) 
.’ N (skin volume) 

(A21 

(A31 

and the condition that the conductivity be essentially real, 
-- - 

y >> w. w 

Here N is the density of free electrons, w is the frequency in the cavity and 7 is 

a phenomenological constant. 

Imagine now that this cavity is lowered by means of a “string” to a red-shift 

factor xmin, so that the ambiant radiation length is 

- 

Xmin = x xmin BH* w 

_- .- The radiation must not leak out during the proper time, AT, of the adiabatic 
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descent: 

Q >> FAT. (A71 
min 

In certain simple problems what is meant by “adiabatically slowly” can be ex- 

- _ plicitly ca1culatedi131 . In this problem a cruder but sufficient condition is that 

the heat, q, generated by moving the cavity through the photon gas be very 

small compared to the energy exchanged when the cavity is opened. This latter 

quantity will be very small compared with the energy carried by the cavity when 

it is at xmin. That is, 

W) 

where both sides are energies as measured at infinity, the factor on the extreme 

right appears because a thin cavity contains more energy than it displaces at 

the same temi>erature, and the exponent on the extreme inequality indicates the 

_ number of times it was used in deriving the formula. Taking into account both 
. . 

- ascent and descent, one easily finds 

dq - N xaT;L2v2, 
. dr 

where v is the velocity relative to a stationary observer. (A8) will clearly be 
-. - satisfied if 

l& dq 
me=- 

v dr dZ 
(<)2 ~(xZOT,~L~ABH) Wo) 

or 

v (-q2 1, (All) 

where 1 is a proper length coordinate. This implies 

- AT (B-)~ &. VW 

Finally, the “string” mass cannot be regarded as negligible because the weak 
- energy condition demands that its mass per unit length be greater than its 
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tension’141 . A straightforward calculation then shows that the mass-at-infinity 

of the entire apparatus must be greater than the rest mass of the cavity. This 

implies 

since otherwise the test apparatus would disrupt the graviational field of the hole. 

Combining (Al) , (A7) , (A12) , (A13) , and the condition that the cavity _ 
be thin, 

L >> Xmin >> UT (Al4 

yields 

xmin (>>)8 %p!c N 1o-4o 
ABH 

W) 

Evidently the-great disparity between the strength of the electromagnetic and 

- gravitational coupling allows one to almost ignore this constraint. 
. . . - 

One may estimate the constraints on gravitational wave cavities by dropping 

the coupling ratio from (Al) . One then arrives at a conjecture, already advanced 

and partially proven by Smolin[‘51 , that it is impossible to construct such cavities. 

(The cavities described by Garfinkle and Wald[” in an attempt to circumvent 
-- - 

Smolin’s proof are not relevant to this thought experiment because they will not 

confine radiation in the presence of a black hole.) 

- 
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-_ 
APPENDIX B: E quivalence Principle and Relativistic Stars 

Let Xmin be the red-shift’factor at the surface of a relativistic star and let 

- /3 = XT w - 

characterize the inverse scaling of temperature and typical wavelength. Then by 

(1.4) and (Bl) , - 

x BH = 
WP - c . 

w _ - gH - gH 

When E is evaluated quantum mechanically it is found to be 

w 

. . If one were to try to use the equivalence principle to deduce an ambiant 
- 

temperature near a star, one would have to be able to measure wavelengths 

x .A min = xmin 
t I 

BH = - = 
gXmin GXmin 

(B4) -- 

-- - 
locally. Here gH is defined to be the surface gravity of the black hole whose 

exterior geometry corresponds to the exterior geometry of the star considered. 

For static uncharged stars, typical limiting values of xrnin are $ (incompressible 

fluid) and fl (d g e enerate relativistic fermi gas). Using the lower of these 

figures and (1.8) and (B4) yields 

x min = f EM. w 
- 

However (with other purposes in mind), Garfinkle and WaldIQ1 have proposed 
- .- building a charged spherical shell which would be supported just outside its 
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Reissner-NCirdstrom radius by electrostatic repulsion. Consider their model and 

set the radius and charge of the shell to 

R = M(l + 6) w 

- 
Q = M(l - 4~6~) W) - 

where 8 is a small number and 7 is a parameter which is limited by the weak 

energy condition to _ 

-+<1. WI 
7 must also be non-negative for the geometry to be comparable to a black hole. 

Using these parameters one finds that the surface red-shift is given by 

X min - - 6, w 

so that it might first appear that by making 6 very small one could arrange.to 

bring Xmin down to a value small compared to M, and thus within range of the 

equivalence principle. However, thermodynamics conspires against this attempt. 

Using (1.8) one finds 

so that, combining (B8) , (B9) and (BlO) gives 

A. Al- I 
m2n fi MLzMm P 11) 

One might imagine trying to support a “star” near its Kerr-Newman radius 

by some combination of electromagnetic and rotational forces, but according to 

(1.4) and (1.8) th is would always depress the temperature and thus lengthen the 

typical wavelength. 
- 

This leads me to conjecture that thermodynamics will always conspire to 

prevent one from employing the equivalence principle to infer a temperature 

_- .- near any stationary, non-collapsed object. 
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