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1. INTRODUCTION 

In an accelerator or storage ring there exist electromagnetic fields of various 
types and of different origins. Some of them are put there on purpose to make 
an accelerator, but some of them are parasitic and whose effects have to be 
minimized or corrected. For examples, the dipole and quadrupole fields are 
created to guide and confine the beam, and the longitudinal electrical fields of 
cavities are used for acceleration. On the other hand, the space charge force 
and beam-beam force, in general they are unwarranted, are present due to the 
particular situation of the beam condition. 

When a charged particle travels around an accelerator, it also sees the 
neighboring particles. If the electromagnetic field created by those neighboring 
particles are strong enough, the actual motion of the particle will be modified. 
Historically those forces produced by particles travelling in the same direction 
are called space charge force and those produced by the particles travelling in 
the opposite direction are called beam-beam force. 

In principle those forces can create both coherent and incoherent effects, 
in this lecture we will only consider the effect on single particle motion in the 
transverse degree of freedom. In other words, the effect on betatron oscillations 
of the beam. 

_-..._ . 
-. In Chapter 2 we introduce the concept of space charge and the tune shift 

resulting from it, which usually limits the maximum intensity attainable for 
proton synchrotron at injection. In Chapter 3 a theoretical model is introduced, 
making use of the fact that the space charge induced tune shift is dependent 
on the amplitude of betatron oscillation, to show that the resonances are self- 
limiting in the presence of space charge forces. Beam-beam interactions and 
resonances are introduced and treated in weak-strong approximation to show 
the similarities and differences from that of space charge effects in Chapter 4. 

,- _T_ 

- - 

- 
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2. SPACE CHARGE FORCE AND DETUNING 
r . . _ 

2.1 SPACE CHARGE FORCE . 

To find.the space charge force of other particles in the same beam, let us 
consider a DC beam of circular cross section with uniform charge density p of 
radius a as shown in Fig. 1. The electromagnetic fields satisfy the Maxwell’s 
equations: 

60 v - (E) = p (2.1) 

$bd=J=pv . (2.2) 

Neglecting the curvature of the path, the solutions are found to be: 

El=&, BO=Pur, 
0 2qJ c2 

r<a . (2.3) 

_-..._ . 
-. 
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Fig. 1. Space Charge force of a uniform 
cylindrical beam. 
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Therefore a particle at the center of the beam experiences additional space 
,; charge force of 

. F, = e(E + v x p) = $ (I- pa) r 
0 

and the corresponding defocusing force is, 

k(s) = 1 5 = Ra+$2ys 
my dr (2-5) 

where N is the total number of particles in the ring, 

N = %rR(?ra2) p 

and ro is the classical radius of proton or electron, 

(2.6) 

1 e2 2.8 x lo-l5 m for e 
ro = --= 

4lrro mc2 1.5 X lo-l8 m 
. 

for p 
(2-V 

In the following section, the space charge induced defocusing force of Eq. (2.5) 
will be used to estimate the tune ‘shift. 

_-..._ . 
-. 2.2 INCOHERENT TUNE SHIFT 

It has been shown that a particle executes betatron oscillation with respect 
to the equilibrium orbit in an accelerator obeys the equation of motion1g2: 

dy z+K(s)y =o . 

The solution of the equation is usually expressed as 

,- _P_ 
- - 

where 

y(s) = ap112 cos(v&(s) + S) 

L. 

..- 

- - 
4(s) = / $ 

(2.8) 

P-9) 

(2.10) 

represents the phase advance along the beam path and v is the tune of the 
machine. 
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In the presence of small gradient perturbation k(s), the tune will be changed 
.=-. by1 _. _ 

. 
dv= $ 

/ 
k(s) P(s) ds . (2.11) 

From Eqs. (2.5) and (2.11) th e expected incoherent tune shift is 

dv = 
/ 

$ P(s) k(s) ds 

NRro 1 1 =--- 
xv p2r3 a2 ' 

(2.12) 

It is important to recognize the fact that the space charge tune shift given 
in Eq. (2.12) is proportional to the ring radius and inversely proportional to 
the tune, cubic of energy and beam area. Often time people are interested in 
knowing the total number of particles acceptable by a machine for a given tune 
shift dv, 

- 

N= "yrr p2 r3 a2 . (2.13) 

_-..._ . - 

The above derivation only takes into account the defocusing force produced 
by the beam itself, in the presence of vacuum tube the EM field seen by the 
particle have to be modified. For example, for a uniform beam of elliptical cross 
section inside an elliptical vacuum chamber in a parallel iron wall as shown in 
Fig. 2, the final expression of the number of particle acceptable is3 

N= 
u du p2 73 

R ro 
nb(a + b) BF (2.14) 

Fig. 2. Cross sectional view of an elliptical 
beam inside an elliptical chamber and parallel 
iron face. 
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with 
,+- . . _ 

-’ . 
F= 

.[ 
1 + b(a + b) El(l +W2r2) 

h2 
+ E2 CT,,, Bp2y2 

g2 
(2.15) 

where a and b are half horizontal and vertical beam size, h and g are half 
height of chamber and iron gap respectively, B is the bunching factor, Cm is 
the fraction of the circumference occupied by the magnet, and El and Es are 
geometric coefficients. E2 is close to 0.206 and El is 0.172 for a chamber with 
width to height ratio of two.3 Usually the vertical dimension g is smaller than 
the horizontal dimension, the tune shift given by Eq. (2.15) is for vertical tune 
shift which is commonly called the “Laslett tune shift.” 

It is important to note that due to the energy dependence term, for an 
accelerator with large dynamic range the tune shift at low energy is caused 
predominantly by the direct space charge force. While at high energy the 
image charge effect becomes important. Expression Eq. (2.14) is also valid 
for a beam with Gaussian charge distribution, only then a and b should be 
interpretated as &crZ and fizz respectively.’ 

2.3 EXAMPLES FROM AGS AND PSB 

--. .- . - 

Usually the injection into a proton synchrotron is by multi-turn injection 
from a linac of much higher rf frequency. For all practical purposes the injected 
beam is continuous and uniformally fill up the circumference of the synchrotron. 
After injection, the rf voltage is turned on to accelerate the beam. At that 
time the beam is gradually bunched and experiences the largest space charge 
tune shift which usually sets the limitation of the attainable intensity of a 
proton synchrotron. For example listed in Table 1 are the parameters and the 
estimated tune shifts of the AGS at BNL and PSB at CERN during injection. 

Traditionally, at the design stage, the machine parameters are chosen in 
such .a way that the tune shifts stay below 0.25 unit in both planes. Because 
people believed that, under that condition the tune would not cross low order 
resonance lines and the beam would be stable. But after the accelerators 

_. have been built, under the pressure of experimental progr-am requesting for _F_ 
_ -.-more beams, the actual intensity_.and tune shifts are grossly exceeded. For 

example, from Table 1 it is clear that for few msec the beam has a tune shift 
..- 

- - 
exceeds half unit for both AGS and PSB. It certainly crosses half integer and 
third integer resonance lines. To keep the beam, elaborate stopband correction 
system and beam distribution shaping methods have to be implemented. The 
measurements of AGS tunes during capture are shown in Fig. 35 and that of 
PSB are shown in Fig. 4.6 



,; 

. 

_-..._ . 

c 

Table 1. Tune Shift of the AGS, AGSB and PSB 

AGS5 AGSEi’ PSB6 

Einj (MeV) 200 200 50 

P2r3 0.572 0.572 0.115 

R (4 128.5 32.125 25.0 

% 8.75 4.83 5.45 

a/b (cm) 4.212.85 4.212.85 

FIB 1.3qo.5 1.3qo.5 1.310.58 

N x 1012 22 15 8.5 

4 0.58 0.3 0.55 

9.0 

8.9 

8.6 

- 

I 
1~1 I I I I II I I I I I IIIIII 1 I 

8.0 8.1 8.2 8.3 8.4 8.5 8.6 8.7 8.8 8.9 9.0 
QH 

9-86 5544A3 

Fig. 3. Space charge tune shift of the AGS. 
,- _5z_ Therefore the experiences show that the amount of tune shift surviable is 

~ -not a hard number. The AGS booster under construction will be the first ma- 
-- 

- - 

chine starting with a design space charge tune shift larger than 0.25.7 Judging 
from the experiences from AGS and PSB, it should not be too tough a chal- 
lenge, as long as proper stopband corrections and beam distribution shaping 
methods are incorporated. In the next chapter a theoretical attempt will be 
made to show that the amplitude growth due to resonance is self-limiting in 
the presence of space charge force. 
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Fig. 4. Space charge tune shift of the PSB. 

3. RESONANCES IN THE PRESENCE 
OF THE SPACE CHARGE FORCE 

_. _ _*. 

-- 

- - 

We have shown that high transverse density particle beam at low energy 
in a synchrotron are strongly influenced by the self-field space charge forces. 
Because of the relativistic cancellation of electric and magnetic contributions 
to this force, space charge effects decrease as l/r3 and they are therefore 
important only at low energy. 

The dominant impact of the space charge force is to introduce a charac- 
teristic detuning of particles in the beam. This means that the frequency of 
betatron oscillation becomes a function of amplitude and that resonant con- 
ditions can only be sustained over an amplitude region of phase space which 
decreases for increasing space charge. Thus a magnetic field resonance will be 
restricted to a bounded phase space amplitude range and results in an ampli- 
tude modulation rather than instability. In a DC beam, neglecting scattering 
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and noise effects, the tune of any given particle involves only small amplitude 
,; modulation. around the resonance amplitudes and:the betatron oscillations re- 

main stable. . 
When radiofrequency accelerating fields are applied to a beam, this sit- 

uation is drastically altered. After rf turn-on, the beam becomes bunched, 
with the current distribution following the bunch structure. The space charge 
force thus develops a current modulation which peaks at the bunch center and 
vanishes at the ends. At regions of small or vanishing space charge, nonlinear 
resonance stabilization tends to disappear, thus leaving particles susceptible to 
resonance blow-up. 

In the following, we will study the problem of resonance behavior in the 
presence of space charge by treating it as one-dimensional resonance problem. 
Since the self-consistent requirements are ignored, the results describe only the 
onset or early behavior of the beam. The presentation in this chapter follows 
closely that in Ref. 8. 

For example, let us consider a charged particle beam with Gaussian distri- 
bution in both transverse dimension and of elliptical cross section. The scalar 
potential generated by such a beam is9 

_-..._ . 

00 1.-e 

WY) = -& / 
( - z2 + Y2 

24 + t 23 + t > 

o $zjqqq dt * (3*1) 

With the potential known, the equation of motion can be found by incorpo- 
rating the additional force into the betatron oscillation of Eq. (2.8). 

3.1 EQUATIONS OF MOTION 

In the presence of the space charge force the equation of motion of a particle 
becomes 

dy ds+K(s)y+s E=o . 
P2r3 & (3.2) 

,- _T_ Keeping only the y-dependent term by integrating over z, the equation can be 
- .- -+simplified to be8 : L. 

_- dy z+K(s)y- xRp 
p273u2 

yH(Y2) = 0 

where 

y=Y 
d- 20 ’ 

a2 = PEnns 

(3.3) 

(3.4 
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and 
;-.- . . _ 

. 

1 

H(Y2) = 
1 - i(-Y2) 

e(-tY2) dt = y2 . (3.5) 

To study the effects of magnetic imperfections in the vertical plane, we need 
an expansion of the radial magnetic field, B,, around y = o. We can write, 

B;;;y = -edp(s)yP , 
p=o 

(3.6) 

where, (Bp) is the particle magnetic rigidity, and dp(s) is the distribution of 
field errors. It can be shown straightforwardly that the relation between the 
appropriate error field derivative and the error distribution dp(s) for each value 
of p is given by 

_-..._ . 

,- .= 

where 

dp@) = (~)‘/~(P+‘)B(P) 
p!(h) ’ 

p= 1,3 ,“’ 

and 

dp(s) = (4)‘/2b+2)2% P!(BP) Y P=2,4,-.- 

B(P) = $% . 
z z=y=o 

(3.7) 

(3.8) 

(3-g) 

The resonance forcing term modifies the linear equation, with the equation 
becoming, 

y” + K(s)y + d~p-l~(s)yP-’ = 0, (3.10) 

where we have kept a single resonance term of order p - 1 (p = 1, dipole; 
p = 2, quadrupole; p = 3, sextupole; and so on). 

For a resonance in the presence of space charge, we add to the linear 
equation both resonance and space charge terms, leading to, 

- - 
XrP 

Y” + KY - ~2~3~2~ yHCY2) + dP--l(s)Y 
p--l =(). 

..- We define the space charge strength parameter c, 

- - 
’ = 4T Ezs;273 ’ 

(3.11) 

(3.12) 

where N is the number of particles in the beam, and cnne is the rms emittance, 
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defined by 
,; . . _ 62 ; 

Gmr = PO ’ 
(3.13) 

. 

with ,0(s) is the beta-function or Twiss parameter.’ 

To solve the linear part of the equation we introduce the normalized coor- 
dinates (q, fi), by 

[ ?I 1 [ W-F 0 Y = tilu 4dD I[ 1 x@ Y’ ’ 
with 

1 dP -- Q=-2 ds, 

and differentiation is with respect to the betatron phase, 4, given by 

0 

(3.14) 

(3.15) 

(3.16) 

In the smooth approximation, the phase 4 is simply the azimuth 8, i.e. C$ + 
B= s/R, where R is the average ring radius. The equation of motion in terms 
ofq, tjand4,is 

ii + u2q - 2u2sB(s) qH(Y2) i u~(P(s))‘~~(P+~) dp-l(s)$‘-l = o , (3.17) _ 

_-..._ . 
- where 

y2 = Q2 
G’ (3.18) 

We further introduce amplitude and phase variables, or action and angle 
variables, (I, $J), related to (q, fi) by 

q = ficos1c) , (3.19) 

tj = --&sin+ . (3.20) 

*- _F_ 

Inverting and differentiating we obtain the equations of motion for I and + in 
the form, 

j= 2fi 
u sin$(f + v2rl) , (3.21) 

_- 
and 

- - tj = u - $(f + u2g) . (3.22) 

When the tune of the machine is close to a rational number, we can define 
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the resonant phase variable, 
,; . . _ 

. 

having the property of a slow time variation: 

i+~~o’ with 4 w u . 

In other words, we require that the tune for betatron oscillations u be close 
to the order p resonance value, m/p. Here, m is the ring azimuthal harmonic 
(in the variable 4) of the resonant force term appropriate to the resonance of 
order p. 

_-..._ . c 

Applying the method of phase averaging, we can reduce the equations for 
the amplitude and phase variables to the resonance equations. The relevant 
phase variables are $J, the phase space phase and C$ the ring azimuth phase. 
The explicit dependence on C$ represents the azimuthal harmonic content of the 
perturbing force in the original equations and is the necessary ingredient for 
resonance behavior. The phase averaging procedure involves two steps. First, 
the space charge term has no explicit C$ dependence except for the P-function 
variation, whose symmetry tends to suppress resonance excitation. Therefore 
the space charge term simply oscillates rapidly in 11, and 4 about some mean 
value. Averaging over 11, and 4 as a consequence replaces this term by its 
Yang term= average. On the other hand, the resonance force term, arising 
for example from magnet imperfections, has no significant long term average 
independent of phase. However, the resonance condition that the betatron 
oscillation frequency be close to m/p leads to a term which contains the phases 
combined in the form (11, - mt,b/p). N ear the resonant tune, this phase varies 
slowly in time and does not average to zero. Thus, the second part of the 
averaging procedure is to retain the slow phase term in the equations for i and 
4. 

Averaging the space charge term over $J and 4, we find in the case of no 
resonance force term, 

a--.=. 
- - 

and _- 

- - 
where 

i=o, (3.23) 
L. 

4=u-@$Y), (3.24) 

a = I/26,, , (3.25) 

12 



and 
,z.-. . . _ 2r 1 

. F(a) = i / du cos2 u/ dt e’tacos”u . 

0 0 

(3.26) 

Here, use has been made that the average /3 M R/u and 6 > 0. 

The function of F(a) can be expressed in terms of the Bessel Functions, 

In(z) = i iezco8’cos n8 de , 
0 

(3.27) 

F(a) = f (1 - e-a/2IO (f)) . (3.28) 

The phase equation in the presence of space charge thus has the property 
that the oscillating tune, +, becomes a function of amplitude. Thus, a resonant 
condition on the tune becomes amplitude dependent and resonances become 
restricted to certain amplitude regions in the phase space. 

To average the resonant terms, we must look for the term containing the 
slow phase, $ - (m/p)+. C onsider the resonant term in the equation for 4: 

--...- . 
‘OS’ y2p1/2(p+2)dp--1(~)~P-l , 
4 

- 
or, with q = Ill2 costi, we have 

up1/2(P+2)dp-l (4) 11/2(P-2) cost $, . (3.30) 

Since the only term in $ which will contribute to the slow phase terms is 
cos p$, we make the replacement 

1 cosp $J --) - 
2P--1 

cos p$ . (3.31) 

Also, we expand dp-l(c$) in a Fourier series in C$ and retain only the mth 
z- _F_ harmonic, which is the only term contributing to the slow phase. That is, 

- i-2 
dp-1 (4) --+ ep,cos q, + fpm sin mg , (3.32) 

..- 

where - - 
2r 

1 
epm = G 

/ 
dp-1 (4) ~0s m&g , (3.33) 

0 
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and 
,; 2r . . _ 

. fpm = & / dp-1 (4) sin r&d+ . (3.34) 
0 

Making the substitutions for cosp $ and dp-l(4) and retaining only the 
slow phase term, we have 

upl12(P+2)1’/2(P-2) l 2p iepm cos(Pllr - m4) - fpm sin(p$ - m4)) . (3.35) 

If tie now define 
2* 

r,e’7P ’ =- 
2rr / 

d+ dp--l(4)eim+ , (3.36) 
0 

we obtain for this term in the phase equation, - 

Up1/2(p+2)I’/2(p-2) + lYp cos(p$ - rnr$ + 7p) . 
2p (3.37) 

The equation for $ is therefore 

,j = u - ci@) + ~~1/2b+2)I!/2b-2) $ rp cos(pll, - m4 + 7~) . (3.38) 

_-..._ . c 
In a similar way, the equation for the amplitude I, in the presence of resonance, 
can be written, 

i = 2U/?1/2(p+2) 1’/2p $ Ip sin(p$ - m+ + cyp) . (3.39) 

Now the corresponding slow phase becomes, r = 11, - mq5/p + “lp/p, with 
the property that i is small, i.e. that r is slowly varying when the betatron 
tune is close to resonance. Using the variable (Y = 1/2crma, we have equations 
for Q and r: 

f=u-!Y p - q4 + 
Up’/2(P+4 1 

2’/2(p+2) 
~~~~-~)d/~(p-~) rpc0sp7 , (3.40) 

__. 
- -2nd L. 

. 1 
cY = 21/2p UP 1/2b-2) ~1/2bv2) c;y1/2p rp sin pr . 

- - Define the stopband width with AC by 

AC= ’ 
21/2(p+2) 

upl12(P+2) &b2) rp . (3.42) 
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Thus, the r and cy equations become, 

7=u--m . 
p - [F(a) + Ae Q~/~(P’~) cos pi , (3.43) 

and 

& = 2 A, 01i2P sinpr . (3.44) 

3.2 AMPLITUDE DEPENDENCE OF THE TUNE 

Using the & and i equations, we can construct an invariant C by requiring 
that 

. dC 
*=z (3.45) 

and 
. X 

a=--z- (3.46) 

In this case, since C is explicitly independent of 4, C is an invariant in the 
sense that 

_-..._ . 
- 

C=E t3C 
-&+-f=O. 

f3T 
It is seen in a straightforward way that C is given by, 

C = ALa: - [U(o) + ; A,cyP12 cospr , 

where we have written 

AL=u--, 
P 

(3.47) 

(3.48) 

(3.49) 

and 
Q 

U(a) = 
/ 

F(a)da . (3.50) 

0 

*- The resonance invariant defines a set of curves in the phase space (cx,~) _F_ 
-which represent the phase space structure for particle motion near the reso- 

nance. There are three terms in the invariant, each represented by a parame- 
- 

- - 

ter: AL is the distance of the linear unperturbed tune from resonance; t is the 
strength of the space charge force; and Ae is the resonance stopband width, 
proportional to the m th harmonic of the magnetic error field exciting the res- 
onance. It should be noted that in the presence of the space charge force, the 
resonance tune condition is amplitude dependent. Furthermore AL need not 
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be small, since the space charge term also contains a linear tune shift which 
,; is not included in AL. We therefore have defined: v as the linear unperturbed 

. tune as determined by the external focusing structure. Under space charge 
conditions, the particle linear tune is depressed by e, i.e. 

Vparticle = v - ((small amplitudes) . 

Also, the tune amplitude dependence is given by 

Vparticle(CY) = LJ - (F(a) * (3.51) 

Equation (3.51) represent the fact that the tune of the betatron oscillation in 
the presence of space charge is amplitude-dependent which is shown in Fig. 5. 
From Fig. 5 it is clear that the detuning is most complete for small amplitude, 
while at large amplitude there is little effect. 

_-..._ . 
-. 

5544A5 
a 

Fig. 5. The amplitude dependence of the 
space charge detuning. vo is the tune pro- 
vided by external focusing and Y is the 
tune results from space charge. 

3.3 *- PARTICLE’ BEHAVIOR UNDER RESONANCE AND -SPACE CHARGE _e_ 
- - CONDITIQNS 1 

- 

- - 
When particle trajectories in the phase space are isolated points, these are 

called fixed points. They can be defined by & = i = 0. For a resonance of order 
p, the fixed points come in sets of p points. A fixed point is stable if nearby 
trajectories are elliptical around it, and is unstable if nearby trajectories are 
hyperbolic and move towards and away from it. For a different approach to 
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the same subject, see Ref. 10. If the phase space structure is defined by the 
,s.-. set of invariant curves, 

. 
C = ALCE - &I(a) + ; A,d’12 cosp~ , (3.52) 

then the fixed points are obtained from 

ac ac o -c--c . 
act ar 

(3.53) 

To determine the nature of the fixed point, we must expand the function C 
to second order in deviations from the fixed point. Let CUF and 7~ be the value 
of QI and r at a fixed point. Let 6, = a! - CUF, 6r = r - 7~ be small deviations 
from the fixed point. Then, a small deviation in C can be expressed by 

6c = a,zac 2 (sa)2 + z (q2 + -g w w 9 (3.54) 

where derivatives are evaluated at the fixed point. To test whether the fixed 
point is elliptic or hyperbolic, we rotate the coordinates through the angle w 
by the relation 

cos w sinw ICY 

_-..._ . -sinw I[ I cosw 67 -. 
Choosing the angle w to be, 

a2c a2c --- 
cot 2w = i3a2 i?r2 

132C/dadr ’ 

we remove the pq cross term. After some algebraic manipulation, we can show 
that the 2nd order equation is elliptic or hyperbolic according to the rule, 

2 
(3.57) 

z- _zz. 
- i-t L. 

..- 

- - 

> 0 elliptic (stable fixed point, s.f.p.) 

< 0 hyperbolic (unstable fixed point, u.f.p.). 

The phase space structure nearby a stable fixed points are rings of closed 
curves and that near an unstable fixed points are divergent lines. Figure 6 
shows the general features of them in a phase space. 
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Fig. 6. Phase space structure of stable tied 
point (elliptic) and unstable fixed point (hyper- 
bolic). This is taken from the simulation of AGS 
third-order resonance extraction. 

_-..._ . 
The fixed points (CYF, 7F) are found from 

ac ac o 
aar=d7=9 Or (3.58) 

SinprF = 0 , (3.59) 

\ AL - eF(oF) f Ae o$i2-’ = 0 , (3.60) 

which does not include the fixed point at CUF = 0. To determine the nature of 
these fixed points, we find the second derivatives, 

z- .= 
2 = -[~‘(a) + (; - 1) Ae cypj2-’ cosp; , 

- - ; 

..- d2C -=- 
Lb2 

2p A, aPi2 cos pr , 
- - 

and 
a2C - = - p A, CUP/~-~ sinpr . 

ihdr 

(3.61) 

(3.62) 

(3.63) 
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At the fixed point, sinPrF = 0, and 
,c-. . . _ 

. a2C - = -(F’(aF) f 
aa 

a2C 
- = f 2p Ae 4’” , llr2 

and 

a2c o 
zz= * 

Thus, the fixed points at CUF are stable or unstable according as, 

f(F’(CYF) - (; - 1) Ae o$2-2 2 ,” ;l;pd, . (3.67) 
. . 

or, alternatively 

_-..._ . < 0 (s.f.p) 
+(;-1)(AL-cF(aF))2 > o (UfP) . 

. . 

In the case e = 0, the condition becomes 

< 0 (s.f.p) 

> 0 (u.f.p) * 

(3.64) 

(3.65) 

(3.66) 

(3.68) - 

(3.69) 

(3.70) 

Therefore, for dipole resonances, p = 1, we have stable fixed points only; 
for quadrupole resonances, p = 2, we have no fixed points for CUF # 0; for 
sextupole or higher. order resonances, p 2 3, we have unstable fixed points 

_T_ only. If E is not zero, we can see from the above conditions that if p 2 2 the 
- --- ---top sign gives an unstable fixed point since c > 0 and F’ < 0. Thus the set of 

p unstable fixed points are obtained from, -- 

- - AL - [F(oF) f AC CY$~-’ = 0 . (3.71) 

In other words, cosprF = +l is for the unstable fixed points. 
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The separatrix is the phase space trajectory which passes through a set of 
,; unstable fixed points. The unstable fixed points are given by 

. 
COSprF = i-1 ; AL - tF(oF) + AC di2--l =.o . (3.72) 

To evaluate the separatrix, we evaluate CF, the constant, at the fixed points: 

CF=AL"F-@+F)+; Ae 2:“. (3.73) 

Thus, the separatrix equation is, 

AL(Q - a(~)- ((u(a) - u(aF))-i- f Ae (c~~/~cospr- ag2) = 0, (3.74) 

or to second order in 6a! = cy - oF, 
- 

r2{1+ (i) (i) (i-l)hcospr}-(g)rh(l-cospr)--(I--cospr)=O, 

(3.75) 
where t = 6CY/(YF, and 

- 

h=- 4A, P/2---1 

~~FF'(~F)P LuF ' 
(3.76) 

_-..._ _ 
-. For small h, we can solve this equation for r and take the leading term, 

which goes like a, to obtain, 

r = f dh(l - cos pr) . 

Thus, for small h, the separatrix is a string of p islands around the origin, with 
a width, 

w=&&% . 

The illustrations of the phase space structure will be given in the next two 
sections for specific p. 

- MC 1. 

- - 
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3.4 RESONANCE PHASE SPACE STRUCTURE WITH No SPACE CHARGE 
,z.- 

In order to see the phase space structure with no space charge, the only 
thing we have to do is to set t = 0 in Eq. (3.48), then we can write the set of 
invariant curves defining the resonance phase space structure as, 

C=A~cr+z AC df2cospr. 
P 

(3.77) 

The fixed points for CrF # 0 can be found from, 

ALfAe apF/2-1 =O. 

If these exist, they will be stable or unstable according to, 

(3.78) 

< 0 (s.f.p) 

> 0 (u.f.p) * 
(3.79) 

Consider the case where a particle is on resonance; that is, AL = 0. Then, 
if p 2 2, the only fixed point is at CrF = 0. The phase space structure is then 
controlled by an unstable fixed point at the origin, with all the trajectories 
being of the unstable form (that is, trajectories with unlimited amplitude). 
The set of phase space trajectories are given by 

_-..._ . 
-. 2 A&f2 cospr = C , 

i 

and the trajectories passing through the unstable fixed point at QIF = 0 are 
given by 

CyPl2 cospr =0, P22. (3.81) 

This is a set of g straight lines passing through the origin of the (fi, r) phase 
plane. Defining the lines for the angle r in the range -7r/2 < r 5 7r/2 , we can 
express the equations of the lines by, 

r= g !lr 
2p’ 

q = 1,3,. . . (p - 1) (for even pi ; 
1. 

and -- 
kf, q= 1,3,...(p-2) 

r= 
7+, 

(for odd p) . 
9 =P 

For example, for a dipole resonance, p = 1, the phase space trajectories are 
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given by 
,c-. . . - C=A~cr+2A,&cosr, 

. 
with a stable fixed point given by, 

AL+=O. 
QF 

Thus we see that for AL # 0, there is a stable fixed point at 

,/?@=121, withr={o: i: tLzz . 
L 

(3.84) 

(3.85) 

(3.86) 

The trajectories are circles around this fixed point. At the resonance, AL = 0, 
and the phase space structure degenerates into the straight lines 

d- a! cosr = constant . (3.87) 

Notice that for the dipole resonance, the fixed point at fi = 0 vanishes because 
of the resonance. All other resonance orders retain the ,/Z = 0 fixed point. 
This is easily seen by recognizing that to get the fixed points, X/a+ must 
be set to zero, rather than X’/&L Of course, for the ,/E # 0 fixed points, 
using the latter is appropriate. 

The phase space structure close to resonance condition for p = 1,2 and 3 
with no space charge are illustrated in Fig. 7. 

_-..._ . -. 3.5 RESONANCE PHASE SPACE STRUCTURE WITH SPACE CHARGE 

If we include space charge, we have for the p unstable fixed points, 

AL-U'(aF)+ Ae c~pF/~-‘=o. (3.88) 

On the other hand, the p stable fixed points can be found from the expression, 

AL - @(oF) - Ae c~pF/~--l = 0 . (3.89) 

If a particle is oscillating in the phase space not close to the fixed points, 
i.e. not near the resonance, then the behavior is simply - _. I _=. 

- -- :.& = 0 ) (3.90) 
..- 

and 
- - $=I/ - tF(a) , (3.91) 

where u is the externally applied betatron tune and c is the space charge 
strength. q& is simply a perturbed tune for the amplitude (Y. Calling this 
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(a) p=l 

,c-. . . _ I 

. --- 1 

Q- 
c-l& 

A, =- 
AL 

(b) p=2 

~+~~ 

I 

(cl p=3 

Fig. 7. The phase space structure 
close to resonance of order p = 1,2 
and 3 with no space charge force 
present. If right at resonance, for 
p = 1 the s f . .p. moves to infinity 
and for p = 2 and 3, the s.f.p. turn 
into u.f.p. with no stable region. 

_-..._ . 9-86 - 
5544A7 I I 

up(a), we have, 

Up(Q) = Y - (F(a) . 

At amplitudes near the fixed points, i.e. near 

(3.92) 

the resonance, the phase 
space structure is generally a string of p islands around the origin. The fixed 
points define the amplitude at which these islands are located. The amplitude 
variation can be found from the approximate expression for the separatrix, 

ACY 
- = f dh(l - cospr) . 
Q!F ; 

This means that the amplitude modulation around the fixed points, or the 
extent of the resonance in amplitude, is given by 

CAa)m= Aa = 
CYF 

, (3.94) 
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where 
,,.- . . - 

. h=- 
4&cr;/2-1 i 

P&FF'(~F) ' 
(3.95) 

For large space charge strength, h << 1, and we see that the space charge 
has stabilized the resonance. Without space charge the resonances fill the entire 
phase space with unstable trajectories. Adding space charge reduces the impact 
to a small phase space amplitude region. 

Consider the calculation for the case where the unstable fixed points are 
at Ck!F = 1, corresponding to the beam edge (i.e. fi a,,).). We have, 

AL-U’(l)+Ac=O, (3.96) 

or 

AL = t F(1) - AC . (3.97) - 

Since it is assumed that c >> Ae, both the stable and unstable fixed points are 
very near cy = 1, and the tune required for this condition is 

AL = 6 F(1) . (3.98) - 

In this case the maximum amplitude modulation around (YF = 1 is 

_-..._ . 
-. (AaIm= = * p~;8F9[l)l * r (3.99) : 

A good approximation to F(a) is 

F(a) = l 
1+ (Y/2 ’ 

(3.100) 

which satisfies F(0) = 1, and F(oo) + 2/o. Using this form, F(1) = 2/3 and 

F’(1) = 2/9, where F’(a) = - ’ 
2(1 + o/2)2 * 

We therefore have: 

and (Ao)ma = f (3.101) 

- 

- - 
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3.5.1 p 1 3 Case 
,c-. . . - 

. As AL approaches the resonance, AL = t, the fixed points shift toward 
the origin and the islands shrink in width. For p 2 3, and AL = c, the fixed 
points are determined by 

((1 - +F)) f AC CY$‘-~ = 0 , (3.102) 

or 

aF=o. 

At CYF = 0, we have, 

(A4 m~=f~J’&~o. 

The phase space structure is sketched in Fig. 8(c). 

(3.103) 

(3.104) 

- 

3.5.2 p = 2 Case 

For the quadrupole resonance, p = 2, the fixed points are determined by, 

AL - eF(oJ’) f AC = 0, (3.105) - 

and the set of invariant curves are given by, 
_-..._ _ 
-. C = ALCY - (U(o) + Ae crcos2r . (3.106) 

To see the nature of the fixed points, write the fixed point equation in the 
form, 

AL - (+ c(l- F(oJ’)) f A, = 0, (3.107) 

noting that 1~ F(oF) 2 0 for CYF 2 0. Then we have, 

l For AL - c > Ae, no fixed points. (The origin is a stable fixed point.) 

l For AL - e < -Ae, 2 sets of fixed point pairs, one stable, the other 
unstable (islands strung around the origin). (The origin is a stable fixed 

_. -9. point .) 
- - 

_- 

- - 

l For -Ae < AL - e < Ae, one set of stable fixed points. (The origin is 
an unstable fixed point.) 

Thus, the no-space-charge-stopband still exists in a sense. If the linear 
particle tune (small amplitude) is above the stopband there are no fixed points. 
That is, we have distorted circles of varying tune in phase space. Below the 
stopband, islands develop around the origin. We have calculated the width of 
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_-..._ . 
-- 

(a) p=l 
. . - 

(b) p=2 

(c) p=3 

9-86 

5544A8 I 

Fig. 8. The phase space structure close to res- 
onance of order p = 1,2 and 3 in the presence 
of space charge force. If ( is not zero, stable 
solutions always exist even at resonance. 

these islands b~efore, using an expansion about the unstable fixed points for 
oj? # 0. We obtained a width given by 

(Aa)rnax = f 3~~~~~)1 * (3.108) 

- Again, if the tune is chosen so thatthe fixed point is at the beam edge, ck!F = 1, 
we have _- 

- _ (Acx) (3.109) 

This is a new effect introduced by the space charge force. Inside the stopband, 
the space charge force adds a stable fixed point to the already existing unstable 
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fixed point at the origin, leading to a “figure-8” type separatrix. Since the 
,c- separatrix passes through the origin, it is found by taking the constant C = 0, 

. that is 

ALa - EU(a) + A,CY cos2r = 0 , (3.110) 

To determine the general nature of the phase space structure, we use the 
approximate expression for F(o), 

F(a) = l 
1+ cY/2 . 

(3.111) 

Solving for the fixed points, we obtain 

1 t 
-aF=ALkAc 2 

-1. (3.112) 
- 

The stable fixed point when the tune is inside the stopband is found using the 
U-n sign. At the center of the stopband, AL = t, and we have for the stable 
fixed point, 

1 Ae Ae 
-QF=E-A,=~, 2 

and for the separatrix 

(3.113) 

_-..._ _ ((a - U(a))+A,acos 27=0. (3.114) - ; 
-. 

Expand about the unstable fixed point at cy = 0. Then, 

U(a)=a-+x2+... . (3.115) 

Thus, we have for the separatrix, 

4Ae a=-- 
e 

cos27 . (3.116) 

Thus, this is “vertical figure-8”) with the stable fixed points along r = 7r/2 and 
_ _ _Ye. r = 37r/2, with maximum amplitudes along this line given by 

.- - ; 
46, CY mu=-. 

t 
(3.117) 

- - 
To the extent that oma is small, i.e. t >> S,, the space charge force has 
bounded the resonant trajectories to regions in amplitude around the origin of 
order A,/(. The phase space structure is sketched in Fig. 8(b). 
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3.5.3 p = 1 Case 
. . - 

For the dipole resonance, p = 1, the fixed points are determined by 

AL - [F(aF) f AC/& = 0. (3.118) 

It should be noted that in the dipole case there is no added fixed point at the 
origin. This is a reflection of the fact that dipole resonances directly affect the 
closed orbit. The set of resonant trajectories are given by, 

C = AL a - [U(a) + 2A, &I2 cos r . (3.119) 

To see the general nature of the fixed point structure, write the fixed point 
equation in the form, 

AL - t + [(I- F(oJ’)) f s = 0 . 

The point CKF = 0 is never a tied point as long as A, # 0. On resonance, 
AL - c = 0, and the fixed point which was at infinite amplitude when there 
was no space charge has moved to a finite amplitude which can be found from 
the equation, 

_-.. .- . 
-. 6 (1 - F(aF)) = $ , (3.121) 

where only the bottom sign in the fixed point equation gives a fixed point, 
which is a stable fixed point. An approximate solution can be found by noting 
that for A,/( small, the solution must have CUF < 1. So, expand about OF = 0, 
giving the equation 

IF’(O)1 ay2 = $ , 

or 

_. 
I .=. 

.- -  
*= (E&O), 1. 

)1’S = (2&)“3 . . 

(3.122) 

(3.123) 

- 

- 

- - 

Now, if AL - [ > 0, this fixed point must move closer to the origin since a 
solution requires that the term (-Ae/fi) to increase in magnitude. The 
phase space structure is illustrated in Fig. 8(a). 

We can estimate the fixed point structure as a function of AL - t by using 
the approximate form of F or by expanding F to lowest order in cy since all 
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the tied points will be close to Q: = 0 if h < 1. Writing, 
,*.- . . _ 

. l-j’=LEya! 
2+a, 2 

if cy < 1 , 

and defining 

h=$, 

tE= AL-~ 
c ' 

(3.124) 

(3.125) 

(3.126) 

x=6 (3.127) 

we have for the fixed point equation, 

x3 + 26~ f 2h = 0 . (3.128) 

Consider the fixed points as a function of c = (AL - o/t. On resonance, 6 = 0, 
and we have the solution, 

x = (2h)‘i3 . (3.129) 

_-..._ _ -. 

To complete the analysis of the dipole resonance, the cubic equation for the 
f&d ’ e points has been solved off resonance (c;O) as well, with the conclusion 
that the space charge force does indeed preserve a stable region of phase space 
near the origin. In fact, the worst situation is on resonance, where the fixed 
point moves from infinity (no space charge stabilization) to a distance (2h)li3 
from the origin, i.e. a distance on the order of (Ae/[)1/3. 

Recently I. Hofman and K. Beckent wrote a simulation program to look 
into the resonance behavior of particles under space charge force with self- 
consistent charge distribution. They found out the basic fact we showed here 
that the space charge force tend to stabilize the resonance. Their simulation 
shows that if the dipole resonance is crossed by adjusting external tune uo, the 
bunch experiences a position offset. However, if the crossing is due to space 
charge detuning, the centroid of the bunch never experiences-any movement as _. _T_ shown in Fig. 9.” 

- - 1. 
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Fig. 9. Phase space projections for dipole error be- 
fore and after integer crossing. (a) crossing of UO; 
(b) crossing of Y (~0 tied). 

3.6 COMPARISON BETWEEN UNIFORM AND BUNCHED BEAM 

From the above analysis, we can draw some general observations about 
beam behavior under space charge condition. A uniform current beam has the 
characteristic that all particles are mediated by the same space charge strength 
[. Particles of different amplitudes will have different tunes, but the force is 
the same for all particles. A second point is that, except for scattering and 
noise effects, the linear tune remains constant for each particle, although the 
beam will have a spread in linear .tune due to the chromaticity. 

If the linear tune of a particle is fixed, and if the space charge strength 
_-..._ . is fixed, to determine stability we need only examine the %xed” phase space 

structure. In the case of large current, or large [, we have seen that the 
resonances of all orders have only a minor impact on the phase space structure. 
Thus, even on resonance, the beam will be stabilized by the strong resonance 
detuning effect of the space charge force. 

When a beam is bunched by an applied radiofrequency field, two effects 
manifest themselves, which change this picture of space charge induced sta- 
bility. The most important impact is that the space charge strength [ is a 
function of the local current density, which is a constant in the non-bunched 
case. At both ends of the bunch, the local current drops to zero. Thus, the de- 
tuning effect of the space charge force disappears for these particles and if they 
are on a resonance, the phase space structure will be strongly affected as we _ _-. have previously seen. A second important effect of bunching is the synchrotron - - 
motion of particles -around the bunch. In other words, particles’ rotate around 

..- the center of the bunch and in particular, those of large synchrotron amplitude 
move from front to center to back and so on. Thus, a particle can move from - - 
a region where it is space charge stabilized to one where it is resonance vul- 
nerable. The problem is to control the tune such that uncorrected resonances 
are only located around the bunch center where space charge stabilization is 
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,; 
effective; while the tunes corresponding to the bunch ends are kept free of such 
resonances; This becomes increasingly difficult aS 6 increases since the bunch 
tune spread from center to ends is on the order of t. 

Application of this model to low energy beam capture in a synchrotron 
leads to the conclusion that in the bunching phase if the beam in tune space 
must be located on an uncorrected resonance, then it is stable if the locally 
dense portion of the beam is directly on the resonance and the locally dilute 
portion of the beam is free of this resonance. That observation is consistent 
with the practices at AGS and PSB as shown in Figs. 3 and 4. 

To compare the detailed prediction presented above with the experimental 
observation, the theory has to be extended to include coupling from the other 
transverse dimension. Which we plan to work out in the future; in the mean- 
time, there is some effort spent in this direction using computer simulation by 
G. Parzen12 at Brookhaven. 

4. BEAM-BEAM FORCE AND DETUNING 

In a colliding beam storage ring, a major source of nonlinear resonance 
excitation resides in the beam-beam collisions as the stored beams repeatedly 
cross each other. During such collisions, particles in each beam see the elec- 
tromagnetic field generated by the counter rotating beam. The beam-beam 

_-..._ _ -- 
collisions therefore perturb the particle motion, causing 

1. the transverse beam size to blow up and loss of luminosity, 

2. the beam lifetime to be reduced, 

3. and rapid beam loss as beam intensity increases beyond a more or less 
distinct threshold. 

Considerable efforts, both experimental and theoretical, have brought some 
insight into then beam-beam instability problem and often led to improvements 
in luminosity. But the nature of the instability and its associated underlying 
mechanism(s) are not yet fully understood and remain an outstanding problem 
for the designers of colliding beam storage rings. 

_ -3. Nonlinear resonance behavior is the underlying process of beam-beam in- 
- +-teraction, this chapter will identify the role of nonlinear resonances in the 

beam-beam problem. To reduce the scope of this effect, we will consider only -- head-on collisions of bunched beams. For the sign convention of the beam- 
- - beam force, we assume the two colliding beams to have opposite charges. We 

will emphasize on the detuning effect and its comparison to similar effects in- 
troduced by space charge force. For more complete coverage, the articles by 
Kheifetsr3 and Chao et al l* are recommended . . 

- 
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In this section we will develop the single resonance analysis that is ap- 
?- plicable to the strong-weak case of the beam-beam interaction. In this case, 

. the strong beam is unperturbed by the beam-beam interaction; motions of 
the weak beam particles are then analysed in the presence of the nonlinear 
electromagnetic force produced by the strong beam at the collision points. 

4.1 BEAM-BEAM FORCE AND RESONANCES 

In the strong-weak picture, the motion of a test particle in the weak beam 
is governed by the Hamiltonian” 

H=Ho+Hl 

= ; (Pi + ma) + ; (Pi + Kyy2) + U(x, y) &p(5) 
(44 

where U(Z,Y) is the equivalent potential produced by the strong beam, z and 
y are the horizontal and vertical coordinates that describe the test particle 
motion. The b-function represents the periodic collisions with a period 27rR/S 
where R is the average radius of the storage ring and S is the number of 
cohision points around the ring. The unperturbed Hamiltonian Ho represents 
the usual two dimensional betatron motions with focussing structures described 
by Kz (s) and Kg(s). 

The equations of motion described by the Hamiltonian (4.1) are 

d2z 
-@ + K&)z = -gqs) , z=z,y (4.2) 

The potential U depends on the distribution of the strong beam at the collision 
points. Assuming the strong beam has an upright bi-gaussian distribution, the 
potential can be written as9 

cm 

u(x,y) = $/dt 

0 

_ 
_ _T.  

._ Jhere r, = e2/mc2 ,is the classicalLradius of the particle, 7 is the relativistic 
factor, N is the number of particles per bunch and a,,, are the rms beam di- 

- 

- - 

mensions of the strong beam at the collision points. Throughout this section 
on strong-weak single resonance treatment, we will assume the gaussian poten- 
tial given by Eq. (4.3). Equation (4.3) is identical to Eq. (3.1) for space charge 
force, the only difference is the sign of the force and the spatial distribution 
along the ring. 
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Equations (4.1) and (4.2) can be solved in various stages of approximations 
,*.- and sophistications. The simplest treatment is :to consider only the linear 

. effects by Taylor expanding U(z, y) and keeping only terms quadratic in z and 
y. The problem is then solved exactly in the same way as ordinary gradient 
perturbations. The linear beam-beam perturbations give rise to betatron tune 
shifts &Y which are given by 

e* = 
Nre Pj 

~T~o,(cT, + ay) 9 z = z, Y (4.4 
where & are the betatron functions at the collision point. This effect was 
first pointed out by F. Amman and D. Ritson.15 

In the linear approximation, the x- and the y-motions are decoupled. The 
motion in each dimension is completely determined by two parameters, i.e. the 
betatron tune per revolution u and the beam-beam strength parameter [. The 
simplest resonance effect manifest itself when u is sufficiently close to a half 
integer, the particle motion becomes unstable due to the gradient perturbation 
of the beam-beam force. 

When the complete potential U is taken into account, the particle motion 
is affected by the beam-beam perturbation whenever a nonlinear resonance 
condition is approximately satisfied 

2nvz+2muY+kkc0 (4.5) 

_-..._ _ - 

where n, m and k are integers. The even coefficients in front of V, and ur, is 
due to the polarity of the beam-beam force. Resonances with odd coefficients 
are not excited except for non-head-on collisions, which we do not consider in 
this lecture. Extension of single resonance analysis to include the non-head-on 
cases is straightforward with proper modifications on the beam-beam force. 

_ _T_ 

To treat the general strong-weak problem, it is a matter of taste whether 
to start with the Hamiltonian (4.1) or with the equations of motion (4.2), each 
gives the same answer. The Hamiltonian approach will be adopted here. In 
the following we will assume that Ez = tY = t. 

The first step is to make a canonical transformation on the Hamiltonian H 
to remove the time-dependence from Ho, thus defining an equivalent harmonic 
oscillator with frequencies u, and uv. The transformation has the generating 
function 

- i-w 

- 
F&y,~&) = -f. c L [tana, - +)] 

z=z,y pz (4 

- - with 

Pz=h+jda’[&-%] 
0 

(4.6) 

- 
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where /3,(s) and &( ) s are the betatron functions defined by Courant and 
i ,*.- Snyder.?. _ 

. The relation between the old coordinates (2,~~) and new coordinates (.I,, &) 
is 

pz=- 
\i( 

2J, sin4,- PL 
Pz -posh , 

> 
z=x,y 

We then normalize the action variables by 

% 
JZ =- 

cz + cy ’ 
z=z,y 

(4-V 

(4.8) 

where c %Y = a,2,ylK,y are the natural emittances of the strong beam. We also 
will change the time variable s to the azimuthal angle 6 = s/R. 

Assuming equal linear tune shifts in the z and y planes, the new Hamilto- 
ni.an becomes 

Nr, S O” 
wL4y,%QlyJ) = h%z. +uyay+ - - c 

2r7 ” + ‘Y kcwoo 

eikSe (4-g) 

00 1 - exp 
a+1 a+1 -(lyZ -cos2& - cxy - cos2 fpy 

X dt 
at + 1 a-f-t 1 

0 

where a = a,/~, is the aspect ratio of the strong beam distribution. Note that 
the periodic delta-function in s has been replaced by infinite series of sinusoidal 
terms in 8. 

So far the manipulation on the Hamiltonian has been only mathematical. 
The physics comes in the next step - the “smooth approximation”. To do 

_ _ _=. that, we assume there is one and only one dominating nonlinear resonance that 
- --- --determines the motion of the weak beam particles. 

-- 

- - 

Let the resonance be that of Eq. (4.5). Note that the Hamiltonian (4.9) 
contains complicated dependences on 6, 4% and 4y. In the smooth approxi- 
mation, we need to remove the “fast oscillating” terms and extract only the 
“slowly varying” terms in the Hamiltonian. To do so, a triple Fourier expan- 
sion in 8, & and 4y is performed on (4.9). Keeping only the slowly varying 

c 
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terms, we obtain a new Hamiltonian 
,; 

H(h&,&,ay,fl) k: ~,a, + uyay + St [Ho,+Y~,&,) 
. 

+ 2(--l)“+mEln~(~Z, ay) cos(k6 + 2n95, + 2mq$,)] 
(4.10) 

There are two beam-beam terms in (4.10). The first term is independent of 
8, h and dy. The second term contains the Fourier component in the slow 
variable kS8 + 2nq5, + 2mq$,. The functions Hm(aZ, cy,,) and Hnm(cxz, q,) are 
the Fourier components of the beam-beam perturbation 

00 Pnm -exp a2 l+a ay a+1 ------ 
H 

/ 
dt 

2 l+at 2 a-+-t 
nm = I 

0 &m=i (4.11) 

where Pnm = 1 if n = m = 0 and 0 otherwise, In and Im are Bessel functions. 
There are two invariants for the smoothed Hamiltonian (4.10). The first 

one is 

C= -mLcyz + ncxy (4.12) 

_-.. .- _ -. 

For a one-dimensional resonance ‘(n = 0 or m = 0), it trivially means that the 
other dimension is not affected, and is thus redundant in the treatment. For 
a two-dimensional resonance, it expresses the exchange of energy between the 
two coupled dimensions under the constraint of (4.12) and renders the problem 
effectively one-dimensional. 

We now perform another canonical transformation using the generating 
function 

F2(h75y,KC,6) = -& [K&h + 2m4, + kfl) + C(2n& - 2mcjy)] 
(4.13) 

The dynamical variables for the effective coupled dimension are 

I K=-( n-m + nay) 

_ 
_zz_ 1 * 11,= -& [2nh + 2hy + kg] 

- -  _ 

(4.14) 

where $J is the slow phase. The corresponding Hamiltonian is14 -- 

- - H(K,$) = -E + SC [Hoe(K) + 2(-l)“+“Hnm(K) cos(Amnt,b)] (4.15) 

where 6u = 2nu, + 2muy + k specifies the distance from the exact location of 
the resonance. Note that this Hamiltonian is independent of the time variable 
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0, meaning it is the second constant of the motion. The functions Ho0 and 
,; Hnrn are the characteristic functions of the beam-beam problem in the single 

resonance picture. . 

4.2 BEAM- BEAM DETUNING 

The phase space structure for the motion described by the Hamiltonian 
(4.10) or (4.15) depends on the behavior of the functions Ho0 and Hnm. In the 
absence of all resonances, the detuning term gives the effective tune shifts as 
functions of the oscillation amplitudes CK=,~, i.e. 

A~z,~(“z, au> = St =bo(~z, ay) 
b,y ’ 

(4.16) 

The tune shifts at vanishing amplitudes are simply given by [ per beam-beam 
crossing in both dimensions. For larger amplitudes the tune shifts become 
smaller. The detuning mechanism is schematically shown in Fig. 10. 

Ady) (b) 

Fig. 10. Schematic illustration of 

force. (b) is the slope of this force. 
Small Amplitude The tune shift is obtained by aver- 

Large Amplitude 
-1 

aging af/ay over the range reached 
by a given amplitude. (b) also shows 
two such ranges, one for a small 

(cl amplitude particle and one for a 
large amplitude particle. The re- 1. 
sult after averaging gives the beam- 
beam detuning curve which looks 
like (c). 

AU 
_ _ _-s_ 

- z- t 

c 
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In addition to a net shift (4.16), the instantaneous rate of change in the 
i .; phase variable $ contains a slowly varying term proportional to H;,(K), ac- 

. cording to the Hamiltonian (4.15). The width of the resonance (in nu, + muy 
unit) can be defined to be 

Wnm(K) = 4mn H;,(K) . 

It should be pointed out that (4.17) is the simplest possible definition of reso- 
nance width. More sophisticated definitions taking more carefully into account 
the phase space structure also exist, but will not be considered in the following 
analysis. 

_-.. .- _ -. 

Due to the detuning mechanism, the beam-beam force introduces a spread 
in the weak beam tunes. The working point specified by the unperturbed tunes 
becomes a working area in the tune space. Figure 11 shows this behavior for 
three different values of the aspect ratio a. In the presence of nonlinear reso- 
nances, the working area should avoid resonance lines, according to the single 
resonance model. The working area therefore needs to fit into a “resonance 
free” region in the tune space, as shown in Fig. 11(d). For a flat beam with 
small aspect ratio, an inspection. of the shape of the working area in Fig. 11 
shows that it is better to choose the unperturbed working point to lie on the 
lower right side of the destructive resonances than to the upper left side. In 
particular, when applied to the diagonal 2u, - 2uv = n resonance, this means 
the unperturbed working point should be below the resonance line. 

However, having a resonance line trespassing the working area does not 
necessarily mean instability of particle motion. The stability depends on the 
phase space structure which in turn depends on the behavior of both the tune 
shift (4.16) and the resonance width (4.17). Figure 12 shows three typical 
situations, each gives rise to a qualitatively different phase space structure, 
and therefore different stability behavior. For instability, the resonance width 
must dominate the tune shift. Otherwise a particle temporarily finds itself 
in resonance will grow in amplitudes, but a larger amplitude means a large 

_. _ _Yz_ tune shift which automatically brings it out of the resonance. The beam-beam 
- -Anteraction, it turns out, is one in which the tune shift dominates and therefore 

does not cause instability. - 

e 

- - The tune shift and the resonance width as functions of amplitude for the 
beam-beam interaction looks like that sketched in Fig. 12(c). More 
quantitatively, l7 let us consider a round beam with a = 1 and consider a 
particle with no horizontal motion, i.e. CQ = 0 and oy = CL The tune shift 
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-. 9-84 

h-Y,0 3 4624C5 

Fig. 11. Beam-beam tune spreads. We assume the two beams have 
opposite charges. (uzo,uyc) is the unperturbed working point. With 
beam-beam collisions, the working point extends into a working area. 
The dotted lines are the contours for particles with amplitudes satis- 
fying x2/a: + y2/a,2 = n2. We assume & = ty = 0.05. Case (a) is 
when the aspect ratio is a = 1, i.e. a round beam. Case (b) is when 
a = 0.1, i.e. a flat beam. Case (c) gives the result in the limit a = 0. 
(d) shows fitting the working area (shaded region) into a resonance 
free region in the tune space. 

_ _T_ and the width functions are given by 
- - 1. 

Au(o) = St 
1 - ewalo(a) 

a 

- - 
VVn(CZ) = 4S[ e-ut(a) 

These functions are plotted in Fig. 13, taken from Ref. 16. It is seen that 
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Fig. 12. A few typical detuning and width 
functions: (a) magnetic multipoles with 
weak detuning; (b) magnetic multipoles 
with strong detuning; and (c) beam-beam 
interaction. 

Fig. 13. Beam-beam detuning 
(a) and width A(b) in the case 
of a round beam. 

- -rp- 10-Q 
0 I 2 3 4 5 

-- 
l-85 X/C 5009A3 

- - 
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the resonance widths are typically much smaller than the tune shift and they 
,*.- decrease- quickly with increasing resonance order :n. Furthermore the asymp- 

. totic behavior of (4.18) for large a! is AV + l/a, W,, -+ l/a312, meaning the 
tune shift always dominates the width for large amplitudes. The phase space 
structure is therefore closed and motion necessarily stable. In fact, only the 
lowest order resonances are capable of producing large islands in phase space 
and even then the islands are usually not large enough to cause beam loss. 
To explain the beam-beam instability, something more has to be added to the 
single resonance picture. Figure 14 demonstrate the situation by a computer 
simulation. A fourth order resonance is being studied. Case (c) has a phase 
space structure like Fig. 12(b) while case (d) has the structure like Fig. 12(c). 

4 -’ ” ” ” ’ ” ” ” ” ” ” -’ ” ’ ” 
IllI IIll’IIIIj 
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Fig. 14. Weak beam trajectories in the normalized phase space (u, u), where 
-- u = y/a, u = &~‘/a. We assume u = 0.23. (a) ignores the beam-beam 

- - force. (b) includes only the linear term of the beam-beam force. (c) inlcudes 
the linear and the octupole terms and (b) tak es into account of the complete 
beam-beam force. In each diagram, trajectories of the same five sets of initial 
conditions are followed. Note the qualitative difference between (c) and (d). 
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It is interesting at this stage to introduce the actual observation of both 
,c- space charge and beam-beam induced tune shifts,in one machine, the SppS.18 

. In Fig. 15 Qe represents the machine tune provided by external focusing only. 
Point Qcp is the tune shift due to space charge for the proton beam and point 
Qep represents the tune shift for an anti-proton beam due to collision with 
proton. The former is a defocusing effect and the latter is a focusing effect. 
They extend into different direction in the tune diagram and make the control 
of working point more important for stable operation. 

QV 

0.75 

0.67 

- 

0.67 0.70 0.75 Q, 
9-86 5544A15 

_-.._ . -. Fig. 15. Space-charge and beam-beam 
effects at injection (6p bunches, IF bunch) 
of spps. 
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