SLAC-PUB - 4054
DPNUS86 — 46
August 1986

(E/T)

A STUDY OF STRANGE AND STRANGEONIUM STATES PRODUCED IN LASS*
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Results are presented from the analysis of several final states from a high-sensitivity (4

ev/nb) study of inelastic K~p interactions at 11 GeV/c carried out in the LASS Spec-

trometer at SLAC. New information is reported on leading and underlying K* states, and

the strangeonium states produced by hypercharge exchange are compared and contrasted
- with those observed in radiative decays of the J/vy.

1. Overview of the Experiment

The spectroscopy of light-quark mesons con-
tinues to play a significant role in High En-

ergy Physics. Much is now known, but our
understanding of higher excitations and non-
leading states is still far from complete. In
order to make a useful contribution, an ex- -
periment must have both high sensitivity and <

good acceptance, criteria fulfilled by the ex- --

periment whose results are described below.

The Large Aperture Superconducting Solenoid
(LASS) Spectrometer is shown in Fig. 1.
Situated in-an RF separated beam, it features
a solenoidal vertex detector and downstream
“dipole spectrometer giving good acceptance
over 47 sr and good momentum resolution.
Two threshold Cerenkov counters, Time-of-Flight
counters and dE/dz measurement in the cylindri-
cal chambers surrounding the liquid hydrogen tar- ¢
get provide good particle identification. The trig-
ger for the experiment was two or more charged
particles in the “box” of proportional chambers
surrounding the target—essentially oy, except for
the all-neutral final states.

The results presented below come from studies of

K* productiori in the channels K~r+n, K°ntx—n,

and K np and of “strangeonium” production by

hypercharge exchange in K:K*xFA, K-K*A,
-and K2K?A.
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Fig. 1. The LASS Spectrorheter

2. New K* Results

The large cross section K ~r*n channel is ideal for
studying natural JP K* states. The internal angu-
lar structure of the K~»* system shows complex
structure, and is analysed"” in terms of moments
of spherical harmonic functions in the Gottfried-
Jackson (t-channel helicity) frame. In general,
states of spin J will appear in moments up to
L=2J. After demanding || < 0.2 (GeV/c)? and
removing events with 7*n mass below 1.7 GeV/c?
(N* cut) there remain 151000 events with K—n+
masses below 2.6 GeV/c?. Figure 2 clearly shows
the well-known leading states, with Breit-Wigner
fits giving masses (widths) in agreement with the
world averages:"" K*(892) 897.0 + 1.4 (49.9 +
2.5); K*(1430) 1433.0 + 2.1 (115.8 % 4.3); and
K*(1780) 1778.1 £ 7.7 (186 * 36). All values
are in MeV/c? and systematic errors are included.

*Work supported in part by the Department of Energy, contract DE-AC03-76SF00515, the National Science Foundation,
grant PHY82-09144, and the Japan U.S. Cooperative Research Project on High Energy Physics. -

**Speaker i

Talk presented at the 23rd International Conference on High Energy Physics,
Berkeley, California, July 16-23, 1986



. The higher moments shown in Fig. 3 confirm the
JFP=4% K*(2060) and require a new 5~ state. The
curves shown are the result of a simple model fit

to the 21 moments with L <10 and M <1, higher

moments being consistent with zero. The F, G,

and H-waves are parametrised as Breit-Wigners
with a background term while the S, P and

i
ali!

D-waves are assumed to be coherent ampli-
o tudes, with linear mass dependence in both
magnitude and phase. The M=1 moments
are related to those with M=0 using the
parametrisation of Estabrooks et al."! The
resulting masses (widths) in MeV/c? are
2062+ 27 (221+75) and 2382133 (178+69)
for JP=4% and 5~ respectively. The signif-
icance of the 5~ structure compared with a
background term alone is ~ 50.

We turn now to the related K°n+n~n chan-
nel which can be viewed as exploring in-
elastic K7 interactions, while K~ ntn tells
us only about Kr elastic scattering. Fig-
| ure 4 shows the observed K°r+7~ mass
spectrum after applying an N* cut; there
-1 are 34000 events in the final Partial Wave
Analysis (PWA) sample below 2.3 GeV/c%.
A three-body PWA using the SLAC-LBL
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Fig. 2. The unnormalised L-even, M=0 K~rt

- moments for the mass region below 1.88 GeV/c?

extracted from the reaction K~p — K~n*n. The

curves are described in the text.
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Fig. 3. The unnormalised L > 6, M=0 K~-n*
_mements for the mass region above 1.88 GeV/c?
extracted from the reaction K~p — K~n*tn. The
moments are plotted in overlapping bins; black
dots indicate the independent mass bins used for
the fit described in the text.

1.6 program reveals, surprisingly, that most

of the K°n*7x~ production is resonant.'
I will concentrate on the natural J¥ pro-
duction, which dominates all the important

features.
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Fig. 4. The K°7*t#n~ mass spectrum from the re-
action K~p — K°ztx~n. The inner histogram
is the PWA sample with |t/| < 0.3 (GeV/c)?; the
dashed line shows the mass dependence of the ac-
ceptance function.
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Fig. 5. The K°r*n~ natural spin-parity wave
intensities. Partial waves of the same JF are
summed coherently.

phase behaviour of the 1~ waves. The result of
this fit is shown in Fig. 6; a coherent background
was allowed in the 17 K*r amplitude, though this
is not essential for a good fit. The masses (widths)
of the two 1~ states are: 1420 *+ 17 (240 + 30)
and 1735 £ 30 (423 + 48) MeV/c?; systematic er-
rors are included. This analysis confirms previous
observations.”™ The lower state is presumably
the first radial excitation of the K*(890).

Figures 7(a) and (b) show the intensities of the
2tK*r and 2*pK waves. Apart from the lead-
ing 2% K*(1430), a large enhancement is evident
in both waves at ~2.0 GeV/c2. We have fit the
intensities and relative phases of these two waves
“above 1.69 GeV/c? to a Breit-Wigner and a co-
herent linear background; the overall phase is set
using the fit to the 17 K*r wave described above.
The result of the fit, shown in Fig. 7, is satisfac-
tory, although the size of back-
ground required means that the
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text.

Figure 5 shows the natural parity J¥ decomposi-
tion. The leading 2%, 3~ and 4% K* states are
clear, and there are also interesting structures in
the 1~ at 1.4 and 1.8 GeV/c? and in the 2% at
about 2 GeV/c%. Figures 6(a) and (b) show the
1~ intensity broken down into K*r and K p compo-
-nents, indicating states at ~1.4 GeV/c? coupling
only to K*r and ~1.75 GeV/c? coupling to both
K*r and Kp. We have made a simultaneous fit to
these waves and the leading 2t K*r; 3~ K*r and
37 pK waves, thus tightly constraining the relative

N* and Y cuts and subtracting
the control regions. The spectrum is dominated
by a single resonance which is consistent with the
3~ K*(1780); this interpretation is confirmed by
a preliminary moments analysis. The observed
events correspond to a Kn branching ratio of
~2.5%. In contrast, there is no evidence of the
K*(1430) whatever; the shaded area shows the
expectation if its Kn branching ratio were 0.5%.
These observations disagree strongly with SU(3)
predictions.

3. Analysis of Strangeonium Channels

We expect channels involving hypercharge ex-
change (e.g., those with a slow A) to be a fruit-
ful source of s5 states. In all the cases described
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Fig. 8. The n*7~#° mass spectrum from the re-
action K™p — K~ntn~n°p. The shaded control
regions are used to estimate non-n background un-
der the n signal.

below, the A is reconstructed in the LASS Spec-
trometer, and particle identification performs only
a supporting role in event selection. The resultant
acceptance is extremely uniform with no “holes.”

The KK=n mass spectrum for the combined
_K2K¥r* A channels, shown in Fig. 10, is some-
what disappointing! There is some evidence of
production of f;(1285) and f;(1420}, but the cross
section is small and statistics are limited. The
spectrum is similar to that observed in the analo-
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Fig. 9. The background-subtracted K7n mass
spectrum from the K~p — K ™np reaction after
N* and Y* cuts. The shaded curve shows the
signal expected for a K*(1430) — K7 branching

ratio of 0.5%.
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gous 7~ p reaction, indicating that these states do
not have dominant s3 content. Apart from these
states and a sharp rise in the spectrum at K'K
threshold, the gross features are very similar to
Kentr~. A preliminary PWA, in contrast, shows
that production of unnatural JF states is predomi-
nant and that the 1.4-1.6 GeV/c? mass region con-
sists almost entirely of 1t K*K. The broad bump
at ~1.52 GeV/c? could, therefore, be the f1(1530),
claimed as an s3 resonance by Gavillet et al.,m
though we find that K* production exceeds K* in
both channels. We find no evidence for 0767 but
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Fig. 10. The summed K; K7 mass spectrum from
the K~p — K;K*n~A and KK~ n*A channels.

cannot completely exclude it in the 1.42 GeV/c?
region. ) ;

Finally, we turn to the K=K+ A and K{K{A chan-
nels. These provide new information on hyper-
charge exchange production mechanisms and also
permit interesting comparisons with KK spec-
tra found in radiative J/¢ decay, thought to be
. “glue”-enriched.
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Fig. 11. The KK mass spectra (a) from the
K~K™*A; and (b) from the KJKZA final states,
demanding || <2 (GeV/c)?. '

Figure 11 shows the KK mass spectra from these
channels. The KJK; spectrum is dominated by
the f2(1525); since the CP restriction of even spin
does not apply to K~K ™, this spectrum also shows
a clear ¢(1020) and evidence of the ¢3(1860). The
cross section for production of f3(1525) in the two
channels is consistent at ~1.5 pbarns and in agree-
ment with interpolations of measurements at other
beam momenta.

The other major difference between the spectra
—the continuum in K~Kt—is a result of diffrac-
tive production of N*, as is clear from the Dalitz
plot shown in Fig. 12.
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Fig. 12. The Dalitz plot of the K™p — K"K+A
reaction, corresponding to Fig. 11(a).

In order to better understand the structures in the
K~K+ data, we have performed a moments anal-
ysis similar to that in the K7 channel but without
an N* cut. The moments above 1.68 GeV/c? are
shown in Fig. 13. The structure at 1.86 GeV/c?
is seen in moments up to tg and is verified as
JFP=3"; curves corresponding to Breit-Wigner fits
of t and t$ are shown (a linear background is in-
cluded in the former). The masses (widths) deter-
mined from the fits average to 1857 + 9 (69 + 18)
MeV/c2. There is also structure in the moments
around 2.2 GeV/c?, which is discussed below.

Figure 14 shows comparisons of the K¢ K¢ mass
spectrum with that seen by the Mark III group'”
in radiative decay of the J/vy. Figure 14(a) shows
that there is no evidence whatever for hadronic
production of the f,(1720) or “8;” however, Fig.
14(b) demonstrates that the data from the two ex-
periments are statistically compatible in the region
of the X(2220) or “£.”

We can try and combine evidence from the two
KK channels to speculate further on what might
be happening in the “£” region. The KK+ mo-
ments (Fig. 13) up to tJ show structure in the



2.2 GeV/c? region which, while not statistically
compelling, is compatible with a spin-4 state of
width < 100 MeV/c?. The large diffractive N*
production in this channel leads to substantial mo-
ments up to t3, though they should be smooth and
not have structure as a function of K"K mass.

Although statistics in the KK channel are poor
at 2.2 GeV/c?, it is clear that the events are not
distributed isotropically in the Gottfried-Jackson
frame. Figure 15 shows the KK spectrum for
events in the forward direction only (cosf; > 0.85);
the cut enhances the 2.2 GeV/c? region. Inset are
the L=2 and 4 moments which show some effects,
which are significant when integrated from 2.1-2.3
GeV/c2,

Synthesising the evidence, it is clear that the 2.2
GeV/c? region has JF >2* and there is some in-
dication of a rather narrow state with J¥=4%+.

4. Conclusions

Light quark spectroscopy is alive and well! We
are still gleaning valuable information on the exis-
tenceand decay modes of both leading and under-
lying K* states.The systematics of mass-splittings
of both radial and spin- orbit excitations is still
not well understood and we still encounter sur-
prises (K*(1410) and Kn).

In the “strange”-onium world, hadronic produc-
tion provides valuable comparisons with ete™ col-
lisions in our attempts to understand meson struc-
ture. In KK, we see evidence for production of
/1(1285), f1(1420) and f;(1530), and no evidence
for n(1440) (“”). Many issues remain unresolved
here; experiments are difficult and the position of
K*K threshold is a great complication. In KK, we
confirm the ¢3(1860) and find the “£” region con-
sistent with Mark III data and with quark model
expectations. The
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