SLAC - PUB - 4054 DPNU86 - 46 August 1986 (E/T)

A STUDY OF STRANGE AND STRANGEONIUM STATES PRODUCED IN LASS*

D. Aston, "" N. Awaji, "T. Bienz," F. Bird, J. D'Amore, W. Dunwoodie, R. Endorf, C

K. Fujii,^{b‡} H. Hayashii,^{b‡} S. Iwata,^{b‡} W.B. Johnson,^a R. Kajikawa,^b P. Kunz,^a D.W.G.S. Leith,^a

L. Levinson,^{a[†]} T. Matsui,^{b[‡]} B.T. Meadows,^c A. Miyamoto,^{b[‡]} M. Nussbaum,^c H. Ozaki,^b C.O. Pak,^{b[‡]}

B.N. Ratcliff,^a D. Schultz,^a S. Shapiro,^a T. Shimomura,^b P. K. Sinervo,^{a†} A. Sugiyama,^b

S. Suzuki,^b G. Tarnopolsky,^{a[†]} T. Tauchi,^{b‡} N. Toge,^a K. Ukai,^d A. Waite,^{a^{‡‡}} S. Williams^{a^{#‡}}

^a Stanford Linear Accelerator Center, Stanford University, P.O. Box 1819, Stanford, California 94805
^b Department of Physics, Nagoya University, Chikusa-ku, Nagoya 464, Japan

^c University of Cincinnati, Cincinnati, Ohio 45221

^d Institute for Nuclear Study, University of Tokyo, **3-2-1** Midori-cho, Tanashi-shi, Tokyo 188, Japan

Results are presented from the analysis of several final states from a high-sensitivity (4 ev/nb) study of inelastic K^-p interactions at 11 GeV/c carried out in the LASS Spectrometer at SLAC. New information is reported on leading and underlying K^* states, and the strangeonium states produced by hypercharge exchange are compared and contrasted with those observed in radiative decays of the J/ψ .

1. Overview of the Experiment

The spectroscopy of light-quark mesons continues to play a significant role in High Energy Physics. Much is now known, but our understanding of higher excitations and nonleading states is still far from complete. In order to make a useful contribution, an experiment must have both high sensitivity and good acceptance, criteria fulfilled by the experiment whose results are described below.

The Large Aperture Superconducting Solenoid (LASS) Spectrometer^[11] is shown in Fig. 1. Situated in an RF separated beam, it features a solenoidal vertex detector and downstream dipole spectrometer giving good acceptance over 4π sr and good momentum resolution.

Two threshold Čerenkov counters, Time-of-Flight counters and dE/dx measurement in the cylindrical chambers surrounding the liquid hydrogen tar- φ get provide good particle identification. The trigger for the experiment was two or more charged particles in the "box" of proportional chambers surrounding the target—essentially σ_{tot} except for the all-neutral final states.

The results presented below come from studies of K^* production in the channels $K^-\pi^+n$, $\bar{K}^\circ\pi^+\pi^-n$, and $K^-\eta p$ and of "strangeonium" production by hypercharge exchange in $K^\circ_{\delta}K^{\pm}\pi^{\mp}\Lambda$, $K^-K^+\Lambda$, and $K^\circ_{\delta}K^\circ_{\delta}\Lambda$.

2. New K* Results

The large cross section $K^{-}\pi^{+}n$ channel is ideal for studying natural $J^P K^*$ states. The internal angular structure of the $K^-\pi^+$ system shows complex structure, and is analysed^[2] in terms of moments of spherical harmonic functions in the Gottfried-Jackson (t-channel helicity) frame. In general, states of spin J will appear in moments up to L=2J. After demanding |t'| < 0.2 (GeV/c)² and removing events with $\pi^+ n$ mass below 1.7 GeV/c² $(N^* \text{ cut})$ there remain 151000 events with $K^-\pi^+$ masses below 2.6 GeV/c^2 . Figure 2 clearly shows the well-known leading states, with Breit-Wigner fits giving masses (widths) in agreement with the world averages:^[*] $K^*(892)$ 897.0 ± 1.4 (49.9 ± 2.5); $K^*(1430) 1433.0 \pm 2.1$ (115.8 \pm 4.3); and $K^*(1780)$ 1778.1 ± 7.7 (186 ± 36). All values are in MeV/c^2 and systematic errors are included.

*Work supported in part by the Department of Energy, contract DE-AC03-76SF00515, the National Science Foundation, grant PHY82-09144, and the Japan U.S. Cooperative Research Project on High Energy Physics. **Speaker

> Talk presented at the 23rd International Conference on High Energy Physics, Berkeley, California, July 16-23, 1986

The higher moments shown in Fig. 3 confirm the $J^P=4^+$ $K^*(2060)$ and require a new 5⁻ state. The curves shown are the result of a simple model fit

Fig. 2. The unnormalised L-even, M=0 $K^-\pi^+$ moments for the mass region below 1.88 GeV/c² extracted from the reaction $K^-p \to K^-\pi^+n$. The curves are described in the text.

Fig. 3. The unnormalised L > 6, M=0 $K^-\pi^+$ moments for the mass region above 1.88 GeV/c² extracted from the reaction $K^-p \to K^-\pi^+n$. The moments are plotted in overlapping bins; black dots indicate the independent mass bins used for the fit described in the text.

to the 21 moments with $L \le 10$ and $M \le 1$, higher moments being consistent with zero. The F, G, and H-waves are parametrised as Breit-Wigners

> with a background term while the S, P and D-waves are assumed to be coherent amplitudes, with linear mass dependence in both magnitude and phase. The M=1 moments are related to those with M=0 using the parametrisation of Estabrooks et al.^[4] The resulting masses (widths) in MeV/c² are 2062±27 (221±75) and 2382±33 (178±69) for $J^P=4^+$ and 5⁻ respectively. The significance of the 5⁻ structure compared with a background term alone is ~ 5 σ .

> We turn now to the related $\bar{K}^{\circ}\pi^{+}\pi^{-}n$ channel which can be viewed as exploring inelastic $K\pi$ interactions, while $K^{-}\pi^{+}n$ tells us only about $K\pi$ elastic scattering. Figure 4 shows the observed $\bar{K}^{\circ}\pi^{+}\pi^{-}$ mass spectrum after applying an N^{*} cut; there are 34 000 events in the final Partial Wave Analysis (PWA) sample below 2.3 GeV/c². A three-body PWA using the SLAC-LBL program reveals, surprisingly, that most of the $\bar{K}^{\circ}\pi^{+}\pi^{-}$ production is resonant.^[5] I will concentrate on the natural J^{P} production, which dominates all the important features.

Fig. 4. The $\bar{K}^{\circ}\pi^{+}\pi^{-}$ mass spectrum from the reaction $K^{-}p \rightarrow \bar{K}^{\circ}\pi^{+}\pi^{-}n$. The inner histogram is the PWA sample with |t'| < 0.3 (GeV/c)²; the dashed line shows the mass dependence of the acceptance function.

Fig. 5. The $\bar{K}^{\circ}\pi^{+}\pi^{-}$ natural spin-parity wave intensities. Partial waves of the same J^{P} are summed coherently.

Fig. 6. The $\bar{K}^{\circ}\pi^{+}\pi^{-}1^{-}$ waves compared with the predictions of the five-wave model described in the text.

Figure 5 shows the natural parity J^P decomposition. The leading 2⁺, 3⁻ and 4⁺ K^{*} states are clear, and there are also interesting structures in the 1⁻ at 1.4 and 1.8 GeV/c² and in the 2⁺ at about 2 GeV/c². Figures 6(a) and (b) show the 1⁻ intensity broken down into $K^*\pi$ and $K\rho$ components, indicating states at ~1.4 GeV/c² coupling only to $K^*\pi$ and ~1.75 GeV/c² coupling to both $K^*\pi$ and $K\rho$. We have made a simultaneous fit to these waves and the leading $2^+K^*\pi$, $3^-K^*\pi$ and $3^-\rho K$ waves, thus tightly constraining the relative phase behaviour of the 1⁻ waves. The result of this fit is shown in Fig. 6; a coherent background was allowed in the 1⁻ $K^*\pi$ amplitude, though this is not essential for a good fit. The masses (widths) of the two 1⁻ states are: 1420 ± 17 (240 ± 30) and 1735 ± 30 (423 ± 48) MeV/c²; systematic errors are included. This analysis confirms previous observations.^[3,6] The lower state is presumably the first radial excitation of the $K^*(890)$.

Figures 7(a) and (b) show the intensities of the $2^+K^*\pi$ and $2^+\rho K$ waves. Apart from the leading $2^+K^*(1430)$, a large enhancement is evident in both waves at ~2.0 GeV/c². We have fit the intensities and relative phases of these two waves above 1.69 GeV/c² to a Breit-Wigner and a coherent linear background; the overall phase is set using the fit to the $1^-K^*\pi$ wave described above. The result of the fit, shown in Fig. 7, is satisfac-

tory, although the size of background required means that the single resonance interpretation is not unique.

There are almost no data on decays of K^* states into $K\eta$. We have searched for these in the $K^-\pi^+\pi^-\pi^\circ p$ final state. Figure 8 shows the $\pi^+\pi^-\pi^\circ$ spectrum of events satisfying a 1C kinematic fit to this channel. Consistency of particle identification has been demanded and events satisfying the 4C fit to $K^-\pi^+\pi^-p$ have been excluded. We see a strong η signal; the shaded areas are control regions used for background estimation. In Fig. 9 is shown the $K\eta$ mass spectrum after applying N^* and Y^* cuts and subtracting

the control regions. The spectrum is dominated by a single resonance which is consistent with the $3^- K^*(1780)$; this interpretation is confirmed by a preliminary moments analysis. The observed events correspond to a $K\eta$ branching ratio of ~2.5%. In contrast, there is no evidence of the $K^*(1430)$ whatever; the shaded area shows the expectation if its $K\eta$ branching ratio were 0.5%. These observations disagree strongly with SU(3) predictions.

3. Analysis of Strangeonium Channels

We expect channels involving hypercharge exchange (e.g., those with a slow Λ) to be a fruitful source of $s \overline{s}$ states. In all the cases described

Fig. 7. The $\bar{K}^{\circ}\pi^{+}\pi^{-}$ 2+ waves; the fit at high mass is described in the text.

Fig. 8. The $\pi^+\pi^-\pi^\circ$ mass spectrum from the reaction $K^-p \to K^-\pi^+\pi^-\pi^\circ p$. The shaded control regions are used to estimate non- η background under the η signal.

below, the Λ is reconstructed in the LASS Spectrometer, and particle identification performs only a supporting role in event selection. The resultant acceptance is extremely uniform with no "holes."

The $K\bar{K}\pi$ mass spectrum for the combined $-K_{e}^{\alpha}K^{\mp}\pi^{\pm}\Lambda$ channels, shown in Fig. 10, is somewhat disappointing! There is some evidence of production of $f_{1}(1285)$ and $f_{1}(1420)$, but the cross section is small and statistics are limited. The spectrum is similar to that observed in the analo-

Fig. 9. The background-subtracted $K\eta$ mass spectrum from the $K^-p \to K^-\eta p$ reaction after N^* and Y^* cuts. The shaded curve shows the signal expected for a $K^*(1430) \to K\eta$ branching ratio of 0.5%.

gous $\pi^- p$ reaction, indicating that these states do not have dominant $s\bar{s}$ content. Apart from these states and a sharp rise in the spectrum at K^*K threshold, the gross features are very similar to $\bar{K}^{\circ}\pi^+\pi^-$. A preliminary PWA, in contrast, shows that production of unnatural J^P states is predominant and that the 1.4-1.6 GeV/c² mass region consists almost entirely of 1^+K^*K . The broad bump at ~1.52 GeV/c² could, therefore, be the $f_1(1530)$, claimed as an $s\bar{s}$ resonance by Gavillet et al.,^[7] though we find that \bar{K}^* production exceeds K^* in both channels. We find no evidence for $0^-\delta\pi$ but

cannot completely exclude it in the 1.42 ${\rm GeV}/c^2$ region.

Finally, we turn to the $K^-K^+\Lambda$ and $K^\circ_s K^\circ_s \Lambda$ channels. These provide new information on hypercharge exchange production mechanisms and also permit interesting comparisons with $K\bar{K}$ spectra found in radiative J/ψ decay, thought to be "glue"-enriched.

Fig. 11. The $K\bar{K}$ mass spectra (a) from the $K^-K^+\Lambda$; and (b) from the $K^{\circ}_{s}K^{\circ}_{s}\Lambda$ final states, demanding |t'| < 2 (GeV/c)².

Figure 11 shows the $K\bar{K}$ mass spectra from these channels. The $K_s^{\circ}K_s^{\circ}$ spectrum is dominated by the $f_2(1525)$; since the CP restriction of even spin does not apply to K^-K^+ , this spectrum also shows a clear $\phi(1020)$ and evidence of the $\phi_3(1860)$. The cross section for production of $f_2(1525)$ in the two channels is consistent at ~1.5 µbarns and in agreement with interpolations of measurements at other beam momenta.

The other major difference between the spectra —the continuum in K^-K^+ —is a result of diffractive production of N^* , as is clear from the Dalitz plot shown in Fig. 12.

Fig. 12. The Dalitz plot of the $K^-p \to K^-K^+\Lambda$ reaction, corresponding to Fig. 11(a).

In order to better understand the structures in the K^-K^+ data, we have performed a moments analysis similar to that in the $K\pi$ channel but without an N^* cut. The moments above 1.68 GeV/c² are shown in Fig. 13. The structure at 1.86 GeV/c² is seen in moments up to t_6^0 and is verified as $J^P = 3^-$; curves corresponding to Breit-Wigner fits of t_0^0 and t_6^0 are shown (a linear background is included in the former). The masses (widths) determined from the fits average to 1857 ± 9 (69 ± 18) MeV/c². There is also structure in the moments around 2.2 GeV/c², which is discussed below.

Figure 14 shows comparisons of the $K_s^{\circ}K_s^{\circ}$ mass spectrum with that seen by the Mark III group^[8] in radiative decay of the J/ψ . Figure 14(a) shows that there is no evidence whatever for hadronic production of the $f_2(1720)$ or " θ ;" however, Fig. 14(b) demonstrates that the data from the two experiments are statistically compatible in the region of the X(2220) or " ξ ."

We can try and combine evidence from the two $K\bar{K}$ channels to speculate further on what might be happening in the " ξ " region. The K^-K^+ moments (Fig. 13) up to t_8^0 show structure in the

2.2 GeV/ c^2 region which, while not statistically compelling, is compatible with a spin-4 state of width < 100 MeV/ c^2 . The large diffractive N^* production in this channel leads to substantial moments up to t_6^0 , though they should be smooth and not have structure as a function of K^-K^+ mass.

Although statistics in the $K_s^{\circ}K_s^{\circ}$ channel are poor at 2.2 GeV/c², it is clear that the events are not distributed isotropically in the Gottfried-Jackson frame. Figure 15 shows the $K_s^{\circ}K_s^{\circ}$ spectrum for events in the forward direction only $(\cos\theta_J > 0.85)$; the cut enhances the 2.2 GeV/c² region. Inset are the L=2 and 4 moments which show some effects, which are significant when integrated from 2.1-2.3 GeV/c².

Synthesising the evidence, it is clear that the 2.2 GeV/c² region has $J^P \ge 2^+$ and there is some indication of a rather narrow state with $J^P = 4^+$.

4. Conclusions

Light quark spectroscopy is alive and well! We are still gleaning valuable information on the existenceand decay modes of both leading and underlying K^* states. The systematics of mass-splittings of both radial and spin- orbit excitations is still not well understood and we still encounter surprises ($K^*(1410)$ and $K\eta$).

In the "strange"-onium world, hadronic production provides valuable comparisons with e^+e^- collisions in our attempts to understand meson structure. In $K\bar{K}\pi$, we see evidence for production of $f_1(1285)$, $f_1(1420)$ and $f_1(1530)$, and no evidence for $\eta(1440)$ (" ι "). Many issues remain unresolved here; experiments are difficult and the position of K^*K threshold is a great complication. In $K\bar{K}$, we confirm the $\phi_3(1860)$ and find the " ξ " region consistent with Mark III data and with quark model

expectations. The total absence of the $f_2(1720)$ (" θ ") in hadronic production is extremely interesting.

Fig. 14. The acceptance corrected $K_s^{\circ}K_s^{\circ}$ mass spectrum from $K^-p \to K_s^{\circ}K_s^{\circ}\Lambda$ in LASS compared with Mark III data from $\psi \to \gamma K_s^{\circ}K_s^{\circ}$: (a) below 1.9 GeV/c² normalised at the $f_2(1525)$ peak and; (b) above 1.8 GeV/c² normalised to total events in the 1.8-2.7 GeV/c² mass interval.

Fig. 15. The $K_s^{\circ}K_s^{\circ}$ mass spectrum with $\cos \theta_J > 0.85$; inset are the L=2 and 4, M=0 unnormalised moments.

References

7

Present Addresses:

- [‡] Nat. Lab. for High Energy Physics, KEK, Oho-machi, Tsukuba, Ibaraki 305, Japan.
- ^b Nara Women's University, Kitauoya-nishimachi, Nara-shi, Nara 630, Japan.
- ** Weizmann Institute, Rehovot 76100, Israel.
- [†] University of Pennsylvania, Philadelphia, Pennsylvania 19104, U.S.A.
- Hewlett-Packard Laboratories, 1501 Page Mill Road, Palo Alto, California 94304, U.S.A.
- Department of Physics, University of Victoria, Victoria BC, Canada V8W 2Y2.
- ^{##} Diasonics Corp., 533 Cabot Rd., S. San Francisco, CA 94090, U.S.A.
- 1. D. Aston et al., SLAC-REP-298 (1986).
- 2. D. Aston et al., SLAC-PUB-4011 (1986). To be published in Phys. Lett. B.
- 3. Particle Data Group, Phys. Lett. 170B (1986) and references therein.
- 4. P. Estabrooks et al., Nucl. Phys. B95, 322 (1975).
- D. Aston et al., SLAC-PUB-3972 (1986). Submitted to Nuc. Phys. B.
 P. K. Sinervo, SLAC-REP-299, May 1986 (Ph.D. Thesis).
- D. Aston et al., Nucl. Phys. B247, 261 (1983).
- 7. P. Gavillet et al., Z. Phys. C16, 119 (1982).
- R.M. Baltrusaitis et al., Phys. Rev. Lett. 56, 107 (1986).