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ABSTRACT 

We study the correlation functions of 2D statistical models at a critical 

point, using the techniques based on conformal invariance developed by Belavin, 

Polyakov and Zamolodchikov and Friedan, Qiu and Shenker. These functions 

are known to obey systems of linear partial-differential equations. We show that 

in many cases, determinable from properties of the operator product expansion, 

these systems reduce to first-order equations, soluble by inspection. The method 

is used to calculate 4- and 5-point functions in the Ising and tricritical Ising 

models. Finally, we propose a connection between the number of independent 

solutions of the differential equations and the existence of nontrivial symmetries 

such as the Kramers-Wannier duality. 
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1. Introduction 

The last two.years have seen enormous progress in our understanding of 

critical 2D statistical systems, based on the work of Belavin, Polyakov and 

Zamolodchikov[” (BPZ). The starting point is the recognition that a system 

undergoing a second-order phase transition is invariant, not only under global 

changes of scale (“dilatations”), but under local ones as well: in other words, 

the system is conformally invariant. This is an especially rigid constraint in 2D, 

where the conformal algebra is infinite-dimensional. Specifically, if we think of 

the 2D space (z, t) as the complex plane, then the conformal transformations con- 

sist of all analytic mappings z + f(z), and the powerful machinery of complex 

analysis can be brought into play. 

It turns out that conformally invariant 2D theories can be classified by a 

parameter c 2 0, defined below. We shall focus exclusively on the range 0 < c < 

1, which is of particular relevance to statistical mechanics. Theories in this range 

exhibit some remarkable properties, which we can only briefly touch upon: 

1) To begin with, as Friedan, Qiu and Shenker have shown,[21 only the discrete 

series 

c=l- 
6 

m(m + 1) ’ 
m>3 (14 

produces a unitary theory. For each of these values, the corresponding “minimal 

model” possesses only a finite number of “primary fields” @pp~QQl (z, z), which can 

often be written as a product”’ 

(Primary fields are fields that transform like tensors under conformal transfor- 

. mations; see Eq. (4) below.) Th e scaling dimension and spin of each such field 

is completely determined. Pleasingly, the first four theories in this set, with 

m = 3,4,5,6, correspond to known spin systems: the Ising, tricritical Ising, 
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S-state Potts and tricritical S-state Potts models, respectively.1”2’31 Physical re- 

alizations of the remaining members of the series have also been constructed.‘41 

We should point out for later use that the labeling scheme of (lb) is actually 

quadruply redundant, since 

and likewise for I. (This is a special case of Eq. (37) below.) 

2) These fields form a closed set under the operation of taking operator 

products.[” There is a simple prescription, known as the “fusion rules,” for de- 

termining which fields occur in the operator product of any string of primary 

fields (see Section 4). Correlation functions will be nonzero only if the identity 

operator @r,r,r,r appears in the operator product of the fields. In general, the 

coefficients in the operator product expansion can be determined by the require- 

ment of associativity. 

3) Finally, any correlation function involving the field $p,q(z) (and likewise 

&,q(~)) must satisfy two linear homogeneous partial differential equations, of 

order pq and (m - p) * (m + 1 - q).‘l’ (Th’ 1s will be reviewed in the following 

Section.) 

The fact that correlation functions in the minimal models satisfy such equa- 

tions implies that, in principle, they are calculable! Feigin and FuchsL5’ have 

shown that they can be expressed as multiple contour integrals of exponentials 

of free Bose fields. With the help of this representation, Dotsenko and Fateev,16’ 

in an ambitious series of papers, have derived general expressions for the corre- 

lators in terms of multiple integrals of algebraic functions, weighted by products 

of ratios of r-functions. This approach, which involves sophisticated use of com- 

plex analysis, can be used to solve for the coefficients of the operator product 

expansion. One subtlety is that the integrals involved actually diverge when c 

assumes one of the discrete values given above, and can only be given meaning 

via an analytic continuation in c. 
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In this paper we adopt a much more straightforward approach to the cor- 

relation functions of conformally invariant 2D theories. We point out that the 

systems of partial differential equations that the correlators obey can often be 

greatly simplified. In fact, in many cases (determinable from the fusion rules) 

they are equivalent to first-order ordinary differential equations, which are triv- 

ially soluble. We shall illustrate this “reduction algorithm” by explicitly calcu- 

lating some 4- and 5-point functions in the Ising and tricritical Ising models. 

(2- and 3-point functions are trivial at the critical point.) We also speculate 

on the connection between the number of independent solutions of these equa- 

tions and the existence of nontrivial symmetries in the theory such as the famous 

Kramers-Wannier duality. 

2. The PDE’s of BP2 

Let us first review some basic notions of conformal invariance, following BPZ. 

At a critical point, the physical fields of a theory must scale in a well-defined way 

under dilatations: 

fD (z, a) + XAphys * cp(Xz, As). (3) 

There are many ways that one might imagine generalizing this to the case of local 

scale transformations 2 + w(z), ,%? --+ G(z). “Primary fields” are operators that 

transform in a particularly simple fashion: 

ia(z,z) +-(~)“($pqw,zq. (4 

Here A and A are independent numbers; in the case of the minimal models of 

Eq. (1)) they are specified fractions: 

A p,q = Am-p,m+l-q = 
(p(m + 1) - qm)’ - 1 

4m(m+l) a (5) 

The physical scaling dimension Aphys and spin s of Q are given by A + A and 

A - A, respectively. (The requirement that correlators of physical fields be 

single-valued restricts s to integral or half-integral values.) 
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It is convenient to think of @(z,z) as a product $(z)~(z), where TJ!J(Z) + 

(dw/dz)AII)(w), and l’k 1 ewise for e, in which case correlators of the @(z, Z)‘S factor 

simply into correlators of the $J(z)‘s and correlators of the ~(z)‘s. We can focus 

on the analytic correlators G =< $1 (zr) . . . $J~(z~) >, since the analysis for 

the e’s is completely parallel. We shall also frequently exploit the equivalence 

between statistical systems and Euclidean quantum field theories by writing G 

as a time-ordered vacuum expectation value: 

G =< ob+h(z~) - - - &(zn)lo > . (6) 

We are interested in the conformal properties of the G’s. Consider the in- 

finitesimal analytic transformations z + z+ cznS1, n E 2, which we can represent 

by an abstract generator L,. The infinitesimal version of (4) then reads 

[L,$J(z)] = @l+‘(z) + (n + l)Az”+. 

The Ln’s can be shown to satisfy the Virasoro algebra 

[Ln,Lm] = (n - m)L n+m + f$(n - l>(n + l)b+m,O , 

(7) 

(8) 

where the central charge c is the parameter mentioned earlier. 

Conformal invariance requires that G be invariant under the subset of analytic 

transformations that preserve the “in” and “out” vacua, i.e., that are regular as 

t + foe. If one adopts the “radial time ordering” prescription discussed in Refs. 

1 and 2, one finds: 

LklO >= 0 : lc>-1 P-4 

and 

< OjLk = 0 : k<l. WI 

G will thus be invariant under the subalgebra (L-1, LO, LI}, which annihilate 
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both 10 > and < 01. One therefore has 

0 =< O([Lk,~l(Zl)]‘.‘~n(~n)(O >.+*.e+ < Ol~l(Z1)...[Lk,~n(Zn)]lO >, k 

or equivalently 
n 

c di < OI$l(Zl) ’ ’ ’ f/h(&) IO >= 0; 
i=l 

n 

Cc zi& + Ai) < old1 (~1) - - - &(zn) lo >= o; 
i=l 

n 

C( Zzai + 2ziAi) < O]‘$Q(Z~) * . * tin(z >= 0. 
i=l 

.l,O, 1 

(10) 

(114 

w 

(114 

These conditions imply, respectively, invariance of G under translations, dilata- 

tions, and “special conformal transformations.” 

Of course, (11) holds for any conformal theory, not just the minimal models 

defined by (1) and (5). We shall see shortly that the correlators in the minimal 

models satisfy additional PDE’s. 

In addition to primary fields, a conformally invariant theory will contain an 

infinite number of “descendant” or “secondary” fields, which transform in a more 

complicated way than (4). Taken together, the primary and secondary fields form 

a complete set of operators in a theory. We can construct the secondary fields by 

the following prescription. First, we note the existence of a l-to-l correspondence 

between primary fields +( z and states I$ >= T,!J(O)\O > . Using (7) and (9), one ) 

finds: 

LoI4 >= Al+ >, 
L&b >= 0, 

(124 
k 2 1 

and likewise 

< $/Lo =< +I& 

< $ILmk = 0, k 2 1. 
P) 

Thus the Lk’s can be viewed as “annihilation operators.” The secondary states 
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are obtained simply by acting on I+ > with an arbitrary string of “creation 

operators” L-k&+ . * . L-k,,, k; > 1. 

BPZ have shown that correlators involving secondary fields can be expressed 

in terms of correlators of the corresponding primary fields by means of linear 

partial-differential operators. To see this, consider the quantity 

containing one secondary and n primary fields. Commuting L-k to the left and 

using (7) and (9b), one can rewrite this as 
* 

e-k < 01til(%) ’ ’ “+h(%&@)lO >, 

where 

Note that the E’s satisfy the Virasoro algebra (8). Similarly one obtains 

(14 

(15) 

(16) 

An interesting peculiarity of the Virasoro algebra is the existence of primary 

states I$ > that are annihilated, not only by lowering operators Lk, k 2 1, but 

also by a special combination of raising operators L-k.[71 In other words, one can 

construct primary states that have associated with them a vanishing secondary 

state. All primary states IT/&,,~ > and I&,,q > of the minimal models have this 

property!“’ (It is thanks to this property that these theories are unitary.“’ ) As 

* We are assuming here that +(O) can be pulled out of the time-ordering implicit in all of 
these correlators. This is always justified in the case of radial quantization, since z = 0 is 
equivalent to t = -oo. 
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an illustration, let us consider the Ising model (m = 3). One can check using (8) 

and (12) that the secondary state 

CL-l2 - g-2) I$%,1 > (17) 

vanishes; that is, it is orthogonal to every state in the theory.+ Consequently, 

every correlator of primary fields containing $2,~ must satisfy the linear homoge- 

neous second-order PDE 

(& - $2) < qTh(zl) . . . &44~2,~(0)~0 >= 0. (18) 

The general result ““I is that the primary fields v,L+,~ of the minimal models 

are associated with partial differential operators of order p. q and (thanks to (2)) 

(m-p)+n+l-q).Th us an n-point function of such fields will need to satisfy 

a system of 2n PDE’s, in addition to (11). W e will see in the next Section that 

these systems are frequently equivalent to first-order ODE’s, which can be solved 

by inspection. 

3. Correlation functions made easy 

The formalism of the previous Section can immediately be put to use. It 

is easy to show that (11) completely determines the form of the 2- and S-point 

functions in conformally invariant theories. [‘I One finds: * 

< 01+1(21)ti2(2;)10 >N (21 - z2)-2A16&A2 (194 

and 

(zl _ z2)ArArA2(z2 _ z3)ArAr&(z3 _ Zl)~a-~s-A~~ w 

However, the n-point functions with n 2 4 are not fixed by (11); they can be 

expressed in terms of an arbitrary function g of n - 3 independent “anharmonic 

t &J is the Uhidden fermion” of the Ising model.LB1 
* Note that the constants of proportionality in (19) vanish if the identity operator does not 

appear in the operator product of the $‘s; see Section 4 below. 
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quotients” [‘I 

(20) 

In particular, the 4-point function must be of the form 

< ++h(~l)ti2(~2)~3(~3)~4(~4)~0 >= (21 - z4)-2A1(Z2 - 24)A1-A2+A3-A4 

x (z3 - 24) Al+Az-A3-A4 (z2 - ~~)-~‘-~2-~3+~4 . g(x;:), 
(21) 

If we restrict our attention to the minimal models, then g, too, can be calcu- 

lated. Let us work through one example in detail. Consider the 4-point function 

< EEEE > in the Ising model.$ (We shall focus on the Ising model in this Section; 

the tricritical Ising model is dealt with in the Appendix.) Here, E represents the 

energy density fluctuation field, with spin 0 and scaling dimension Aphys = 1; in 

the notation of Eq. (lb), it can be factored as 

E(Z, a) = @2,1(z) x 62,1(z). (22) 

The 4-point function of the &J’S must satisfy (18); using (21), we obtain 

g”(X) + f t - -J- + [ x-1 & 1 g’(x) - & - s(x) = 0, x = xi;. (23) 
We can simplify our task further by noting that $2,~ is the same field as 

+1,3 (cf. (2)); th’ 1s implies the existence of a third-order equation as well. The 

required null state of the Virasoro algebra is easy to work out, and one finds: 

(i”-l - ~f?-d-, + Fi-3) < $a,1 $2~ $9~ $2~ >= 0. (24 

One can reduce (24) b a initio to a second-order equation, by applying 1-1 to 

$ We shall frequently use < +I . . I,& > as an abbreviation for < 01p!~(,q) . . . &(z,)[o >. 
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(18) and subtracting; this gives 

( -- ;e-1E, + p-3, < $2,1 $J2,1$2,1$2,1 >= 0, 

which becomes 

Finally, subtracting (26) f rom (23) yields the first-order equation 

g’(x) + ; - 2x-1 
[ 

x2 _ x + 1 g(x) = 0, 1 
which can be solved by inspection: 

g=x2-x+l 
x ’ 

(25) 

(26) 

(27) 

(28) 

Of course, the identical calculation goes through for the 4-point function of 

the &,r’s. All in all, we find: 

= (,q -z4)-1(z2-23)-1x2-x+1 
X (29) 

(-+2223 + PermS.) - (Zfzl + perms.) - 6~1~2~3~4 
2 

= czl - z2)(z1 - z3)(zl - z4)(z2 - z3)(22 - Z4)(23 - 24) ’ 

Note that (29) is properly symmetric in the zi’s. It also satisfies cluster decom- 

position: as one separates one pair of zi’s from the other, the correlator collapses 

into the product of two propagators. 

It would be interesting to see how this reduction of order manifests itself in 

the integral representations of Refs. 5 and 6. 
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The 4-point function < EEBD > succumbs to an equally straightforward cal- 

culation. Here 0 is the spin density, which has spin 0 and dimension APhYS = f. 

It can thus be thought of as ‘. 

44 = +1,2(z) x 11,2(E). (30) 

The correlator < EECXJ > likewise satisfies (18) and (24), but now with different 

expressions for the 1’s determined by the new values of the A;‘s. One now finds: 

g = (x - 2>e 
X 

(31) 

and hence 

< +1,%)+2,~2)+3,~3)+4,~4) >= 

(zl - z2)-‘(23 - z4)-;[(zlz2 + z3z4) - ;(zl + z2)(23 + z4)] 2 (32) 

+l - z3)(zl - z4)(22 - z3)(z2 - z4) ’ 

These two examples illustrate a general “reduction algorithm” geared to- 

ward finding the solutions of a system of differential equations of various orders. 

The algorithm entails repeatedly differentiating the lower-order equation(s) and 

subtracting from the higher-order one(s), until equations of still lower order are 

obtained, etc. Indeed, we might attempt to reduce the order of (27) still further, 

to a “zeroth order” equation, by differentiating (27), subtracting from (26)) then 

subtracting the resulting first-order equation from (27); this procedure yields an 

equation of the form 

f(x) - g(x) = 0, (33) 

where f(x) is an ordinary function. This means that g(x) E 0 unless f vanishes 

identically! One can check that for both < EEEE > and < EECW >, f indeed 

vanishes, so that the reduction algorithm terminates in a first-order equation. 
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However, one can carry out the reduction algorithm for the more general 4- 

point function < $9~ ?,& $b & >, where $a,b,c denote primary fields of arbitrary 

scaling dimension Aa&. In this case f vanishes only if the A’s assume the values 

{ikf>, {+OO}, {i&h} or {O&k}. Note that O,f,$ are precisely the dimensions 

A,,, of the Ising model fields. In this way, the reduction algorithm provides yet 

another check on the self-consistency, closure and uniqueness of the minimal 

models. 

The reduction algorithm can also be applied to higher-point functions. Con- 

sider the 5-point function < EEEU~ > . In order to satisfy (ll), we must have 

< $a,1 1ct2,11cl2,ltil,2 $1,2 >= 

(21 - z4)-Q1 - z&(zz - zp(z3 - qJ-yz4 - z# q(x+,xJ, 
(34 

where x+ = xi”, and x- = xi”,. In this case, the most efficient strategy for cal- 

culating g is to ignore the five higher-order equations associated with the +‘s, 

and to use, instead, the five second-order equations, all of which turn out to be 

independent. These can be combined to yield the two first-order equations 

-+ ‘+ &I 
[ 

t* l xc + 2x+x- - 4x* + 2x7 

ax* xi x* - 1 x+ - x- - x+x2_ + x-x: - 2x: - 2x2_ + 2x+x- 1 !I =o, (35) 
which can be solved by inspection: 

x+x2 +x-x; - 2x; - 2x2_ + 2x+x- 

g= x+x-(x+-xx-)~~&-- - (36) 

Apparently, the reduction algorithm ceases to be of practical use for n-point 

functions when n is large, since the number of mixed partial derivatives grows 

faster than the number of equations. The algorithm still works in principle if one 

utilizes the following generalization of (2):‘l’ 

‘T&J = +km+p,k(m+l)+q = +(k+l)m-p,(k+l)(m+l)-g 3 k = 0, 1,2, . . . . (37) 

This implies the existence of an infinite number of PDE’s of order (kmfp) (k(m+ 
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1) + q) and ((k + 1) m - p)((k + l)(m + 1) - q). In practice, however, the use of 

these equations for k > 0 seems hopeless. 

Not all systems of equations satisfied by the correlators in the minimal models 

can be reduced to first (or zeroth) order equations. Consider, for example, the 

4-point function < 000~~ >. The field $9~ E $9~ is associated with both a 

second-order operator Da(x) and a fourth-order operator DJ(x). However, D4 

turns out not to yield an independent equation, since it is factorable as & o D2. 

There are thus two bona fide independent solutions for the 4-point functions of 

the $1,2’s and &,2’s, hence four independent solutions for < 0000 >.‘l’sl The 

same phenomenon occurs for < E~~~~ >. 

What is the physical meaning of this degeneracy? Recall the existence in 

the Ising model of the Kramers-Wannier duality, whereby the spin operator 0 

is mapped into the “disorder operator” JL, and vice versa. Of course, /..L must 

have the same critical properties as a; in particular, it is associated with the 

same differential operators. The four-fold degeneracy that we found is precisely 

what is needed in order to account for the four linearly independent correlators 

< U~~ZJO >, < aapp >, < appa >, and < a,~ap > .* 

More generally, it is tempting to conjecture that the existence of a multiplicity 

of solutions to the BPZ equations in a given minimal model is always associated 

with the presence of multiple operators of a given scaling dimension, as is the case 

iuhen the theory possesses a Kramers- Wannier duality. Conversely, operators 

such as E which are associated only with first-order equations would have to be 

self-dual under such symmetry transformations. 

In the following Section, we shall give the general rule for determining the 

multiplicity of a general n-point function in the minimal models. 

4. Fusion Rules Redux 

* The latter thrke, although related by a permutation of the zi’s, correspond to different 
functions of x and R. Note also that the other four nonvanishing 4-point functions of O’S 
and p’s are equal to these by the duality. 
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As mentioned earlier, one of the striking features of the minimal models dis- 

covered by BPZ is closure under the operator product expansion. This property is 

expressed in the “fusion rules,” which can be thought of as the “Clebsch-Gordan 

series” of the Virasoro algebra: 

P1-1 q1-1 

+hql ~z1)h%'2 ('2) = c c [$p2+&q2+k (" ; "")I. 

I=l-pl k=l-ql 

(38) 

Here [$p,q] stands for the primary field $+,q together with its associated sec- 

ondary fields, summed against c-number functions of zr and 22; the index k (Z) 

runs over even or odd values, depending on whether q1 (pl) is odd or even, re- 

spectively. We can constrain the allowed fields in the right-hand side of (38) still 

further, by reexpressing the left-hand side in the following three equivalent ways: 

hn-pl,m+l-ql (z1)~p2,q2(z2)7 ~p2,q2(z2)1clpl,ql(z1), ~m--p2,m+l-q2(Z2)~rpl,ql(Z1).The 

allowed fields will be restricted to those that appear on the right-hand side of all 

four versions of the fusion rules. 

In this way, we easily obtain the fusion rules for the Ising (m = 3) and 

tricritical Ising (m = 4) models: 

Ising Model 

ihh,l = [1Cll,l]r 1cll,lTh,2 = [til,Z], Th,lti2,1 = [$2,1], 

1c1wh = [hl] + [+2,1], Ih,2dJ2,1 = [h,2], ti2,1+2,1 = [h,l] 

Tricritical Ising Model 

~1,11cIl,l = [h,l] 9 +1,11cI3,1 = [+3,1] 9 1c11,17?h,2 = [Ih,z], Ih,lTh,3 = [$1,3], 

+1,1$2,2 = [+2,2], h,1+2,1 = [+2,1], +3,1+3,1 = [&,I], $‘3,1$1,2 = [+1,3], 

ti3,1+1,3 = [1cll,2]‘, $3,1+2,2 = [$2,2], ~3,1~2,1 = [tiZ,l], 

+1,21c11,2 = [h,l] + [+1,3], &,2+1,3 = [+1,2] + [+3,1], $‘1,2$2,2 = [$Z,l] + [742,2], 
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1c11,2$2,1 = [1c12,2], +1,3+1,3 = [h,l] + [h,3], $1,3$2,2 = [$2,2 

+1,3$2,1 = [+2,2] 3 $2,2ti2,2 = [h,l] + [$3,1] + [111,2] + [$1,3], 

1c12,2~2,1 = [Ih,2] + [h,3], ti2,&2,1 = [Th,l] + [G3,1] 

Of course, the same multiplication tables hold for the JP,q’s. 

1 + Wd 

From these fusion rules, it is easy to determine whether an n-point function 

vanishes: one need only verify whether the identity operator $1~ x &,I, which is 

the only operator (primary or secondary) with a nonvanishing l-point function, 

occurs in the operator product of the n fields. (For example, the n-point function 

of $m-r,r, with m  as in (la), vanishes if n is odd, since Grn-r,rtirn-r,r = [$r,r].) 

In every case that I have checked, the number of independent solutions to 

the BPZ diflerential equations for < $+,l,ql . . . $P,,q, > simply equals the number 

of distinct ways that $11~ appears according to the fusion rules in the operator 

product of the &,,q ‘s. For example, in the Ising model, we have 

< $192 h2 til,2 +1,2 >=< ([$Jl,l] + [$J2,l])([$JlJ] + [?j2,1]) > 

=< W lJl + Wl,l] + [ti2,1] + [$2,1] >, 

consistent with our earlier finding that this correlator satisfies a second-order 

equation. 

This rule allows us to make some general predictions for m inimal models 

of arbitrary m , for instance: (i) inserting any even number of $m-r,r’s into a 

correlator of $P,q ‘s will not alter the number of distinct solutions; (ii) any n- 

point function of $P,q ‘s of which at least n - 3 of the fields are $,,-r,r will be 

given as the (unique) solution to a system of n - 3 first-order equations. 

Appendix: 4-point functions in the tricritical Ising model 

One can check from the fusion rules given in Section 4 that, of the 70 possible 

4-point functions of the $‘p,q ‘s in the tricritical Ising model that do not involve 

the identity &,r, only 27 are nonvanishing. Of these, < $2,~ $2,~ $2,~ $2,~ > 
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corresponds to a fourth-order equation, while nine correspond to second-order 

equations, namely: 

Seventeen correlators correspond to first-order equations, easily obtained via the 

reduction algorithm; the solutions to these are given in Table I (here, g is defined 

as in Eq. (21)). 

We should note the existence of an elegant alternative formulation of the 

tricritical Ising model in terms of superfields, which provides another means of 

calculating correlation functions in this theory.[2’101 
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Table I. “First-order” 4-point functions in the tricritical Ising model 

< +3,1 +3,1 $3,1 +3,1 >: 9 = 7(x + x-y3 - 21(x + x-y2 + 45(x + x-l) - 55 

< +3,1 +3,1 h,2 A,2 >: g = x-3(x - 1)2(3x2 - 7% + 7) 

< ti3,l ti3,1&,3 h,3 >: g = x-~(x - 1)(3x4 - 18x3 + 25x2 - 14x + 7) 

< +3,1 1cI3,l +2,1 +2,1 >: g = x-3(x - 2)(x - 1)%(7x2 - 4x + 4) 

< +3,1ti3,1+2,2 +2,2 >: g = x-~(x -2)(x - 1)$x2 - 28x + 28) 

< +3,1 +1,2 $I,2 9h,2 >: g = x-1(x - 1)2 

< 1cI3,l &,2 +1,3 $1,3 >: 9 = x-‘(x - 1)(x2 + x - 1) 

-c ti3,1+1,2 $2,1 +2,2 >: g = x-l(x - 1)%(7x - 6) 

< +3,1 1c11,2 +2,2 $2,2 >: g = x-1(x - 2)(x - 1); 

< +3,1 ?A,3 +2,1 $2,2 >: g=x-2(x-1)~(7x2-12x+4) 

-c 1cI3,l $I,3 $2,2 $2,2 >: g = x-2(x - 1) g (x2 - 12x + 12) 

< &,2 &,2 +2,1 +2,2 >: g = x$(x - $5 

< +a,1 +2,1+1,2 h,3 >: g Ix xS(, - 1)-i 

< 1c11,2 7b2,l $9,2 $2,1 >: g = x-q, - 1)-&3(2x - 1) 

< I42 +a,1 +1,3 $2,2 >: g = x-+x - 1)&(2x + 1) 

< 1c12,2 +a,1 $43 $I,3 >: g = x+x - 2)(x - 1)s 

< ?A,3 +2,1 1c11,3 $a,1 >: g = x-l(x - 1)$(4x2 - 4% + 3) 
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