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ABSTRACT 
We have calculated the emission rate and spectrum for synchrotron ra- 

diation from a relativistic electron in a weak external homogeneous electric 

field and compared the results with the magnetic synchrotron radiation 

formulas. The synchrotron radiation from a relativistic electron in a weak 

electromagnetic field, whether electric or magnetic in nature, can always 

be described by radiation formulas involving a Lorentz invariant radia- 

tion parameter T = III, Fp” II’ FA~)‘/~ / mccFc, where II, is the electron 

_ mechanical momentum, Fpy is the external field and FE E mzc3/eh. 
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The quantum mechanical problem of calculating the synchrotron radiation 

of photons from relativistic electrons in a homogeneous external magnetic field 

has been addressed by various authors. l-s Sokolov et al.’ utilized the Dirac wave 

functions of an electron in a constant magnetic field to calculate synchrotron 

radiation. The transition amplitude for e- + e- + y was computed by pertur- 

bation theory (i.e., to first order in the fine structure constant CX) and the power 

spectrum obtained by squaring the amplitude and summing over final states. 

Recently Tsai and Yildiz3 have presented a more efficient method for calculating 

radiation in external fields based on Schwinger’s source theory formulation of 

quantum field theory.4 This latter approach, which we use in this paper, elimi- 

nates the need for using wave functions by replacing the sum over final states by 

expectation values obtained directly from the Dirac equation. 

The previous results for radiation in external magnetic fields are of course 

applicable in all Lorentz frames where H2 - E2 = i FpvFpY > 0 and i? . H = 

f &,, Fg” = 0.5 There are, however, physical systems in which the fields are 

electric in nature (H2 -II2 < 0) rather than magnetic. An example is synchrotron 

radiation emitted during the collision of electron-positron beams from a high 

energy accelerator. 6 The corresponding problem of radiation in a homogeneous 

electric field has received far less attention, possibly because of the well-known 

difficulty of the “Klein catastrophe,” that is spontaneous pair creation by an 

electric field.’ In the weak field limit 1; FpvFpVj1/2 < Fe E mz/e (= 4.4 x 

1013 G cv 1.3 x 1016 V/cm) that we consider, pair creation effects are negligible,8 

and we may calculate synchrotron radiation in fields which are either electric or 

magnetic in the same manner. 
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In this paper we specifically calculate the emission rate and spectrum for 

synchrotron radiation from a relativistic electron in a weak external homogeneous 

electric field following the method used by Tsai and Yildiz3 to calculate magnetic 

synchrotron radiation. We find that synchrotron radiation from a relativistic 

electron in a weak electromagnetic field, whether electric or magnetic in nature, 

satisfying E - H = 0 can always be described by radiation formulas involving a 

Lorentz invariant radiation parameter T = ~l’I,FWIX FA~I’/~ / meFc, where II, 

is the electron mechanical momentum. Classical radiation corresponds to T < 1 

in which the classical synchrotron energy is wc = 3T&/2, & being the electron 

energy, whereas T > 1 corresponds to extreme quantum radiation in which the 

peak position of the power spectrum approaches the electron energy. 

We apply the method to first calculate the total photon emission rate from 

an electron in an external homogeneous field, Fp,,. The starting point is the 

action contribution associated with the exchange of a virtual photon, i s (ds) (dz’) 

a4 M(& 4 ?w), where + is the electron field. If we represent 

M(z,z’) = (zl M Id), th en according to the optical theorem, the total decay 

rate, l?(e- -+ e- + r), is related to the imaginary part of the matrix element 

Mbyr= -(2m/&) ImM, h w ere m is the electron rest mass. From Ref. 3, the 

matrix element M has the form 

M =’ - %  /m !f ] du (det2e~Fs)1’2 e-is@ 
0 0 

x (-4-ttA+ZiaA) m+r 2(1-zeqFs II 
> 

(1) 

+27(l+AT) 2(1-$eqFs l-I] +c.t., 
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where q = fl is the chargesign, A = exp {ZueqFs} -1, D = A+2 (1 - u) eq Fs 

(A and D being second rank tensors), Q = u(I12 + m2 - ego F) + II[-l/(2 eq Fs) 

tn(-D/D*)]II and aA s )up,,-AY The contact terms have the form CA. = 

--mc - cc(m + yll), where 

m, = du( 1+ u) e-ism"ua 
0 0 

(2) 

and 

du( 1 - u) e-i8m2U" 

0 0 

(3) 
00 1 

a -i-m2 
/ / 

ds 7r du u(l- u2) e-ism"u" . 
0 0 

We now specialize to the case of radiation in a pure electric field. For an 

electric field in the z direction, F3o = -Fo3 = E, the matrix element (1) can be 

algebraically simplified in a manner analogous to Ref. 3 with the result 

M = E m /m $ ] du exp (4% UZ} 
0 0 

x {g [l+e2isz (1+(1-u) 2) 

(4 

-(I +u)- (I+ g) (1-u) [l- 2im2su(l+.)1) , 
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where A = det [D/2eq Fs] = (1 - u)~ + u(1 - u)sinh2x/x + u2(sinhx/x)2, c = 

quo3 9 x = eEus, f$ = u(1 - u)[m2 - (qll)‘] + (u/x)[p - (1 - u)x] Hi - u2 equF, 

tanhp = (1 - u)sinhx/[(l - u) cash x + u sinhx/x], lip = lToIl” + &II3 and 

7 - =I1 = 7ol-l"+73n3. 

To further simplify Eq. (4), we will approximate M (accurate to order a) 

by its expectation value taken between fields obeying the Dirac equation 

(m + 7lI)$ = 0 assuming that E < Fc so that spontaneous pair creation is negli- 

gible. Assuming without loss of generality that II1 = 0 and II2 = pl = constant, 

the Dirac wavefunction + (where s $$(dx) = 1) is a simultaneous eigenstate of 

the Hamiltonian H, momentum II2 and 725: 

72b+7*q,)+ = n,$ = p&, (5) 

72<‘b = <‘ti , St = fl . (6) 

We decompose the eigenfunctions $ into the two subspaces of i72 using the 

projection operators P* = i (1 f i72) such that P*$ = $A. In each subspace & 

is an eigenfunction of i72 and -i< : i72& = z/z&, -i& = fc’&. Applying 

I’* to Eq. (5) yields 7 * lIl~$~ = (zkipl - rn)& or equivalently 

q$* = - (Pi + m2 + <eE) t& . (7) 

The following expectation values are then easily derived, 

(72) = pI , m (d = - (72) <’ , 

pt+m2 
(7*"ll) = - m , (sr-q) =o - 
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Using Eqs. (7) and (8), the matrix element M can be written approxi- 

mately as 

M = 27r 
Em/“: 1 duexp{-igux} 

0 0 

x {A-‘/l exp (i[/3-(I-u)x] ?w} 

x [eiS(P-zl (1 +ue2iSZ) - p:zr2 (1 -u) 

u sinhx x T cosh(/3 - x) + Z - 
X 

coshp - cash@ + x) )] -(l+dj. 

This form of M in an electric field is very similar to that in a magnetic field [cf., 

Eq.- (56) of Ref. 31. Indeed one can make an immediate duality transformation to 

obtain it from the magnetic case: H + iE, x --) ix = ieEus, /3 -+ ip, c + is = 

iqao3 and E2-mm2 + -py- m2. We now specialize to synchrotron radiation in a 

weak electric field which is defined as the high transverse momentum (pl > m)- 

weak field (eE/ m2 < 1) limit9 of Eq. (9). In this limit the total decay rate can 

be written down by inspection of the magnetic case in Ref. 3, 

j du [(l+u) 7 &i/3 (rl)dv 
0 e 

+ ; u(3u - 2)(1 - U)-’ K2/3 (0 + s’uK1/3 (6) 1 9 

(10) 

where K”(q) is the modified Besel function of the second kind, 6 = 2u/3T(l- u), 

<’ = (72~) = fl and T = (pl/m)(eE/m2). 
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For the case of synchrotron radiation from a relativistic electron in a weak 

homogeneous magnetic field H along the z axis, the radiation parameter T = 

(&/m)(eH/m2), where IIs = 0 ‘without loss of generality. The square of the 

perpendicular mechanical momentum IIt = IIrlI’ + lIzl12 obeys the relation 

(lq) = &2 - m2 + (f /m)eH<’ H E2 (where <’ = (qy”cr3) = kl) which is to be 

compared with the square of the parallel mechanical momentum in an electric 

field from Eq. (7), (I$) N -pt. Within the relativistic approximations made, 

the radiation parameter in both the electric and magnetic cases can be written 

in the Lorentz invariant form 

T _ IllI, F“V l-IA FxvI’/2 - 
mF, 

. (11) 

The expectation value c’ in both cases can be written as qcapPv IP Sp Fpv / mF,T, 

where SD is the electron four-spin. With these identifications, Eq. (10) is valid 

in all weak homogeneous electromagnetic fields satisfying E . H = 0. 

The synchrotron power spectrum in an electric field, P(w), where w is the 

photon frequency, can be obtained by a simple modification of the method used 

to calculate the decay rate. By inserting a unit factor 1 = ~~! dw S(w - k”) = 

s-“, a!w s-“, (dT/2?r) exp {;(w - k”)r} into th e matrix element M, the spectrum 

P(w) is identified from the w-integrand. The procedure is essentially identical to 

that for a magnetic field with the result 
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1 

P(w) = y? w Im O” ds g m  / ; / du eBismSu’ 
0 0 

x {As1i2 exp {@-(I-u)x] ?w} 

(12) 
x y u sinhx cosh(P - x) + zT - 

X 
coshp - cosh(P + x) 

> 
. 

2 7O 
I [ 

. 
+ ’ 

2mslIO 
,is(P+z) - l+u+2m;Ho f 7O 

x /m g exp {i(w-uII”)r-ic}] . 
-W J 

We now specialize to the high transverse momentum-weak field limit. In this 

case Ho = &  - V  = &  and (icy’) = q (r3) = q (H3) /m < q&/m except at 

asymptotically large distances from the origin [V(z = 0) E  0] where tunneling 

solutions of the Dirac equation (pair creation) are involved. In both electric and 

magnetic fields (7O) = E/m so Eqi (12) can be reduced to a form similar to the 

spectrum in a magnetic field [cf., Eq. (144) in Ref. 31. The final form of the 

synchrotron spectrum in an electric field is identical to that in a magnetic field, 

(13) 
X O3 K5/3 b?) d’l + (;)” (I- ;) -’ K2/3(t’) + St ; Kl/3(E’) ] 3 
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where c’ = 2(w/&)/3T(l-w/E). With the previous identifications of the Lorentz 

invariant expressions for “X’ and <‘, Eq. (13) is valid in all weak homogeneous 

electromagnetic fields satisfying F. H = 0. 

The photon power spectrum P(w) is related to the photon number spectrum 

N(w) by P(w) = wN(w). The total synchrotron power and photon emission rate 

from an unpolarized relativistic electron can be written in terms of functions of 

the radiation parameter T. The total radiated power from an electron is 

& 

P= 
/ 

P(w) dw = $m2g(T), 
0 

where 

The total emission rate is 

E 
I-= 

/ 
N(w) dw = = !f h(T) , 

0 
2fi E 

T T<l, 
h(T) N 

+j 3116 r(g) W3, r B i . 

(14 

(15) 

(16) 

For intermediate values of T, there are no simple analytic forms for the functions 

g(T) and h(T). Table I contains representative values of these functions in the 

range low3 2 r 2 103. 
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As a final note we wish to caution that our analytic results for synchrotron 

radiation in weak electromagnetic fields are in fact physically valid only for T 2 

lo5 before vacuum polarization effects become important. Synchrotron radiation 

changes to a new synergetic synchrotron-Cerenkov radiation for T > lo5 when 

the vacuum, modified by the external electromagnetic fields, acts like a dielectric 

medium.‘O 
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TABLE I 

Representative values of the functions g(T) 

and h(T) in the range 10S3 2 T 5 103. 

r SW W) 

10-s 9.94 x lo-' 9.99 x lo-’ 

10-2 9.45 x10-5 9.91x 10-S 

10-l 6.55 x 1O-3 9.30 x 10-2 

1 1.82 x 10-l 7.16 x 10-l 

10 1.84 4.24 

102 1.11 x 10' 2.13 x lo1 

103 5.56 x 10' 1.01 x 102 
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