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Gauge theories exhibiting a hierarchy of fermion mass scales may contain a pseudo- 
Nambu-Goldstone boson of spontaneously broken scale invariance. The relation between 
scale and chiral symmetry breaking is studied analytically in quenched, planar quantum 
electrodynamics in four dimensions. The model possesses a novel nonperturbative ultra- 
violet fixed point governing its strong coupling phase which requires the mixing of four 
fermion operators. 

In the chiral symmetric limit, QCD-like gauge 
theories with N flavors of fermions possess an 
SU(N)L xSUP)R chiral symmetry which is spon- 
taneously broken by a dynamical fermion conden- 
sate to its diagonal SU(N)v subgroup resulting 
in the appearance of an SU(N) multiplet of pi- 
ons as Nambu-Goldstone bosons. In addition to 
these chiral symmetries, the classical formulation 
of gauge theories also exhibits, in four dimensions 
in the chiral limit, an exact scale invariance. Here 
I will discuss various aspects of dynamical sym- 
metry breaking with particular focus on the scale 
symmetry. A more complete discussion appears in 
work done in collabortion with W. A. Bardeen and 
C. N. Leung.rv2 

In quantum chromodynamics, the scale symmetry 
is explicitly broken by quantum radiative correc- 
tions as reflected by the anomalous nonconserva- 
tion of the dilatation current: 

D, = xv&v , 

When combined with the nonperturbative QCD 
vacuum structure which gives (GiY) w AbCD, 
a large explicit breaking of the anomalous 
symmetry ensues. That is, the explicit scale sym- 
metry breaking accompanying the rapid running 
of the QCD coupling dominates at low energies 
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and no vestige of the classical scale symmetry re- 
mains. In particular, there is no evidence for a 
Nambu-Goldstone boson of scale symmetry in 
conventional QCD. 

The above picture need not hold, however, in all 
gauge models. It may be possible that the sponta- 
neous breaking of the chiral symmetry might also 
trigger the spontaneous beaking of an approximate 
scale symmetry. This would be the case if the 
chiral symmetry breaking occurs at a scale where 
the explicit scale breaking is small. Such a situa- 
tion could occur in theories possessing a hierarchy 
of fermion mass scales. An example is afforded 
by a model where fermions transforming as higher 
dimensional representations of the gauge group 
are present in the theory. Indeed, results from 
numerical studies in lattice gauge theories’ indi- 
cate that the scale of chiral condensation for these 
fermions is relatively short compared to the con- 
finement scale. 

The chiral condensation scale is roughly character- 
ized by the requirement that the effective fermion 
coupling C,(f) Q(P) reach a critical value a,,;i. 
Here a(p) is the gauge theory running coupling 
and Cs(f) is the quadratic Casimir invariant 
of the fermion representation. For a sufficiently 
large C,(f), spontaneous chiral symmetry break- 
ing could occur in the asymptotically free region 
where a(p) varies only logarithmically with en- 
ergy. The explicit breaking of the scale symmetry 
is then but a small effect at this scale compared 
to the large spontaneous breaking associated with 
the chiral condensation and consequently the 
scale symmetry should be realized in a Nambu- 
Goldstone fashion resulting in the appearance of 
a scalar dilaton. Since the coupling is not fixed, 

Invited talk Presented at the 23rd International Conference on High Energy Physics, 
Berkeley, California, July 1623, 1986. 



the dilaton should actually emerge as a pseudo- 
Nambu-Goldstone boson acquiring a mass of 
order the scale at which the explicit scale 
symmetry breaking becomes important, which is 
roughly the confinement-scale of the gauge theory. 
The dilaton should couple to heavy states, e.g., 
IV, 2 in a manner similar to the physical Higgs 
boson, but may be distinguished from it due to 
its Nambu-Goldstone nature. For a discussion of 
dilaton phenomenology, see Ref. 4. 

In order to study the dynamical aspects of chi- 
ral and scale symmetry breaking, I consider the 
simplest approximation to a gauge field theory 
with a fixed but critical coupling. This corre- 
sponds to quenched, planar (ladder) quantum 
electrodynamics. The quenched approximation ex- 
cludes fermion loop corrections and consequently 
guarantees that the perturbative gauge coupling 
p-function vanishes. It is thus anticipated that 
the theory should exhibit an exact or spontaneously 
broken scale symmetry. 

This model has been the subject of numerous in- 
vestigations by various authors over the yeams~* 
In the model, the Schwinger-Dyson equation for 
the fermion self-energy is given by a sum of the 
rainbow graphs. At weak coupling, Q  < txC = r/3, 
there exist no spontaneous chiral (or scale) sym- 
metry breaking solutions. If an ultraviolet cutoff A 
is introduced, there are no solutions to the msss- 
less equation at fixed A and solutions appearing 
as A -) oo do not correspond to spontaneous sym- 
metry breaking but rather reflect the anomalous 
dimension of the fermion mass operator &,!J so that 

dStl = 2+ I--$. 

dn the other hand, at strong coupling, a > a,, 
the massless equation was shown to possess a non- 
trivial solution leading to the generation of the 
fermion mass scale 

C(O)=A exp{6+1) ew{ds}y (3) 

where 6 ry 0.55 is a parameter of the asymptotic 
solution for the self-energy function. The depen- 
dence of the fermion mass scale diverging with the 
cutoff appears to be disasterous for this solution as 
all the dynamics associated with the spontaneous 

chiral symmetry breaking occurs at the cutoff A. 
Similar conclusions were also reached in numerical 
studies9 

There is, however, an alternate interpretation of 
this solution1o in which the critical coupling a, 
is viewed sa a fixed point of the strong coupling 
phase with the gauge coupling a approaching the 
critical value as 

Q  d 
- = 1+-, 
UC th2 + 

0 

A-+00, (4) 

where tc is an infrared scale. This fixed point in- 
terpretation leads to a finite fermion msss scale 
w4 -+ e&+1 n as A + 00. Moreover, a mass- 
less pseudoscalar bound state appears as a solu- 
tion to the Bethe-Salpeter equation reflecting the 
Nambu-Goldstone realization of the chiral sym- 
metry. However, the solution remains incomplete 
as it leaves unclear the origin of the running of the 
gauge coupling and moreover does not properly 
reflect the scale symmetry as there is no massless 
scalar bound state solution to the Bethe-Salpeter 
equation corresponding to the dilaton. 

It was attempting to clarify these issues that led 
to the discovery of the novel &red point structure 
of the model2 The origin of this structure is the 
generation of four fermion operators which neces- 
sarily mix with the gauge interactions at the fixed 
point. The mixing results from the large anoma- 
lous dimensions generated by the gauge coupling 
at the fixed point. We have already observed that 
the mass operator &+!J has dimension dq+ = 2 + 

11 - (441 ‘ia which is three at zero coupling but 
approaches two at the critical coupling. In the lad- 
der approximation under consideration, the four 
fermion operator (&,6)2 has just twice the mass 
operator dimension so that 

d[&)2 = 4 + 2 
d- 

1- ; , (5) 

which approaches four as a -P Q~. Since the four 
fermion operators are dimension four at the crit- 
ical gauge coupling, they are relevant operators 
which must be included in the analysis of the fixed 
point structure. 

We are thus led to study the scale invariant fixed 
point structure using the chirally invariant effec- 
tive fermion Lagrangian 



+ : [(4tij2 + (di75$)2] , .. 
(6) 

where ~0 is a bare fermion mass included to 
provide explicit breaking. Consistent with the 
planar approximation for the gauge interactions, 
only planar diagrams involving the four fermion 
interactions are to be retained. 

The vacuum structure of the modified theory can 
be deduced using the same methods as employed 
in the pure gauge case. The Schwinger-Dyson 
equation in ladder approximation takes the form 

Fig. 1. The Schwinger-Dyson equation. 

where the full propagator is to be used in the 
diagrams. This equation involves an effective 
bare mass parameter mo which includes terms 
generated by the induced interactions so that 
m0 = PO - Go(&),. The fermion bilinear 
vacuum expectation value must be computed self- 
consistently including all the QED radiative ladder 
corrections, so that even in the chiral limit, ~0 = 0, 
the effective bare mass will not 
vanish, mg # 0. This modification lead8 to a new 
gap equation and fermion mass scale given by 

p = - exp (26) A2 exp 
2 

(1 - 9 
dzp 

sin B + (1 + G) cos 0 

I 
(7) 

C(O) = exp (6) A w { &&--} 9 (8) 

where the renormalized parameters /.L = pod and 
G = [(GoA2)/r2](oc/o) have been introduced and 
reflect the anomalous dimensions of the mass and 
four fermion operators. Here 2 E 1.2 is another 
parameter of the asymptotic expansion of the 
fermion self-energy function. There always exists 
one solution for 0 (and hence C(0)) in the region 

0 < 0 5 rr and this corresponds to the ground 
state solution. Once again, the existence of a non- 
trivial A -+ oo limit requires that the gauge cou- 
pling approach the critical value (I --$ Q,. Thus 
the solution is similar to that of Ref. 10 except 
that 0 need not be A. The approach of the gauge 
coupling to the critical point is now given by 

Q e2 
- = 1+ 

Ln2 $ 
( > 

, A--+00, 
UC (9) 

so that C(0) + e6/c. The value of 0 depends on 
the strength of the induced coupoing G. We shall 
see that the strong coupling phase of the theory 
corresponds to the ultraviolet stable fixed point 
with G + 1 and a + a,. 

The search for the fixed point structure can be 
conducted by examining the fermion-antifermion 
scattering amplitude (see Fig. 2). The four fermion 
interactions contribute to the scattering amplitude 
so that contributions from both the scalar and 
pseudoscalar channels must be included. 

Fig. 2. The fermion-antifermion scattering 
amplitude. 

The additional diagrams are reminiscent of the 
large N, chirally invariant Gross-Neveu model” 
except that the bubble graphs include all the ra- 
diative corrections of planar QED. These radiative 
corrections effectively make the four fermion inter- 
actins renormalizable at the fixed point. It is the 
presence of these diagrams which is at the origin of 
the running of the gauge coupling. Although the 
bubble diagrams are perturbatively quadratically 
divergent, the large anomalous dimensions allow 
for a precise determination of their contribution2 
yielding a well-defined four-point function. 

The form of the four-point function allows a 
computation of the asymptotic behavior of the 
beta functions for both the gauge and four- 
fermion couplings near the ultraviolet fixed point 

I a + c*;t, G -+ l] yielding 



&(u,G) = A$ = 

t?G 
&(a,G) = A- = 

-(G - 1) (g - 1)1’2 
aA 

arctan 

00) 

where the angle 8 = arctan {[ 2 d-1 / 
(G - 1)) is defined in the range 0 < B 5 u. 
These p-functions are clearly nonperturbative and 
reflect the approach to the ultraviolet stable 6xed 
point of the explicit solution. Moreover, the rel- 
evance of the four-fermion interactions is evident 
from the nontrivial fixed point value of G  = 1. 

The symmetry structure of the solution can also 
be gleaned from the bound state pole structure 
of the fermion-antifermion scattering amplitude. 
The pure ladder graphs do not contain any mass- 
less bound states since the four-fermion interac- 
tions generate a nonvanishing induced bare mass 
term, mo # 0, which will appear ss an explicit chi- 
ral symmetry breaking in these diagrams. Hence, 
any massless bound state pole must originate from 
the bubble denominators. Indeed the pseudoscalar 
denominator at zero momentum vanishes in the 
chiral limit, clearly displaying the pseudoscalar 
Nambu-Goldstone boson associated with the spon- 
taneous chiral symmetry breaking. However, the 
scalar denominator at zero momentum retains a 
nonvanishing contribution in the chiral limit even 
at the fixed point. Hence the status of the dila- 
tor remains unclear in this approximate treatment 
of a gauge theory. It is uncertain whether this 
result reflects a fundamental inconsistency of the 
quenched, planar approximation or is due to our 
analysis of the model. We strongly advocate that 
both the nontrivial mixing of the four-fermion 
operators and the 6xed point structure of our sol- 
utions be checked by other methods including lat- 
tice calculations. 

We anticipate that many of the general features 
obtained in the ladder model will continue to hold 

for gauge theories with running couplings possess- 
ing widely separated condensate scales. In such 
cases, provided large anomalous dimensions exist 
over a wide range of momenta, which is possible 
due to the slow running of the gauge coupling, the 
momentum dependence of induced fermion mass 
terms can be significantly affected. Such behavior 
may be applicable12 to the resolution of the fla- 
vor changing neutral current problem in extended 
technicolor models. 
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