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ABSTRACT 
We present a solid state accelerator concept utilizing particle accelera- 

tion along crystal channels by longitudinal electron plasma waves in a metal. 
Acceleration gradients of order 100 GV/cm are theoretically possible, but 
channeling radiation limits the maximum attainable energy to lo5 TeV for 
protons. Beam dechanneling due to multiple scattering is substantially 
reduced by the high acceleration gradient. Plasma wave dissipation and 
generation in metals are also discussed. 

Presently existing high energy particle accelerators are limited to accel- 
eration gradients of order 10 MV/meter. This implies that to achieve ultra- 
high energies exceeding several TeV would require great distances. In recent 
years there has been an increased interest in the high-gradient linear acceler- 
ation of charged particles. ‘q2 One concept which promises very high gradients 
is the plasma accelerator. 3 In this scheme longitudinal plasma oscillations with 
phase velocities near the speed of light provide large electric fields which are in- 
tended to accelerate particles to high energy over a short distance. Gradients of 
order fi V/cm are theoretically possible where n is the electron number den- 
sity in units of cm -3. Typical laboratory plasma densities are in the range 
1014-1018 cmm3 corresponding to maximum gradients of 10 MV/cm-1 GV/cm. 

However a high gradient is not the only requirement for linear colliders, 
stability and emittance requirements for the accelerating system are very strin- 
gent. Since the beams from two independent accelerators must collide at an in- 
teraction point, excessive transverse motion and emittance growth of the beams 
induced during acceleration must be avoided. One concern is that plasma accel- 
erators may be prone to such beam instabilities due to plasma non-uniformities 
and multiple scattering. 

To extend the plasma wave acceleration idea to very high gradients and 
avoid beam emittance degradation, we explore in this paper a solid state accel- 
erator concept in which particles are accelerated along atomic crystal channels 
by plasma waves in a metal. Conduction electrons in a metal form a very uni- 
form high density plasma exhibiting longitudinal plasma oscillations.’ Typical 
conduction electron densities are of order 1O22 cmB3 corresponding to a max- 
imum gradient of order lOO’GV/cm. Although this gradient equals lo3 V/A, 
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the metal can support such high fields because the ionization energy of the 
atomic core electrons is at least several times the plasmon energy hwp - 10 eV. 

For phase velocities near the speed of light, the plasma wave number 
kp = wp/c N 5 x 10m3 A-’ is much less than the Fermi wave number kF - 1 A-l 
in the metal, so plasmon damping is primarily due to interband transitions 
(electron transitions to unfilled bands) with the decay width l?r being typically 
1o-‘-1o-2 tiw p.5 To use such plasma oscillations to accelerate charged particles 
to very high energy is problematic since the radiation length for electrons and 
positrons is of order 1 cm in solids, while the nuclear collision length for protons 
and antiprotons is of order 10 cm. 

These problems can be substantially mitigated for heavy positively charged 
particles (m >> m,) by utilizing the channeling phenomenon in crystals6 
Positively charged particles are guided by the average electric fields produced by 
the atomic rows or planes in the crystal. The particles make a series of glancing 
collisions with many atoms and execute classical oscillatory motion along the 
interatomic channels.’ In contrast, negatively charged particles are attracted 
by the atomic nuclei and suffer large angle Coulomb scatterings resulting in 
rapid dechanneling. This suggests that it is possible to accelerate positively 
charged particles on plasma waves for considerable distances through channels 
in metallic crystals. 

Because very light particles such as positrons emit intense channeling radi- 
ation in crystals,8 this method can only be used for accelerating heavy particles 
to high energy. Protons or heavy ions would be ideal candidates. Ultimately 
at very high energy even such massive particles will radiate, thus limiting the 
maximum attainable energy in such a channeling accelerator. This maximum 
energy is easily estimated by determining when the energy loss due to channel- 
ing radiation approaches the energy gain from the plasma wave. 

A charged particle channeling through a crystal emits radiation as it oscil- 
lates transversely in the channel. At the very high energies which interest us, 
the channeling radiation spectrum resembles familiar synchrotron radiation9 so 
the energy loss per unit length for a particle with charge ze can be written as 

2 
& = -3 czz 

2 me2 
-T2 , A, (1) 

where c~ is the fine structure constant, X, is the reduced Compton wavelength 
for a particle of mass m, and T is a Lorentz invariant radiation parameter. 
For a channeling particle T = 7 &I/&~ where 7 = E/mc2, &I is the transverse 
channeling electric field and &c E m2c3/zeh.10 Typically the channeling fields 
are of order lo2 V/A. For protons this corresponds to EL/&~ - 10-13, and 
the radiated energy loss is of order the plasma acceleration gradient when the 
proton energy is approximately lo5 TeV.ll 
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Perhaps a more immediate concern than the energy limitation is gradual 
beam dechanneling. l2 The transverse momentum of channeled particles will 
increase due to collisions with electrons in the channel.13 Dechanneling of beam 
particles occurs when their transverse kinetic energy allows them to overcome 
the channel potential energy barrier V,. The increase in the transverse energy of 
a channeled particle with distance can be written approximately as dEl/dz = 
Vc/xd, where the characteristic dechanneling length is 

AE 
Xd = - . 

ze (2) 
The dechanneling constant A is typically l-10 pm/MV, so high energy particles 
can channel considerable distances in a crystal. For example, a 1 TeV proton 
beam could channel of order one meter in a metallic crystal like tungstun.14 

Beam dechanneling in a solid state accelerator is complicated by the fact 
that as the beam energy changes the dechanneling length Xd changes propor- 
tionally. The decrease in the channeled beam fraction f with distance can be 
approximately described by the decay equation, 

df f - = -- 
dx Xd - (3) 

For an accelerated beam, the energy is E = EO + zeGx, where G is the 
gradient, and EO is the initial energy. The dechanneling length is then zd(E) = 
A (Eo + zeGx)/ ze so the solution of Eq. (3) is 

$) = (1 + ?!gyAG = (g)“” , 
where fo is the channeled beam fraction at x = 0. This expression is valid -. 
for both accelerating (G > 0) and decelerating (G < 0) relativistic beams. As 
an example, if a proton beam with Eo = 1 TeV were accelerated one meter 
on a gradient G = 100 GV/ cm in a metallic crystal with A = 1 pm/MV, 
then the surviving beam fraction would be f/f0 = (1/11)'/1o N 0.8 at a final 
energy of 11 TeV. 

Only for acceleration gradients G >> A-l II l-10 GV/cm will significant 
beam fractions remain channeled over long distances in a crystal. In the case 
of a longitudinal plasma oscillation, this implies that a large amplitude wave 
with a gradient of order 100 GV/cm is essential. This gradient corresponds to 
an energy density of order lo* J/cm3, although the plasma wave would occupy 
at most a cross section of a few Xi (- lo-’ cm2) over a long acceleration length 
in the crystal. Whether the energy contained in the plasma wave is sufficient 
to thermally damage the crystal depends on the relaxation time for converting 
plasmon energy to phonons. 
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After the original plasma wave (w = wP, &, = kpB) decays into interband 
transitions, these transitions will in turn decay into a plasmon gas with wave 
vectors (/El = kp) varying in direction. The plasmon gas can cause additional 
interband transitions but eventually electron-electron collisions will break up 

the plasmons as electrons are scattered out of synchronism.5 The electron col- 
lision rate can be written approximately as I’,,/h II 0.4[(k - kF)/kF12 EF/~ 
when the electron wave number k is near kF.15 Electrons in a plasmon have 
wave numbers k - kF + kp/2, so the plasmon gas decays into a hot elec- 
tron gas in about 10-l’ sec. These superthermal electrons have energies of 
order lo8 J~rn-~/lO~~ cmw3 - 100 keV, but lose their energy at a rate of 
about 1 MeV/cm primarily through plasmon radiation and electron collisions. 
This distributes the energy of the original plasma wave radially about 1 mm 
among many thermal electrons which then heat the crystal by phonon emis- 
sion (7e---phonon - 10-14-10-15 set). The plasma wave energy density thus 
decreases to about 10 J/cm3 in lo-lo set corresponding to a tolerable power 
input of 1011 W/cm3 to the lattice. Crystal damage occurs for power inputs of 
order 1012 W/cm3 in a nanosecond pulse.16 

The generation of large amplitude plasma waves in a metal presumably 
requires an intense power source to supply the plasma wave energy in a short 
time without destroying the crystal. Certainly creative ideas for exciting such 
waves in a metal are needed. We briefly consider three possibilities, all of which 
are at best problematic when applied to metallic electron plasmas. 

The laser beat-wave methodl’ involves resonantly exciting the plasma wave 
by the ponderomotive force of two collinear beating lasers with frequency differ- 
ence wi - wz N wP. In a metal this requires X-ray lasers with wi,z 2 101’ set-l. 
The plasmon decay width I’r results in the wave saturating at an amplitude 
aP E e&p/mwpc II criaz~w,/2I’,, where ai = c&i/mwic are the normalized laser 
fields. To obtain a large amplitude wave ((Ye - 1) requires (~1~2 2 low2 or 
a laser intensity I X 101’ W/cm 2. Since this intensity is to be delivered in a 
lo-l4 set pulse with a low9 cm2 spot size, crystal survivability is questionable. 

An immediate problem with beat-wave excitation is pump depletion as the 
lasers leave their energy behind in plasma waves. The laser-acoustic wave 
scheme avoids this problem by side-injecting a laser with frequency wo N wp 
into a plasma containing an acoustic wave. l8 The laser is linearly polarized 
along the direction of the acoustic wave vector. The laser (wo, &) and acoustic 
wave (wac, K,,) quasiresonantly excite forward and backward travelling plasma 
waves with w = wc f wae N wp and k, = & f iE,, N &,. In a metal the plasma 
wave saturates at an amplitude op N ao(6n,,/nc)~wp/21’, where cyo is the nor- 
malized laser field and 6n,,/ng is the acoustic wave density perturbation. To 
excite a large amplitude wave requires cro bn,,/no 2 10v2 corresponding to an 
ultraviolet laser intensity of 101’ W/cm2 if QIO - l/10. The crystal may survive 
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this high intensity because the energy would be primarily absorbed in plasmons 
and interband transitions within a few X, of the surface and only later converted 
to lattice heat as discussed earlier. 

The wakefield method for exciting plasma waves eliminates the need for 
lasers by employing a charged relativistic driving beam to leave behind a wake 
of plasma waves. lg The ratio of the maximum accelerating wakefield and the 
maximum decelerating field experienced by the driver is called the transformer 
ratio, R = I&+/&-l. F or a thin driver (L < X,), R = 2, while for a nonsym- 
metric finite length driver R can be arbitrarily large.20 In a metal collisional 
energy loss (l-10 MeV/cm) of the driver to electrons may destroy the crystal 
as the thermal electrons rapidly (lo-l4 - lo-l5 set) heat the lattice by phonon 
emission. To excite a large amplitude plasma wave with a thin driver requires a 
surface charge density of order 101’ e/cm2 whereas with a long driver a charge 
density of order 1O22 e/cm3 is required. In both cases this yields a power input 
to the lattice of order 102’ W/cm3. 

Independent of the method for exciting a plasma wave, similar consider- 
ations apply to the collisional energy loss by the accelerated beam. This will 
presumably limit the maximum accelerated beam current density that the crys- 
tal can withstand to approximately lo5 A/ cm2 to avoid fracture from thermal 
shock. Although the channeling phenomenon and high acceleration gradient 
aid in maintaining the accelerated beam emittance over long distances, the col- 
lisional energy loss is a consequence of the collective nature of this solid state 
acceleration scheme. Certainly the scheme explored in this paper does not 
preclude other possibilities for accelerating particles in solids. 
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