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1. Introduction 

The approach of the SLC/LEP era brings with it the promise of accurate 

tests of electroweak physics, especially of the physics of radiative corrections. 

These corrections to electroweak processes (such as e+e- collisions) are an in- 

tegral part of the field theory of the standard Glashow-Salam-Weinberg model 

and its various extensions. Hence, they are essential to checking in detail the 

validity of electroweak theories. Although a great deal of work has been done on 

electroweak radiative corrections, a comprehensive and self-consistent treatment 

of their effects is lacking. The present paper is a complete reformulation of elec- 

troweak virtual corrections, applied in particular to four-fermion processes and 

incorporated into a simple and consistent theoretical structure using an eflectiue 

Lagrangian. 

There are a number of basic difficulties with radiative corrections. The com- 

plexity of the model and the large number of Feynman diagrams to be included 

in a complete calculation have often led in past treatments to obscurity, with no 

clear physical relationship between the radiative corrections and the quantities 

being corrected. A subclass of the corrections, moreover, contains infinities that 

must be removed, or renormalized, to recover a meaningful theory. The renor- 

malization procedure eliminates the divergences and relates the original, or bare, 

parameters of the theory to the physical, or renotmalized, ones. A renormalizable 

theory is definable if, given a finite number of experimental inputs, any physical 

quantity is computable in a finite, sensible way. Any given set of inputs is called a 

Renormalization Scheme (RS). The obscurity of most radiative correction meth- 

ods, when combined with conventional renormalization techniques, on occasion 

has also given rise to problematic self-inconsistencies, RS-dependenee.‘ll That 

is, physical quantities such as cross sections are found to depend on the set of 

inputs used to define the theory. 

The approach developed in this paper generates a new way of organizing 

and thinking about radiative corrections, one that can take full advantage of the 
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gauge symmetry of the electroweak theory and its manifold consequences. This 

method greatly simplifies the incorporation of radiative corrections into elec- 

troweak processes. It organizes them in an essentially unique way, one that is 

fixed by the physical symmetries of the theory and that eliminates most of the 

arbitrariness and all of the inconsistencies potentially present in their renormal- 

ization. To be concise, we will call the result”the RS-independent representation 

of an electroweak process. Quantum electrodynamics (QED) will be used first 

as a warm-up exercise in Section 2 to illustrate the idea, which will then be ex- 

tended to the full electroweak theory in Section 3. To demonstrate the simplicity 

achieved in the treatment of radiative corrections, Sections 4 and 5 provide a 

general review of the physics of virtual corrections in the standard model, or- 

ganized in a comprehensive and unified manner. We stress in particular the 

effect of the nondecoupling of heavy particles in low-energy physics. The poten- 

tial uncovering of physics beyond the standard model via radiative corrections 

becomes the main theme of Section 6. The power of the RS-independent repre- 

sentation is especially evident here, as it renders unambiguous the kind of “heavy 

physics” that can be learned from radiative corrections and the relationship be- 

tween electroweak experiments at different energies. We use the Euclidean metric 

throughout, g2 = p - &. 



2. Renormalization Scheme-Independence of QED 

We begin by showing how the general QED matrix element can be made 

manifestly RS-independent. The loop corrections in QED can be classified into 

a number of groups: gauge boson propagator (“oblique”) corrections (Fig. 1) 

and “direct” corrections: vertices, boxes and bremsstrahlung’“’ (Fig. 2). Each of 

these four groups is a gauge-invariant subset and so can be treated separately. 

We concentrate mainly on the “oblique” or vacuum polarization corrections. The 

other corrections are process-specific, in that they depend on the external particle 

masses and quantum numbers, as well as the specific experimental arrangement. 

The oblique corrections are universal, as the appear in any process mediated by 

photons. 

The vacuum polarization of Fig. 1 is of course infinite. The general method 

of eliminating, or Urenormalizing,n these infinities in common use is the “coun- 

terterm” approach, most often associated with Bogoliubov, Parasiuk, Hepp and 

Zimmermann (BPHZ) .lsl In this method, one begins calculations with the “renor- 

malized” classical Lagrangian f&. Infinities are then eliminated order by order 

in the perturbation theory by adding to LT rcn counterterms designed to cancel any 

divergent parts of Feynman graphs. f&, is expressed in terms of “renormalized,” 

or finite, fields and parameters. The collection of necessary counterterms is called 

the counterterm Lagrangian, &, and the result of the perturbative renormaliza- 

tion is the bare Lagrangian, f?o G L rCII + &, expressed in terms of the s-called 

bare fields and parameters, themselves functions of the renormalized field and 

parameters. 

The crucial point about counterterm renormalization is that the counter- 

terms are arbitrary; apart from the infinite terms, one can cancel any finite part 

from any Feynman graphs that one desires. In addition, f& is arbitrary, in 

spite of its name; only the combination & E &,,, + lCct is physically meaningful. 

In fact, the true classical Lagrangian of Nature is the bare Lagrangian; any 

results based on it are finite and unambiguous. It is only the division of 1c0 
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i into “renormalized” terms and Ycountertermsn that is arbitrary; each way of 

making this division corresponds to a different RS, defining in each case a set 

of “renormalized” fields and parameters (in &,,) and a set of counterterms (in 

L3,t). In the counterterm approach one can make RS-independence manifest in 

the end by using renormalization group (RNG) invariance. The quantitative 

consequence is the RNG equation, through which one can introduce “running” 

parameters analogous to the ones presented in this paper.“’ A serious practical 

difficulty with the RNG equation, which comes in a number of versions, is in 

obtaining anything but asymptotic (leading logarithm) behavior from it.‘*’ The 

Callan-Symanzik equation is tractable only in the high-energy limit; the minimal 

subtraction RNG equation is exactly soluble, but in order to get nonasymptotic 

behavior out of it, one needs to compute various loop integrals exactly anyway. 

In strong interaction physics, with light quarks, this difficulty poses no problems; 

in electroweak physics at energies below a few hundred GeV, mass threshold 

effects are of decisive importance. The RNG approach, by itself, would therefore 

seem to be of quite limited usefulness, while complete calculations of radiative 

corrections have generally been complicated and opaque. A fresh approach to 

radiative corrections would retain the simplicity of the RNG, while being fully 

up to the complexity of a broken gauge theory with mixing and mass thresholds. 

Such a new approach should also be unified and comprehensive. 

A major conceptual and practical simplification of electroweak and other 

calculations ensues if we take a different tack and return to the original field 

theory methods of Feynman, Schwinger and Dyson:‘61 since the bare Lagrangian 

Ice is the true classical Lagrangian, it is the logical place begin a calculation. One 

can then imagine using fZo in the path integral and generating the efiectiue action, 

or the efectiue Lagrangian, fZcf/, which contains all of the quantum corrections 

and is expressed in terms of bare parameters and fields. The effective action serves 

as a complete description of a physical system. It is computable order by order in 

perturbation theory, as exemplified by the approach of Coleman and Weinberg,@’ 

who calculated the effective potential of the vacuum in the Ad4 theory to one 

5 



loop. In the present case, we need the effective Lagrangian for the gmatrix; 

i.e., for transitions between states of definite incoming and outgoing particles. 

The effective Lagrangian also appears in other contexts, computed in different 

approximations, such as the chiral Lagrangian of low-energy hadronic physics.“’ 

We will restrict ourselves to a one-loop approximation: fZ,ff H to + Zr-loOP. 

Here L:r-lOop contains the operators that generate the one-loop proper diagrams, 

and vacuum polarization graphs such as Fig. 1 can then be summed to all orders 

via Dyson’s equation,16’ yielding the full, or “dressed,” photon propagator. The 

resulting matrix elements are all expressed in terms of bare parameters; in a 

renormalizable theory, however, these will never appear alone, but only in certain 

characteristic combinations that are finite, RS-independent, and thus physical. 

We return to the example of QED. The QED Lagrangian contains one param- 

eter, the bare electromagnetic coupling eo. (We ignore particle masses.) Since 

only the transverse degrees of freedom of the photon are important in QED, we 

drop the tensor indices. Schematically, we write the matrix element in either the 

s or the t channel for the interaction of charges Q and Q’: 

2 89’ 
MQED = % ~a (2.1) 

at tree level. Introduce the proper photon self-energy, or vacuum polarization, 

II,( Then: 

Ku (!12) = !I2 q&i (q2) , 
(2.2) &A (q2) = ei HQQ (q2) = ei q2 HbQ (g2) . 

That IIM (g2) is proportional to q2 is ensured by a QED Ward identity and 

simply means that the photon remain massless in the presence of quantum cor- 

rections. HbQ is convenient because, to one loop, all factors of co have been 

removed. HbQ is dimensionless and logarithmically divergent. Using Dyson’s 

equation, Is1 we can sum the proper vacuum polarization to all orders: 
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MQED = 
4 4 ‘tg2 ' (etn&Q) +... QQ' 1 

(2.3) ez QQ' 
= g2[l - ei n&Q(g2)]  ’ 

(We ignore the imaginary part of IIM for the moment.) eg is, of course, unmea- 

surable because of the radiative correction HbQ. A concise, RS-independent way 

of writing the matrix element is to introduce: 

Then 

MQED = 
e? (g2) QQ’ (2.5) 

We now define ez(g2) by one experimental input, the value of ez at some g2, 

2 replacing the free bare parameter eo. This choice is the equivalent in our approach 

to a RS. The function ef is then well-defined and finite; it is also RS-invariant, 

as it is expressible in terms of bare quantities. e:(g2) can be run to any g2, 

circumventing the usual asymptotic RNG approximations, because n&Q(q2)  can 

be computed in closed form to any finite order using standard loop integrals.“‘01 

[In this paper we compute the proper self-energies explicitly to one loop only, 

but the definition of ez(g2) holds in general.] The Feynman rules are generated 

by the one-loop effective Lagrangian: 

electron 
+m0+ self-energy 1 $0 9 

(2.6) 

+ ieo Q$o 40 [I+ vertices] $0 + t.&&~ [boxes] TJ~$J~ . 

In the counterterm approach to renormalization, f!,ff would be divided into 

two parts, Lff = Len + Lrodcorr. Then L1,,, would be expressed in terms 

7 



of “renormalized” parameters, based on a particular RS, with the renormalized 

parameters expressed as certain combinations of bare parameters and infinite 

parts of the one-loop corrections. The finite remainder of the one-loop terms 

then constitute what are usually called “radiative corrections.” The division 

of &f/ into k?& + fkdcorr, like the division of &O into &,,, + &, is strictly 

conventional, however, and without physical meaning. The alternate approach 

outlined here has the virtue of simplicity: the entire apparatus of renormalization 

schemes and counterterms is never introduced, because it is not needed. 

The one-loop Lagrangian used at “tree level,” so to speak, gives the one- 

loop corrections; using Dyson’s equation, we can then sum the one-loop oblique 

corrections to all orders. Because we use the Dyson’s equations to sum the 

proper oblique corrections, the correct diagrammatic expansion of Lc,ff is through 

proper, or one-particle irreducible (lPI), graphs. While we are still computing 

corrections perturbatively and must cut off the calculation somewhere, truncat- 

ing the calculation to one loop in the irreducible diagrams forms a closed, self- 

consistent approximation. On the other hand, RS-dependence generally appears 

in matrix elements because the infinite sum [in Eq. (2.3)] has been truncated 

at some order. Changing from one RS to another, in general, induces errors 

of order higher than that retained in the matrix element; but renormalization 

schemes (especially in electroweak physics) are often defined in a way that im- 

plicitly includes those higher orders, even though they are absent from the matrix 

element. Starting from the bare Lagrangian and proceeding with the effective 

Lagrangian and the full Dyson’s equations, such difficulties are never encoun- 

tered. The one-loop fZc,ff can also be used, as a “tree-level” Lagrangian, as the 

basis for loop calculations; one then generates higher-order irreducible diagrams. 

In particular, the function ez(g2) will now have higher-order proper diagrams in 

nbQ(g2) (e.g., Fig. 3). The finiteness of ez(g2) is then shown inductively, begin- 

ning with the simple one-loop divergences.“’ The behavior of arbitrarily complex 

loop diagrams is governed by Weinberg’s theorem”” In particular, e: appears in 

diagrams other than oblique ones (like boxes, for example, see Fig. 4) because 
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the full photon propagator (not the tree-level one) is inserted. The loop inte- 

grand is now convoluted with ez(g2) and, in general, is quite complicated. One 

can develop reasonable approximations to these convolutions by determining the 

dominant region(s) of integration and setting er(g2) equal to its value(s) there. 

In this way, the RS-independent parametrization can be used in all parts of a 
. 

matrix element. Finiteness and RS-invariance are evident at every step, and 

the matrix element takes an especially simple form. The gain in QED from this 

method is mainly notational, as QED is a simple theory. In a complex broken 

non-Abelian gauge theory like SU(2) x U(l), th e introduction of the effective 

Lagrangian and “starredn functions will present a more striking simplification. 



3. Effective Lagrangian and Radiative 
Corrections for Glashow-Salam-Weinberg Model 

To reformulate the Glashow-Sal--Weinberg (GS W) electroweak model,‘“’ 

we need to begin with the bare Lagrangian and sum the proper self-energies in 

the matrix elements to all orders using Dyson’s equations. This will allow us 

to introduce a set of “starred” functions like ez. An effective Lagrangian will 

summarize the physics of the theory to one loop and can be manipulated like a 

tree-level Lagrangian, a fact that will prove useful. We will continue to calculate 

the gauge boson self-energies explicitly to one loop, but the procedure can be 

generalized to any order. 

The four-fermion process jf + f’f’ (Fig. 5) illustrates the method, and ma- 

trix elements in different channels can be obtained by crossing symmetry.“’ The 

complete formulation of the neutral- and charged-current matrix elements in the 

case of light external fermions is presented in Appendix A. (This treatment can 

easily be extended to massive external fermions.) The standard model of elec- 

troweak interactions requires a large set of parameters for its definition. Ignoring 

fermion and Higgs masses and concentrating on the gauge sector of the theory 

narrows the set down to three parameters (or four if there is an extended Higgs 

sector). In the original Lagrangian, they are the bare gauge couplings, go [SU(2)] 

ad 9; IW>l~ and bare Higgs doublet expectation value, (c$)o, which sets the 

scale for the gauge boson masses. Then one can define the sine and cosine of the 

weak mixing angle: 

The bare W and 2 masses are then: 

(3.1) 

(3.2) 
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Of course, none of these parameters is measurable; they are all modified by the 

presence of radiative corrections. Exactly as in QED, one can introduce a RS- 

independent and finite running parameter for each independent bare parameter. 

(This is why the theory is renormalizable.) We need one dimensionful quantity 

characterizing the Higgs doublet v.e.v. (+)o, which for convenience we choose to 

be G,,,, the bare Fermi coupling as measured by muon decay: 

G $=&. (3.3) 
Our three running parameters, defined in Appendix A, are then: ez(g2), sr(g2) 

and G,, (g2), corresponding to e& 6: and GPO, respectively. We also introduce 

two auxiliary “starredn functions: cr(g2) = 1 - $(g2) and p*(g2). The bare p 

parameter is conventionally defined as: 

(3.4a) 

po = 1 in the standard model, with one Higgs doublet v.e.v.. Nevertheless, 

p*(g2) # 1 because of radiative corrections. However, ef(g2), sz(g2) and G,,(q2) 

are free parameters in GSW, as e:(g2) was in QED: we need an arbitrary experi- 

mental input at some g2 to define them. p*(g2) is not arbitrary, but computable, 

given $(g2), s%I~), Gp.(g2) (ad th e f ermion and Higgs masses): no indepen- 

dent empirical datum is necessary to fix it. If we extend the standard model to 

include an arbitrary number of Higgs multiplets with arbitrary isospins, po is no 

longer equal to unity; it becomes a free parameter. (Equivalently, Mw, and Mz, 

are no longer defined by Eq. 3.2.) 

. 
PO =l$ 

Cd 0 (4,’ (I2 - 3 1:) do )“acuum 

2Cd qj ( do 1; 40 )vacuum l 

(3.4b) 

po = 1 can be guaranteed without fine-tuning by choosing only doublet v.e.v.‘s. 

If other types of multiplets are used, p*(g2) is no longer computable without 
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an independent measurement at some q 2. The general case of arbitrary Higgs 

structure is treated in Appendix A; in the main text, we will consider only the 

standard model with po = 1. 

The oblique, or gauge propagator, corrections (Fig. 1) can be summed up 

using Dyson’s equations (Figs. 6 and 7). Introduce the photon, 2 and W* 

currents: 
JA = eo JQ 
Jz = - 

s,e”e, iJ 3 - s: JQ] 
eo (JI f i Jz] JA = so 4 ’ 

and the reduced proper photon, Z-A mixing, 2 and W self-energies: 

(3.5) 

To one loop, HQQ, n3Q, IIs3 and IIrr have no couplings embedded in them. 

The Dyson’s equations can be generated by the one-loop effective Lagrangian. 

Schematically: 

Lf/ = - 2 l( gauge)~, (gauge):, [l - II’s] + [M&,, - n’s] (vector)iO 

+ q. [q + mo + fermion self-energies]& 

+ i go (vector)! rP [l + vertices] $0 + q. T,!JCI [boxes] q. $0 . 

(3.7) 

As explained in detail in Appendix A, part of the self-energy function n3Q (Fig. 9) 

creates a self-inconsistency in the electroweak matrix elements, attributable to 

the presence in the one-loop L,~J of a new effective mass term mixing the 2 

and the photon. Related to this problem is the fact that the gauge boson self- 

energies due the gauge bosons themselves are not gauge-invariant, but in fact 

must be combined with a certain universal part of the vertices (Fig. 8). The cure 
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for this difficulty is to rediagonalize the neutral current sector in the one-loop 

Lagrangian. This is a purely non-Abelian effect having no analogue in QED. The 

equivalent in counterterm renormalization is a Ward identity relating part of the 

vertex counterterms to part of the counterterm of n3Q, but this is RS-dependent, 

of course. in*o1 The remaining direct corrections (bremsstrahlung, boxes and the 

residual vertices, with the aforementioned universal part removed) form a gauge- 

invariant and finite set by themselves and can be considered separately. They 

are also specific to the external fermions and the experimental situation; the 

oblique plus non-Abelian vertex parts presented here are universal to all processes 

mediated by electroweak vector bosons. Let I3 and Q be the initial weak isospin 

and electric charge, Ii and Q’ the final; let I+ and I- be the charge-raising and 

-lowering operators, respectively. We then show in Appendix A that, apart from 

small but nontrivial imaginary parts, the neutral- and charged-current matrix 

elements are: 

MNC = 
ef Q  9’ 

q2[1 - i JmrP*fi] (3.8) 
2 +- ( > 

[I3 - (4 - is* C$ h ll'*z~)Q] [Ii - (~‘4 - is, C* IIII ll'*z~)Q'] 
s2c2 * * q2 + e? 1 

bqqzqyc 
- is 

and 

M e3 (I+ I-) 
cc=29! $+e4 1 

8. llJzc,. - is 
( > 

EKE 9 
h 

cw 

in either the s or t channel. The reduced proper self-energies defined in Eq. 3.6 

are computed to one loop in the standard model in Appendix B. The widths 

are discussed in Appendix C. Equations 3.8 and 3.9 and Appendix A summarize 

the key results. They express the corrected four-fermion process in a finite, 

RS-independent way based on an effective Lagrangian and the summed Dyson’s 

equations. The representations 3.8 and 3.9 have the additional advantage of 

simplicity and greater numerical accuracy, the latter another benefit of retaining 

the full Dyson’s equations. Note that: 
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(3.10) 

One simply gets 3.8 and 3.9 by “starring” everything. The physics of the largest 

subset of radiative corrections has been absorbed into the running couplings. 

This universality of the starred gauge couplings is not a notational gimmick, 

but a consequence of the underlying gauge symmetry. The same ez, et and 

cz occur everywhere in the two matrix elements. At q2 = 0, for example, the 

gauge factors common to the numerators and denominators of 3.8 and 3.9 cancel; 

similarly, at the 2 and W resonance poles, the same numerator factor will cancel 

with identical factors in the width. (See Appendix C.) Finally, this universality is 

embodied in the uniqueness of the relationship between each self-energy function 

and its corresponding starred function. The starred functions themselves render 

this relationship transparent, while the counterterm approach obscures it. Such 

transparency is a powerful check on the consistency of the radiatively-corrected 

matrix elements. 

To complete the theory, we must 6x the value of the three independent starred 

functions at any q2 (or set of q2’s); the equations of Appendix A allow us to run 

the functions to any other energies. Radiative corrections are now freed from the 

baggage of specifying a fixed set of parameters. Instead of defining a sin2 6~ by 

an experiment and speaking of radiative corrections to it in other experiments, 

one simply refers to the universal function st(g2) at different q2, and so on for all 

the different electroweak parameters. Because the starred functions are defined 

in terms of the exact self-energies in 3.6, one can compute their running for any 

g2 without introducing any approximations (beyond the perturbative one), in 

contrast to the usual RNG treatment. Comparison of electroweak experiments 

at different energies is now straightforward. Since the forms 3.8 and 3.9 are 

RS-invariant, the matrix element can be used to relate different renormalization 
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i schemes. The scheme of Sirlin and Marciano, ‘la1 for example, uses a weak mixing 

angle defined by the ratio of the W  and 2 masses: sin2 8~ = 1 - ww/A4i. Mz 

and Mw are given exactly by the poles of 3.8 and 3.9, respectively: 

By approximating that the starred functions run very little between the W  and 

2 poles, we get to tolerable accuracy: 

sin2 6~ = s:(Z) - (p*(Z) - 1) C:(Z) . (3.12) 

[See, however, Section 6, Eqs. (6.2a) and (6.2b).] The scheme used in this paper, 

that of Lynn, Peskin and Stuart,lal uses Q, G,, and Mz, the pole of 3.8, as inputs 

in defining the starred functions. One can now compute Mw, for example. The 

results of one scheme become the starting point for another and the mutual 

consistency of different schemes is assured. 

As the 2 and W  propagators no longer have simple Breit-Wigner forms, the 

interpretation of the resonance shapes becomes somewhat subtle. In particular, 

the resonance shape is changed to: 

1 

. (q2 +M2)(1+IE) -i s 3 ( > 

(3.13) 

Besides the phase space factor s and the radiative corrections in I’*, the additional 

1 + IC changes the interpretation of the experimental width. The resonance pole 

structure and its effect on the line shape are taken up in detail in Appendix C. 
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4. Running of Renormalization Scheme-Independent 
Parameters in SU(2) x U(1) 

We use the scheme of Ref. 2, as mentioned. Q and G, are already known 

to high accuracy, leaving as unknown parameters of the standard model the 2 

mass (Mz), the top quark mass (mt) and the Higgs mass (mu). In this section 

we illustrate some of the behavior of the running starred functions. The results 

presented should be taken as accurate predictions for the standard GSW model 

to one loop with three generations of quarks and leptons. In this paper, and 

in related Monte Carlo simulations (to be published shortly),llal we have used 

a simple analytic dispersion relation for the low-energy hadronic contribution 

to HQQ and related it to the analogous contribution to &Q by manipulation 

of the fundamental currents and ignoring the mixings of the different vector 

hadrons, as outlined in the paper of Lynn, Penso and Veroegnassi.“” This retains 

all the necessary hadronic corrections to the II’s, except for terms suppressed 

by powers of small quark masses; Heavy quark contributions to the II’s are 

computed perturbatively, with QCD corrections added to the imaginary (but 

not the real) parts.“] Our results substantially confirm those of Ref. 2, while (1) 

improving their numerical accuracy and allowing a much larger top mass, and 

(2) considerably simplifying the conceptual organization of radiative corrections. 

The gauge boson self-energies II have a general structure that allows for a 

neat separation of various physical effects. The D’s are expressible in terms of the 

standardized dimensionless form factors of Passarino and Veltman.“’ However, 

the self-energies have canonical dimension of (energy)2 and so must have some 

dimensioned factor multiplying the form factors. This factor is either q2, the 

invariant mass-squared of the virtual gauge boson, or is the square of a mass 

of a particle circulating in the loop diagram. We call a II proportional to q2 

%ransverse,” and a II proportional to a (mass)2 “longitudinal.” In an unbroken 

gauge theory, all the II’s are strictly transverse, as there are only trunsuerse 

gauge degrees of freedom, and they renormalize the gauge couplings, as in QED. 
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The presence of longitudinal H’s is allowed only because of symmetry-breaking, 

corresponding to the presence of real gauge boson masses and of longitudinal 

gauge degrees of freedom, and these longitudinal parts renormalize the vacuum 

expectation values responsible for the vector boson masses. (Hence the names; 

note, however, that this usage of “transverse” and “longitudinal” self-energies 

differs from, but is related to, their usual meanings.) The transverse part of a II 

will be denoted by II*, and 

rlT s qw , (4.1) 

as in Section 2. A longitudinal part will be written as HL: 

rIaT+rIL=q2rl’+rlL . 
Consult Appendix B for a discussion of the general structure of the loop integrals 

and their behavior in various regimes. 

Now HQQ and a gauge-invariant combination of II~Q and a non-Abelian ver- 

tex function I” are purely transverse and renormalize the gauge couplings. l&s 

and Hrr have both transverse and longitudinal parts. The longitudinal parts, be- 

ing proportional to the squares of masses, are sensitive to heavy particles, a topic 

to be taken up in the next section and in a subsequent paper.“‘] e2 = e:(O) = 47rcr. 

Then: 

4(q2) = 
e2 

1 - e2A.g(q2) ’ (4.3) 
AQ(q2) = Re [&&(q2)+2r'(q2)- l&$,(o) -2r'(0)] , 

just as in Section 2, with the addition of the vertex function I” needed in the 

non-Abelian theory. Figure 11 illustrates the running of 4?r/ez(q2) from 1 MeV 

to 1 TeV (q2 timelike and spacelike). We have used Mz = 93 GeV, mt = 40 GeV 

and ?‘nH = 100 GeV. The fermions make e: run faster (noticeable as we pass into 

the GeV region), while the well-known non-Abelian nature of the W’s slows the 

running down, contributing to AQ with a sign opposite from that of the fermions 
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(the W+W- threshold is about 160 GeV). The asymptotic behavior of e$ is of 

course logarithmic, as given by the renormalization group: 

e2 (P2) 
e’(q2) = 1 _ $(p2) p en ($) ’ (4.4 

P llN-2- 32% 1 
I 

9 

where Ng is the number of fermion generations in the theory and N = 2 for 

SU(2); p2, q2 > (masses) 2. The three contributions to p are from the vector, 

fermion and scalar particles, respectively. In Fig. 12 we show sz(q2) over the 

same energy range, with the same masses. Its behavior can best be understood 

if we define a running SU(2) coupling gf = ef/sz . Then 

1 1 - - - = -Re [n;Q(q2) + 21’(q2) - n:Q(p2) - 21’(P2)] 
s%12) d(P2) 

) (4.5) 

apart from some small corrections. Until the W+W- threshold, both e:(q2) 

and g$(q2) increase with the fermionic logarithms, but gz(q2) runs up faster- 

hence, st (q2) d ecreases. Once the 2W threshold is passed, gz(q2) behaves like a 

true non-Abelian coupling and decreases. (The difference between the timelike 

and spacelike graphs of Fig. 12 is due to the different W threshold behavior in 

the two regions.) s9(q2) henceforth increases asymptotically in the usual RNG 

manner to its SU(5) GUT value of 3/8, somewhere between “‘l 1014 and 1015. 

Asymptotically: 

!J392) = g2 (CL21 
1 - g2(p2> P’ en (f> ’ 

P’ = -& IlN-4Ng-; . 
I 

(4.6) 

In our RS, Mz is an input parameter; thus, s: (2) is the renormalization point 

for defining $(q2) [or gz(q2)] in Eq. (4.5): 
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sect = -I- 4 w 
M; 4th G,.@')P@) ' 

(4.7) 
where c’fl = 1 - 89. In keeping with the Appelquist-Carazzone theorem,“” heavy 

particles decouple from the running (the slopes) of et(q2) and sz (controlled by 

I&$Q and I$Q); however, S;, unlike cl, is normalized by its value at the 2’ pole 

and is affected by G,, and p*, functions which are quite sensitiue to the effects 

of heavy particles. Broken gauge theories generally exhibit a nondecoupling of 

heavy particles at low energies, a subject to which we now turn our attention. 
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5. Heavy Physics in the Standard 
Model-General Classification of Effects 

As a general rule, one expects heavy particles to decouple at energies 

much lower than their masses.“71 For example, the low-energy world of unbroken 

SU(2) x U(1) is protected from the effects of heavy gauge bosons whose masses 

are due to large v.e.v.‘s; corrections from the heavy bosons are suppressed by in- 

verse powers of their mass. In theories with broken global and local symmetries, 

however, decoupling in radiative corrections no longer holds if masses become 

large through the increase of a dimensionless parameter (e.g., Yukawa, gauge or 

scalar self-couplings) .@I (This is quite apart from effects in scalar masses such 

as the gauge hierarchy problem.) The standard electroweak model thus becomes 

a laboratory for the detection of heavy particles. Nondecoupling has been exam- 

ined by a number of authors.‘a’*‘lg’aO’al’za’ The starred functions allow a simple 

and general scheme for classifying. these effects. 

Clearly, heavy physics makes its presence known through the longitudinal 

parts of the oblique corrections, since they are proportional to the squares of 

masses. G,, (q2) and p(q2) are the two functions whose behavior is controlled 

by the longitudinal parts. G, is the measured muon decay constant (but see 

Appendix A) : 

6. k2) = GP 
1 - 4,/i G, A1(q2) ’ (5-l) 

Adg2) = Re {h(q2) - n:Q(cr2) - nll(o) - 2M& [n,L,(q’) - l-$Q(o)]} ; 

P*k2) = 
1 

1 - 44 G,. A,(q2) ’ 

A,(q2) = Re [n33(q2) - h(92)] - 
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i 
Note we can define: 

A3(92) = Re {n33(g2) - $Q(g2) - n,,(O) - 2M$ [n,L,(g2) - nkQ(o)] } , 

(5-3) 

in analogy with Ar(q2). Then, .* 

A3(q2) - Al(q2) = 441~) - 41(o) . (54 

The best-known heavy particle effects come from isospin splittings in mul- 

tiplets; these are measured by Ap(q2). At q2 = 0, pt becomes the conventional 

radiatively-corrected p-parameter, “‘I with the corrections summed: 

1 
p* = 1-6p* l 

(5.5) 
The scale in 6p, is set by G, N [2@ (4) ] 2 -l. Hence, isospin splittings need to 

become of order (4) before they appreciably correct p*. In the fermionic sector in 

the standard model with three generations, the only hope of such large splittings 

is in the top-bottom doublet. If rnz B m i , then the contribution to bp, diverges 

quadratically, a well-known result:“” 

6p*(O) = ZfL a&2 rnfi-m,2- , 
3G,mz 

mt >> mb 8fir2 ’ 
-0. 
mt = mb 

We illustrate p*(O) as a function of mt, with MZ = 93 GeV and mH = 100 in 

Fig. 13, which shows the quadratic divergence of Eq. (5.6) with mt in a dramatic 

fashion. The isospin splitting (due to hypercharge) between the 2 and the W  

also makes p*(O) dependent on the Higgs mass mH, but only very weakly: 
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(5.7) 
mH >> Mw,Mz . 

Figure 14 shows the slow decrease in p* (0) with mH. Note that p*(O) decreases 

as long as Mw < Mz. A gauge boson contribution to ape(O) has the opposite 

sign of 5.6, a fermionic contribution. However, the indirect effect of a large top 

mass is to increase Mw strongly. For mt = 1000 GeV, Mw > Mz, so that p*(O) 

now increases with mH (see Table I). Note: 

441~) = g2 (n:, - nil) + rr,L, - I’I~~ . (5.8) 
As q2 increases towards the weak scale, the transverse parts increase at first; 

once all the mass thresholds are passed, however, the asymptotic (logarithmic) 

behavior of II;,, II:,, Ilk3 and IIfi sets in and all the isospin splittings cancel, 

leaving us with the general result; A,,(q2 -+ 00) = 0. This illustrates a general 

property of the starred functions: as q2 -+ co, they approach the ualue of the 

corresponding bure purameter. The running of p*(q2) is shown for various top 

masses in Fig. 15 (also Table II). p* (0) is sensitive to any kind of isospin splittings, 

in particular from new generations of fermions or scalars and, on the basis of UN 

scattering, already been used to set an upper bound of several hundred GeV on 

the mass splittings of particles”‘l coupled to the 2 and W. 

Heavy physics is also detectable in the independent function Ar(q2) or, 

equivalently, A3 [because of Eq. (5.3)]. Unlike A,(q2), however, As is sensi- 

tive to degenerate fermions.“’ We illustrate this in Fig. 16 with G,.(Z) (Mz = 

93 GeV and mH = 100 GeV), where the top and bottom quark masses have been 

set equal and the common mass is allowed to vary over 1 TeV. If 

G = GP 
cc* 14G,, ’ (5-g) 

then the shift 6G,, from a heavy degenerate pair of fermions at the 2 pole is 
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bG,,(Z) = -3M’Gp 
124hr2 9 mt =mb>Mz . (5.10) 

This effect comes directly from the longitudinal part. For a fixed q2 (e.g., -Mi), 

the longitudinal part becomes independent of the heavy mass m for ]q2] < m2: 

IIL(q2) - IIL(0) - m2 -f$ 
( > 

. (5.11) 

Degenerate fermion masses do not break global isospin symmetry and hence do 

not contribute to AP, but their presence signals the breaking of the global chiral 

symmetry of the Glashow-Salam-Weinberg (GS W) theory. Note that this means 

that heavy degenerate scalars are not detectable. In Table III and Fig. 17, we 

show how G,, (2) varies with mt and mH (mb has been set to its normal value). 

As mt becomes large, G,, (2) b ecomes constant [Eq. (5.8)]; but as mt goes to 

1 TeV, the indirect effect of the large W mass pushes G,,(Z) back up. Shifts 

in Ai (or As), since they are small constants, compete with the quadratically- 

diverging AP; if the latter is large enough, A1 and A3 are swamped. Figure 18 

shows the running of G,, (q2). Th e asymptotic behavior is controlled by: 

32~~fh(q~+o0)= 
1 

3x rni+C m2+4m&-2 ’ (lOm& + 3Mi) 
9 L 1 h(q2) , 

(5.12) 

where “9” is all quarks and “P all leptons. 

If the fermion and Higgs masses grow very large (on the order of a few TeV), 

the perturbation theory breaks down. These masses are proportional to dimen- 

sionless couplings, Yukawa couplings in one case and the scalar self-coupling in 

the other. Generally, the perturbation theory ceases to be valid when these cou- 

plings are of order unity; however, in this context, the expansion parameter in 

radiative corrections is of the form G2/167r2 (where G is a dimensionless cou- 

pling), so we expect breakdown when G - 47r. This corresponds to fermion 
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i masses between 2 and 3 TeV. In this case, nonperturbative techniques, mod- 

eled on the chiral Lagrangians of current algebra, are available for estimating’“” 

the XI’s. The general structure of radiative corrections given here remains valid 

and the reduced forms of the charge and isospin currents [Eq. (3.5)] can be di- 

rectly analyzed using symmetry relations. Similar remarks can be made about 

some technicolor theories. In the nonperturbative case, one simply exchanges 

our perturbatively computable effective Lagrangian for another one based on an 

electroweak current algebra. 

If there are nondoublet Higgs v.e.v.‘s, then the function pt is no longer com- 

putable without the measured value of p* at some q2 as an input. Let p z p* (0) 

(measured in neutrino scattering, for example). Then, as shown in Appendix A: 

P*(92) = 
P 

1 - 44 G,. PA, ’ (5.13) 

Ap(g2) = A3(g2) -I--‘& . 

Now the characteristic quadratic mass divergence of isospin splittings [Eq. (5.6)] 

disappears. Any shifts from AP(q2), q2 # 0, due to heavy physics, are like those 

in G,,,,: constants independent of mass. Formally, nondoublet v.e.v.‘s destroy the 

famous “custodial” SU(2) x SU(2) symmetry of the standard model.“‘“” With- 

out knowing explicitly the Higgs vacuum structure, we lose a great deal of the 

GSW theory’s predictive power. 
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6. Measuring Heavy Physics 

The chief advantage of the methods presented in this paper is the simplicity 

they allow in the organization of radiative corrections. In particular, because 

the standard electroweak model is a broken gauge theory, the measurement of 

low-energy parameters can teach us about some of the heavy physics lying at 

energies beyond those currently accessible. This information is summarized in 

the functions A,, and As, and three simple observables can be used to determine 

them. 

The first is p*(O), as measured in low-energy UN, ue and eD scattering. This 

directly gives us A,(O) and information about isospin splittings in all multiplets 

coupled to the 2 and the W. The second is the relationship between s: and Mz, 

Eq. (4.7). Rewriting this: 

s;(z) e$q = e:(z) 
4,h M; G, { 1 - 4&G, [A&‘) + A,(O)]} . (6.1) 

Given Mz, s:(Z) measures A3 (2) + ALP (0) and, as explained below, ST (2) can be 

measured directly in the left-right polarization asymmetry at the 2 resonance. 

Thus p*(O) and S:(Z) determine Ahp(0) and As (2)) separately. Not surprisingly, 

s:(Z) is mainly sensitive to A,(O). In Fig. 19 and Table IV, we show the effect on 

s:(Z) of varying mt, behavior understandable in terms of p* (0). The running of 

sf ( q2) depends only on n:Q and is thus independent of heavy physics (except for 

the indirect effects of Mw). The dotted line of Fig. 19 shows s:(O), a quantity 

measurable in neutrino scattering, eD scattering and atomic parity violation 

experiments. The main effect of varying mt is to shift the overall normalization 

of sz(q2), as seen in Fig. 20 and Table V. We can also vary the Higgs mass and 

get a similar, but much weaker, effect (Fig. 21; see also Figs. 22 and 23). The 

third quantity, closely related to the first two, is Mw as computed in Eqs. (3.9) 

and (A.53), f rom the pole of the charged-current matrix element (the physical 

W mass). Figure 24 and Table VI show the dramatic effect, through A,(O), that 
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i a large top mass has on the W  mass. Again, the effect of a heavy Higgs on 

Mw is only logarithmic (Fig. 25 and Table VII). As in Eq. (3.12), we make the 

approximation that the starred functions run very little between the 2 and W  

poles, and get the approximate relationship: 

p*(o)cf(Z) M; = ’ * 
(6.2~) 

This relationship can directly test for the presence of a new neutral vector boson 

(2 ‘) . Even at tree level, p* (0) and c:(Z) receive different corrections from the. 

Z’, depending on their experimental definition.‘351 In general: 

ML% Mz, 
P* (0) c: (2) M; 

H 1+0 @- * ( > Z’ 
(6.2b) 

The GSW value of this ratio is close to unity, calculable and almost completely 

independent of even very large radiative corrections (see Table VIII), The ratio is 

also essentially independent of the Higgs vacuum structure, if we assume v.e.v.‘s 

more general than doublets. 

Equation (6.2) gives us a prediction for Mw , if we know p* (0), c:(Z) and 

Mz. The current accuracy”” on p*(O) from neutrino scattering is about 1%, 

with p* (0) = 0.998 f 0.008. From Eqs. (5.2) and (5.6), this is sufficient to detect 

isospin breakings larger than approximately 300 GeV (neglecting color and other 

group factors). To improve this by another order of magnitude, to tens of GeV, 

would require knowing p*(O) to one part in 104. An accuracy of better than 10e3 

is perhaps more realistic and can be attained through the use of s:(Z), directly 

measurable in polarized e+e- experiments at the 2 pole. Such an accuracy 

improves the isospin bound by a factor of m - 3, to roughly 100 GeV. The 

left-right polarization asymmetry for e+e- beams at the 2 is 

AL&') = 
-2 [4&z) - 1] 

1+ (4s$(Z) - 112 ’ 
(6.3) 

if the photon exchange is neglected and only oblique corrections are included. 

The major advantage of ALR is that, unlike the forward-backward asymmetry, 
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it is only weakly dependent on the vertex and box corrections and is essentially 

independent of bremsstrahlung, final state QCD and hadronization effects.“” 

Thus, the hadron data of the SLC/LEP experiments can be used to measure ALR, 

greatly improving the statistics. With hadrons, lo6 2 events and a polarization 

error of 1%, ALR can be measured”” to f0.008. (See also Fig. 26.) Since .a 

~ALR(Z) H -8&s:(Z) , (6.4 

this allows us to measure s:(Z) to f0.001. Using Eq. (6.1), we have: 

S&z) = - 2 (4 
4,/i M; G, (26P*) 9 

ignoring the effect of As. This gives us isospin-splitting bounds in 6p, to: 

(6.5) 

or about 90 GeV, for Mz = 93 GeV. This accuracy in ALR also just brings 

to the surface the constant shifts in As due to heavy degenerate fermions, 

such as heavy gaugings. These contribute: 

A3(2) = 
-i(i + 1)(2i + 1) NC Mi 

1447r2 > 

for a fermion multiplet of isospin weight i. (N, = the number of colors: NC = 3 

for quarks, NC = 1 for leptons.) This contributes to &s:(Z) by an amount: 

s&q H 
-i(i + 1)(2i + 1) e:(Z) NC 

72~~ 
, 

or about &s:(Z) N 0.0005, or ~ALR H 0.004, for a pair of quarks. These may 

be measurable in a second-generation polarization experiment. A more complete 

presentation of the effects of new physics on ALR may be found in Ref. 2, and 

will be discussed is a forthcoming paper. I151 
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The hierarchy of effects in the standard model suggests the following approach 

to checking it: 

1. Verify the tree level of the standard model. Much of this has been done, 

but the three-gauge-boson vertex (e+e- + W+W-) and the Higgs boson 

remain untested. 

2. Test the running of parameters not dependent on heavy physics, i.e., 

et and s:. 

3. Probe A,(O) for the presence of isospin-breaking, either through p*(O) 

(neutrino scattering, atomic parity violation) or through a combination 

of s:(Z) (SLC/LEP) and Mw (LEP II). Check for a 2’ through Eq. (6.2b). 

4. Separate the effects of As (or Al) to look for heavy degenerate fermions. 
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7. Conclusions 

The method of the effective Lagrangian, beginning with the bare Lagrangian 

and summing the radiative corrections into the running starred functions, of- 

fers a strikingly simple way of sorting out the effects of quantum corrections in 

the standard model. It is especially convenient for the purposes of Monte Carlo 

simulations, something examined in a paper to be published shortly.ilS1 In subse- 

quent papers, we will consider explicit models of new physics and the constraints 

placed on them by low-energy measurements.‘15’271 The presence of heavy physics 

in the next generation of electroweak experiments, although small, is measurable 

and emphasizes the importance and sensitivity of polarization experiments at 

SLC/LEP. These experiments, through the effect of radiative corrections, will in- 

augurate a new era in precise tests of the Glashow-Salam-Weinberg model and 

the high-energy world beyond it. 
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Appendix A. Effective Lagrangian, Dyson’s Equations 
and Matrix Elements for the Standard Model 

In this appendix we reformulate the four-fermion matrix elements of the 

Glashow-Salam-Weinberg (GSW) model to show explicitly their finiteness and 

RS-independence, introducing a new set of universal running couplings which 

are themselves RS-invariant and denoted by the subscript ‘s’. We work to one 

loop in the proper self-energies. 

Following the spirit of Sections 2 and 3, we calculate the four-fermion neutral- 

and charged-current matrix elements with the effective Lagrangian, containing 

tree- and one-loop contributions, and sum the gauge propagator (“oblique”) cor- 

rections to all orders by Dyson’s equations. The effective Lagrangian will be used 

to analyze the neutral current sector. The method outlined here is quite general 

and can be applied to any process in the GSW theory and, indeed, to any gauge 

theory. In ‘t Hooft’s Re gauge with e = 1, we have, in general, a complicated set 

of Dyson’s equations for the four-fermion processes. ‘0*2*1 In Fig. 6, we show the 

set of all neutral currents, containing the photon A, the 2 and the Z’s would-be 

Goldstone boson, 42. (The physical Higgs decouples from this system because 

of CP invariance.) The system of charged currents is shown in Fig. 7, with the 

would-be Goldstones 4* of the W* included. The solid circles represent the full 

propagators, the open ones the proper self-energies. These systems of equations 

drastically simplify if we use light fermions on the external legs; then the scalars 

4z, 4* and H (physical Higgs), and the longitudinal parts of the gauge boson 

propagators cc qccqV are suppressed, leaving only the transverse photon, 2, and 

W* propagators o< &, in Euclidean metric. We consider only this simplified 

case and omit the tensor indices. In the nomenclature of this paper, we will 

normally call “transverse” a self-energy proportional to q2, and “longitudinal” a 

self-energy proportional to a mass-squared, following Section 4. 

To keep the discussion somewhat general, we assume an arbitrary Higgs vac- 

uum structure. The bare couplings are the SU(2) go and the U(1) gi, the bare 
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SU(2) fields VV: and the bare U(1) Be. Then the bare weak sine, cosine, 2 and 

photon are: 

Ao = (g; + g’20)-1’2 (g; w,s + go Bo) ; 

and the bare electric charge: 

1 1 
-z= 
e0 

-$+-. 
d20 

(A-1) 

(A-2) 

With a Higgs multiplet of arbitrary isospin f, the bare gauge boson masses are: 

Define the vacuum expectation values as: ( . . . )o E ( . . . )vacuum. These formulas 

can be easily generalized to many multiplets by simply summing the contribution 

of each Higgs. Conventionally, a bare po parameter is introduced: 

with 

MWO 2 =po C; Mio (A.4 

Note that po = 1 for Higgs doublets (such as in the standard model). 
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To set up a four-fermion matrix element, we need the full propagators GM 

(photon), GZA (photon-Z mixing), Gzz(ZO) and Gww (W*). The matrix ele- 

ments are: 

MNC = e;GAA QQ'+eg Q [ ("~o~Q') +Q~(I~~P)] GZA 

+ ei (IQq::‘) (“iozQ’) GZz ; (A4 
4 Mcc =2s2 (I+ I-> Gww . 

0 

Q, I3 and Q’, 13 are th e electric charge and weak (left-handed) isospin of the 

initial and final state fermions, respectively. I+ and I- are the (isospin) charge- 

raising and -lowering operators. We have left out the explicit vertex factors, apart 

from couplings and quantum numbers, because they can be treated separately 

(see below, however). The Dyson’s equations for the G’s, following Figs. 5 and 

6, are: 

GM =~A+~A~AGAA+DAA~ZAGZA , 

Gzz = Dzz + Dzz nzz Gzz + Dzz UZA GZA , 

(A-7) 

GZA = Dzz nzz GZA + Dzz nZA GAA , 

Gww = Dww -I- Dww Hww Gww . 

We have introduced the bare tree-level propagators: 

DAA = 
1 

2’ Dzz = 
1 

q2 + Mgo ’ Dww = 
1 

q2 + Mko ’ (A-8) 

and the proper self-energies ll~, DZA, Fizz and IIww, in an obvious notation. 

To simplify the oblique corrections, we introduce a set of reduced proper self- 

energies. The electroweak currents are defined as: 
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JA =eoJQ , 

Jz e0 =- 
8oCo ( Js-s~JQ) , 

J* co 51 f iJ2** =- 80 fi ’ 
Then the proper self-energies are: 

nZA =A 
( n3Q - s?i HQQ) 9 

soco 

(A-9) 

(A.lO) 

TO One loop, HQQ, n3Q 7 II33 and fill, have no factors of couplings embedded in 

them. The solution of the Dyson’s equations is: 
2 

nz.4 

1 
GM = 

q2-nM 
+ ( ) Q’-nAA 

q2 + Mio - nzz - 
pzJ ’ 
qZ-n 

AA 

GZA = 
e-n,, 

q2 + Mio - fizz - (nz”)1 
qa-n AA 

1 
Gzz = 

q2 + Mio - nzz - 
(nzJ 
q2-n AA 

1 
Gww = 

q2+M$o-Hww ’ 

(A.ll) 

We can now substitute these full propagators into the matrix elements. 
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A number of curious difficulties arise, however. By current conservation, the 

self-energy function BZA, or, equivalently, H~Q, should be purely transverse. In 

the sector of loop corrections due to the gauge bosons, nevertheless, n3Q has 

a longitudinal part proportional to M$. This causes a severe problem in the 

Green’s function (A.ll): if II ZA is not strictly proportional to q2, the propagators 

pick up new nonphysical poles at q2 = 0 (new long-range interactions). The 

longitudinal part B$A corresponds to a new one-loop mass term mixing the 2 

and the photon, indicating that the effective umass matrix” of the neutral current 

gauge bosons is misdiagonalized. A related problem occurs when we use (A.ll) 

to define a running SU(2) coupling g: analogous to ez of Section 2. gz will have 

the form: 
1 

p= * ; - ‘iQ(g2) 9 (A.12) 

where n;Q = &Q/q2. Again, the longitudinal part means that n3Q(0) # 0 - 

the nonphysical pole reappears in a new form. Furthermore, the running of g: 

with q2 is not at all what one would expect from the RNG: $Q does not contain 

the correct divergences and leading logarithms. 

The root of this problem lies in another, apparently unrelated difficulty. The 

vector boson contributions to the II’s, unlike those of fermions and scalars, are 

not gauge-invariant alone and need to be combined with the vertex corrections 

to reach a correct result.‘“” The vertices themselves (Figs. 8a and b) contain 

“extra” pieces that are not gauge-invariant and finite even when combined with 

the external leg self-energies. This should be contrasted with the situation in 

QED: there, the Ward identity guarantees that the full vertices (i.e., with the ex- 

ternal leg self-energies and wavefunction renormalization) are gauge-invariant and 

finite. These “extra” vertex parts are directly attributable to the non-Abelian 

nature of the theory. Let us call them the “non-Abelian” vertex parts and call 

the other parts, gauge-invariant and finite, “Abelian.” We will henceforth deal 

with the full vertices and assume that the external leg self-energies and wavefunc- 

tion renormalizations are included. The non-Abelian parts appear because of the 
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noncommutativity of the group generators. Figure 8a is purely non-Abelian in 

nature. The sequence of group generators in the diagram is TC fobc T*, where 

f abc are the structure constants: 

TC fubc Tb o( TQ’ fa’bc fabc , 

a TOT(V) . 
(A.13) 

T(V) is the trace of the adjoint representation, the sume trace that appears in 

the vector boson contribution to the II’s: Pa’ T(V) = fobc f”’ bc. Figure 8b has 

both Abelian and non-Abelian parts. The sequence is: 

TbTaTb = -;T(V)+C= T’ , (A.14) 

where CF is the fermion Casimir operator CF = T* T*. The part proportional 

to CF is Abelian and is clearly related to the fermion self-energies in a way 

exactly analogous to QED. But we are now left with the non-Abelian vertex parts 

proportional to T(V). In a one-loop calculation (with no Dyson sum), the oblique 

and vertex corrections would combine in a straightforward way to eliminate this 

problem. Once the Dyson’s sum of the oblique corrections is introduced, this 

connection is severed. 

We can circumvent the Dyson’s equation by examining the effective La- 

grangian in momentum space. The appropriate parts are the bare mass terms 

and one-loop longitudinal self-energies of the 2 and the photon. We will also 

need to examine the vertex functions. Starting with the SU(2) fields Wi, the 

U(1) field Bo, the fermions +e and the scalars 40: 

(A.15) 



D, is the covariant derivative; I’1 and I’3 are the fermionic charged- and neutral- 

current vertex corrections, explicitly shown. In fact, every vertex in the theory 

will pick up corrections: 

g013Y + gO(l + &3) 13% , 

g0IkFy,, + 900 + i&h) I&W, , 

(A.16) 

g0(dW2 -+ 900 + 2g:rww4d) (4~12 , 

i70wwW) + go(i + 9$3w) wwpw) , 

g;w4 -+ g;(i + 2&$4w) w4 . 
The first step to a solution is to identify the gauge-dependent part of the vertices 

necessary to make the self-energies. gauge-invariant. Inasmuch as we are working 

in the Rt gauge, gauge dependence will manifest itself through c dependence. 

Let us divide every vertex in the theory into two parts: I’ = I?(c) + i!, where the 

former part carries the gauge dependence and the latter does not. Each I’ will 

depend on its process; that is, on what type of physical, on-shell particles are 

coupling to the gauge bosons, be they fermions, scalars or other vector bosons. 

However, the part I” cannot depend on the nature of the process at the vertex 

because it always combines with the vector self-energies to form a gauge-invariant 

result. The vector boson self-energies are oblique and “do not known about what 

kinds of particles are coupling at the vertices. Hence, I?’ is universal to all vertices. 

By the same token, any part of the vertex that does depend on the vertex process 

must be gauge-invariant, inasmuch as it has nothing else in a physical matrix 

element to combine with. Concisely, the gauge-dependent part I”(c) must be 

universal, while the nonuniversal parts of the vertices must be gauge-invariant. 

Apart from any parts that are both gauge-invariant and universal (which we will 

deal with presently), we can write i! = lYAb + fnAb and identify the Abelian part 
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of the vertex completely with the process-specific, gauge-invariant part, just as 

in QED. The second and final step is to rediagonalize the effective mass matrix 

of the neutral current sector, eliminating the troublesome n:Q and also relating 

it to P. Rewrite every vertex, then, as: 

go [l +!?:q = ~1 + g;rf] [I + g;rAb + &PA*] . (A.17) 

Now define a new universal coupling i: 

i= go (I + g:rf) . (A.18) 

The longitudinal part of RzA is due to the =extra” renormalization of the @WW 

vertex by the non-Abelian parts, where the 4’s are interacting with the vacuum 

(see Fig. 9). The bare mass terms are: 

so2 c (a? - I,“> 4o)o 4 ] wo’w,+ [?@;I;~o)~] (goWO%;Bo)2 3 

(A.19) 

where W* = (W%W2)/&. N ow rediagonalize by defining a new 2 and photon 

[see Eq. (A.l)]: 

z = (5” + g;2)-1’2 (~w,” - g;Bo) 3 

(A.20) 

A = (5” + gi2) 
-l/2 

(dw,” + iBo) . 

The currents are now: 

JA =ZJQ, 

Jz = & [ 53 - ii2 JQ] , (A.21) 

(A.22) 



The mass terms are now: 

(A.23) 

M&l = 2 (i2 + !d2) c (40+I;40)o ; 4’ 
and the rediagonalization has induced some new self-energies in the tree-level 

bare Lagrangian that will be combined with the one-loop parts: 

HZ,4 -+ nZA + 2(&) c 
4 

(@:+o)o 
> 

(so2W 9 (A.24) 

We fix I” now by forcing the new term in nZA to cancel the already-present 

longitudinal part. 

& = g 39 , 
iT2 nL (A.25) 

since HQQ has no longitudinal part. Now 

so that: 

(A.26) 

(A.27) 
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i so that the new &A is purely transverse. A simple check on A.27 is that n:Q is 
. indeed proportional to (2 $)o, as careful consideration of Fig. 9 will show. 

The Dyson’s equations are now modified by a new set of rules: 

1. Replace 

0-J --+ c”. 

2. Throw away n:Q whenever it appears in &A. Gall the new function 

n,T, =n 3Q + (21,2), r-1. Remove I-1 from all vertices. 

3. hsert -%j2 n:Q into Uzz. 

All the problems with the Green’s functions discussed above have now been 

solved: flZA is purely transverse, the running SU(2) coupling gz has the cor- 

rect leading logarithms (see below and Section 4), and the matrix elements are 

gauge-invariant. The procedure is gauge-invariant by construction. Moreover, 

the residual neutral current vertices fs have the crucial properties that they 

are finite and vanish at q2 = 0, regardless of the Higgs vacuum structure. I” 

is of course the leftover part of the vertex that exactly cancels the longitudi- 

nal part Of UZA at q2 = 0. ““’ Hence, the electroweak neutral current vertices 

merge without difficulty into QED and satisfy the Abelian Ward identity re- 

quiring them to vanish at q 2 = 0. The full non-Abelian symmetry of SU(2) x 

U(l), after symmetry-breakdown, preserves the QED result that at q2 = 0, the 

electric charge receives no renormalization (finite or infinite) other than from 

the oblique parts. In the counterterm approach, this symmetry would relate the 
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“extran counterterm for the vertex to the counterterm necessary for niA. Nor- 

mally, this counterterm is chosen to cancel HiA( but this is RS-dependent.lO1 

The superiority of the new procedure lies in fact that it is RS-independent and 

completely determined by the principle of gauge invariance and the requirement 

that the theory be expressed in terms of physical, diagonal degrees of freedom. 

We can now define a set of finite, RS-invariant running couplings. Note, 

since HQQ and II& are purely transverse, 

HQQ = g2 HbQ 9 

rrTQ =;q2 n’ 39 * 

Then 
1 

2= ~-Re[n~Q+2r’] , 
* ei! 

- + 

(n;Q 2r’) - ("6s + 2r’) 1 ’ 
1 

4,/5G,, = 
Re 2 c (I&l -&I +@Q +2l$Q 

+(C(I”- 

(~.28) 

(A.29) 

(A.30) 

(A.31) 

f = 1- 4Ji G,,,,Re 
[ 
1133 - 111r+ (C (P - 3132 o 

)I( 
1+ E’F:2, )] . 

* 
3 ' (A.32) 

The “starred” functions are clearly RS-independent, being defined entirely in 

terms of bare quantities. We also introduce a set of RS-invariant imaginary 

parts: 

Imn& =eTh (n,$Q+zr’) , (A.33) 
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h n& e: 
= 8+c* [Im (n:Q + 2r') - 8:r.m (nbQ + a?')] , (A.34) 

e? Im II;, = - 
S2C2 

Im 
* * ( 

II33 - 28’4 ll3g + B~HQQ - H,L, 
> 

, (A.35) 

Im Tkw = $ Im p-Ill + 2 ((12 + Mko) P] . (A.36) 
* 

1 
sz * 

= $-Re(n;q+2r') , 

(A.37) 
1 1 

z=z - Re (nt$Q - Hi,) 9 

The imaginary parts are generally small, and we can introduce the following 

running SU(2) g* and U(1) gl running couplings: 

which have the usual asymptotic RNG behavior. (Note, however, the g’ differs 

from the gr used in GUTS by a Clebsch-Gordon coefficient.) The neutral- and 

charged-current matrix elements now appear in especially simple form when writ- 

ten in terms of these functions. Apart from box and residual (f) vertex loops: 

&NC = 
e!QQ’ 

q2[1-iImn~] + 

x [Is - (a! - is,c* Im l-I&) Q] [Is' - (s? - istce lm II&) Q'] 

@+i(hns)2] ifi rz, 

(~.38) 

, 

(A.39) 



We have introduced some auxiliary functions: 

(A.40) 

6 rw* =ImI?~w ; 

s = -q2 for timelike q2, c: = 1 - sf. 

We now complete the calculation by choosing inputs at given values of q2 to fix 

the starred functions. This choice is the analogue of a RS. The definitions A.29- 

A.32 can then be used to run the functions from that q2 to any other. In this paper 

we choose the scheme introduced in Ref. 2 with the free parameters: a, G,, Mz, p. 

G, is the usual muon decay constant, a is the long-range (q2 = 0) electromagnetic 

coupling, Mz is the Z” mass and p is the q2 = 0 p-parameter measured, for 

example, in UN scattering. Once fixed by experiment, these parameters can 

then be put into the starred functions. Clearly: 

e3 (0) = 47ra, 

G,, (0) = G, 9 

p*(o) = P * 

The 2 mass can be used to Ex the value of S: at the 2 pole: 

(A.41) 

(A.42) 

‘(The definitions A.41 are not quite complete: there are still small vertex and box 

corrections that need to be included in them; see below.) Using these inputs, 

and defining: 
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A9(q2) = Re [&$Q(q2) + 2r’(g2)] - Re [H~Q(O) + 2r’(O)] , (A.43) 

A3(q2) = Re {n33(g2) - n,T,(q2) - n33(0) - 2 [n:Q(q’) - nfQ(o)] } , (A.44) 

A1 (q2) = Re {h(92) - nrQ(q2) - h(o) + 2M& [r’(g2) - r’(O)] } ,(A.45) 

A,(q2) = A3 - p-’ A1 ; (A.46) 

we have: 

&92) = 
e2 

1 - e2AQ(q2) ’ 

G,, (q2) = GP 
1 - 4fi G, Al(q2) ’ 

P*b2) =. P 
1 - 4fi PG,, A,(q2) ’ 

(A.47) 

(~.48) 

(A.49) 

sz is controlled by the evolution equation: 

2 [1+ (Im rIyJ2] $1 - [1+(h %l223 $ z = 
* Q 

Re [%Q(q2) + ='(q2) - &Q(z) - z’(z)] (A.50) 

+ (hn&)[h (n;Q+2r’)jIq- (knnz)[h (n;Q+2r’)]lz . 

The contributions from the imaginary parts are small. The bare masses appearing 

in the one-loop corrections can be replaced by their physical values, inasmuch 

as the differences are of higher order in the irreducible loop expansion. Then 

the starred functions and the matrix elements are not only RS-independent but 

finite as well. Furthermore, it is easy to show that to one loop, the I” cancels 

from the denominators of MNC and Mcc at the respective poles, as required by 

the LSZ formula. 
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In the standard model, with one Higgs doublet, po = 1, and we have 

HfQ +Mgor’ = 0 , (A.51) 

so: . 

&(q2) = Re {h(q2) - @Qk2) - HII to) - 2 [n,L,(g2) - n,L,(o)] } , 
(A.52) 

4h2) = Re [l%~d9~) - &l(q2)] , 

and 

P*k2) = 
1 

l-4* G,A,(q2) * 
(A.53) 

The definitions A.47, A.48 and A.50 are unchanged. Note that p*(O) is no longer 

a free parameter, but computable, corresponding to the fact that po = 1. The 

standard model requires only three parameters to define the gauge sector: o, G, 

and Mz. 

In the computations presented in the text of this paper, we have consistently 

used for Mw in the one-loop corrections the true value: 

M; - er - 
4fi 4 G,* q”=-ju2 * W 

(A.54) 

This computation of Mw (the charged current pole) is performed iteratively, 

beginning with a RS: 

Q = (137.03602)-l , 
(A.55) 

GP = 1.16637 x 10s5 GeV2 , 

and some value of Mz. (We assume po = 1.) A “tree-level” sg, Q and Mw are 

defined: 

44 



c; = 1 -s; ) 
e 

WV = ceMz , 

(A.56) 

and are used as seeds to begin the calculation. At every step, we redefine: 

Mw c; = - 
Mz ’ 

Mw used in loops = last computed value. (A.57) 

Mw is computed to some specified accuracy (1 MeV in this paper) and is then 

used (along with the new cg, se) for all subsequent calculations. In this way, 

the masses appearing in the radiative correction loops are the physical RS- 

invariant masses. A computer program, SSTAR, has been developed by one 

of us (DCK) at SLAC to compute the starred functions using this procedure. 

The fermion masses are: 

mu = 4.5 MeV me = 1.35 GeV (~.58) 

md = 7.9 MeV m6 = 155 MeV mb = 5.3 GeV 

mue = 0 mup = 0 mus = 0 

me = 0.511 MeV m,, = 105.6 MeV m, = 1.784 GeV . 

The quark masses are current masses.‘aol The top and Higgs masses are free pa- 

rameters. For the hadronic contribution to II& and II;,, we use dispersion 

relations.““s11 The fermion wavefunctions are bare, while the incoming and out- 

going particles are physical and on-shell, or “dressed.” The two must be related 

in the matrix element by the external field, or wavefunction, renormalizations: 

b. = a?$“$, h 11, w ere 0 is the bare and $ the physical fermion. ZF is the resealing 

obtained from on-shell renormalization. It should be stressed, however, that this 

relationship is not a RS, but a statement connecting bare and physical particles. 
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The same reasoning applies if we use other particles, such as vector bosons.‘a7’ 

In our treatment, we omit the photonic contribution because of the infrared di- 

vergence; it must be handled separately by the usual QED techniques. 

standard model: 

(A -lhMi) - f . 

In the 

(A.59) 

To specify the RS more carefully, we note that there are residual vertex and 

box corrections to the input parameters. The box correction to CY is taken into 

account in its experimental definition. The fermion vertices are given in Appendix 

B, with the photonic parts deleted. The Abelian vertex is combined in the usual 

way with external self-energies and wavefunction renormalization (A.58) to give 

a finite result. Recall also that fs is finite and zero at g2 = 0, as discussed 

above. G,, on the other hand, does have residual corrections not included in its 

definition. The traditional photonic corrections to the muon lifetime give: 

-1 _ Gtm! 
rp - 1927G 

(A.60) 

These corrections include the W-photon boxes and the infrared parts of the 

photonic vertex corrections, with the infrared divergence separated as follows. 

The photon propagator is rewritten: 

1 1 4 1 
p= p k”+M& +k2+M& ’ (A.61) 

7 = 7< + 7> - 
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i 
Only the part 7< is included in the vertices.laal Left out are the Z-W boxes and 

all the other vertex corrections: 7> and 2. This means that G, and G,, (0) are 

not precisely the same: 

Gw (0) = G, [l + ker + box] -’ 3 

&rer = rf”” - (7< contribution) - r’l*l=o ’ 

=-E--. [3- (ci-33) lncf] , 
24 

(A.62) 
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Appendix B. Proper Self-Energies and Non-Abelian Vertices 

In this appendix we present the proper self-energies II and non-Abelian ver- 

tices I’ to one loop for the standard model, with 6 = 1 in the Rt gauge, with 

one Higgs doublet and po = l.'2'o'rs1 Define with Passarino and Veltman“’ the 

following form factors with dimensional regularization: 

BP = qp BI (B.1) 
B w = qp qu B21 + 6,~ B22, B3 = Bzl + B1 . 

The factors Bo, Bl, B2l are logarithmically divergent, A and B22 quadratically 

divergent. A and B22 must eventually cancel from any II or I’, leaving only loga- 

rithmic divergences. The Feynmti parametrization of the functions Bo, B1, B22 

are: 

1 

Bo=A- 
/ 

dxtn [m: + (q2 + rni - mf)x - z2 g2 - ic] 
0 

1 

B1 = -;A + 
/ 

dx x en [m: + (q2 + rni - mi)x - x2 g2 - ie] 
0 

. 1 
B21 = iA- 

/ 
dx x2 tn [mf + (q2 + rn: - rnf )x - x2 g2 - ic] , 

0 

where 

A=&-7-b* , - 

v-w 

(B.3) 
and 7 is the Euler-Mascheroni constant. The dimension n approaches 4. The 

B’s can be expressed in closed form for numerical evaluation.“’ 
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i Equations B.4-B.7 give the gauge boson/scalar contributions, equations B.8- 

B.ll the fermion contributions. In the following “j”’ means all fermions and “D” 

means all doublets of fermions. Fermion sums contain a factor of three for quarks 

implicitly. 

Gauge Bosons/Scalars’*’ 

16~’ I-I33 (g2) = g2 -9&(W,W) + ; Bo(W,W) +; I - 2M; Bo(W,W) 

+ +f; - M&) [2&(&H) + Bo(z,H)] VW 

- f g2[4B3(Z, H) + Bo(Z, H)] + M; Bo(Z, H) 

mr2 &I (q2) = ;g2 + 5; {g2[-8B3 + 2Bo] + 2M$[2B1 + Bo]} (W,o) 

+ c; {(r2[-f3B3 + 2Bo] + 2(M& - M;)[2Bl+ Bo} (W, 2) 

+ (~~143 - (1/4)Bo] + (1/4)(M$ - M;) [2B1+ Bo]} (WJ) 

+ (M; - 3M;) B. (W, 2) (B.5) 

+ ;(M$ -Mid [=@W) + Bo(W,H)] 
- ;92[4B3(WH) + Bo(W,H)] +M&Bo(W,H) 

167r’ IIT, ( g2) -lOB3(W,W)+; Bo(W,W)+; 
I 

, 
(B.6) 

16~~ l-&(q2) = -2M& Bo(W, W) 

167r’ IIQQ (9’) = g2 - 12 B3(W,W) + Bo(W,W) + f 
I 

(B-7) 

W=Mw, Z=Mz, H=MH . 
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16~~ n33(q2) = 2 Cf I$ [2g2 &(f,f) - m@(fJ)l (B.8) 
167r2 I&l(q2) = Co 2q2 B3(1,2) +mf Bl(2,l) +mi B1(1,2) (B.9) 

l&r2 T13s(g2) 2 4q2 cf Qf 13, B3(fJ) (B.lO) 

l&2 nQQ (‘J2) = fM2 cf Q”1 B3(f, f) (B.11). 

f=mf, L2 = ml,2 

Is/, Qf = isospin, charge . 

Vertex PartPsl 

(B.12) 

167r' rgAb(q2) = -7+[@(W)+A(W)-167r2 r'(g2 = 0)] , (B.13) 

where 7+ = left-handed Dirac projector and 7- = right-handed Dirac projector. 

Ia, Q = external isospin, charge. 

@(M) = i - In(-u - ic) + 4 1+ & [ I [Zn(-u - GE) - 11 

(B.14) 

A(M) z-;+;+ 1+- 1 ( E) /q+(l+&)p ; 
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U = - g2/M2 

where Sp = Spence function. 
. 

r,“Lb(q2) = r’(g2) + PAb(q2) , 

167r2 I”(g2) = 2Bo(W,W) , (B.16) 

r$Q+kf$ r’=o . 

It is useful to know something about the general behavior of the form factors. If 

1q2), IrnS - rnfl < rnf, rng, then: 

Bo=A-Lnmf-f $ 
L 

1 rni-rnf 
--I- 

1 3 m : I , 
B1 = -- i [A - en rnil+ i -$ [i + minima] , (B.17) 

If )g21 > m f, rni, then: 

Bo = A  - th (-g2) + [$] en [-3]-!$+[$I In [g] - 9+2 , 

B1=-- i [A - tn(-g2)] + 3 - [$] en i-21-1 , (B.18) 

.for g2 timelike. If 1g21 < M2, 

o(M) = -3q2/M2 , 

A(M) = -$/2M2 . 
(B.19) 
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e(M) = 3Zn (-g2/M2) + 2Zn2(-q2/M2) 

A(M) = -Zn(-g2/M2) , 

for g2 timelike. 
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Appendix C. Gauge Boson Widths in Breit-Wigner Form 

Schematically, the gauge boson propagators look like: 

g2p + w* (g2)1 + &q - ifi r*(92) ’ 8 = -g2 ’ (C4 

I’* is defined in A.40. Numerically, w* is very small, - lo-' - 10B3. Hence, we 

can put the resonance in the form: 

(92 +M2)[1+ ,',I -i+ r&2) ' 

cE* = f*(*2) - M2 
g2+M2 ’ 

and M is the physical mass: 

Near the resonance pole, we can approximate to good accuracy: 

h(q2) + G(-M~) 
W* 

= @ q”=-hJa ’ I 

and rewrite the resonance as: 

(g2 + M2)[1 + &(k2)] - i8 [v] ’ 

(C.2) 

(C-3) 

(C-5) 

P-6) 

which can be conveniently fit to experimental data with three free parameters: 

M2, /c*(-M2) and I’,/+ 

53 



The resonance form C.6 contains three important radiative effects. The first 

is the overall phase space factor of 8 in the width, often ignored in definitions 

of the Breit-Wigner shape. Note that l?* has also the typical fermionic phase 

space factors such as 1 - 4m2/s and 1 + 2m2/s; for all but the top quark, these 

terms are unity. The second effect is due to what should be called true quantum 

corrections to the width; that is, renormalizations of the couplings ez, 8: and cz. 

In particular, I’z. has an overall factor of er/sfcf, and the leading logarithms of 

vacuum polarization in this factor increase it by about 7% over the “tree-level” 

value 47r(r/sic3, if the Sirlin-Marciano si is used.IS’] A heavy top, of course, 

decreases s?(Z), increasing the width. (Similar effects occur in the W width, 

proportional to ez/s$.) In Fig. 27 we show I’z. (2) as a function of rnt to illustrate 

the top’s indirect effect on the width even when the 2 is below the toponium 

threshold. (Recall, however, that the et/src: cancels in the full amplitude at 

the 2 pole.) The third radiative effect is the factor 1 + n*. If we are concerned 

with the shape of the resonance and not its overall normalization, 1 + n* can be 

factored from the denominator; then the resonance contains a modified width: 

(1+ tc*)-1 
F 

(2) 
, F t = r*/(i + k) , 

tp+M2-i8 d 
(C-7) 

and the width as defined experimentally from a line shape would be increased 

further. (K, is negative in general.) In the standard model, IC* lies between 1% 

and 2% for both the W and the 2. Note: 

ae: 1 
/cz.(Z)=- - I ag2 s:c: 4fiGptp, Z ’ 

nw. w> 
set 1 

=a4234fiG,,W ’ 

(C.8) 

‘The bulk of both K’S is due to the running of the couplings ef, 8: and cz, and 

this fact can be used to estimate them. At the 2 and W poles, the vector 

boson contributions have not kicked in yet to the running, so we simply assume 
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Ng generations of fermions in the logarithmic regime. (We assume a light top 

quark.) Then: 

nz*(Z) = ---& [pc:+Il'stl~ 
e; * 

z ' 
nw*(W) = -5 4, ; (C-9) 

* 
/3 = 4N,/48?r2 , /?’ = (20N,/3)/48x2 . 

The IE’S are sensitive to the presence of heavy physics. In Fig. 28 we show rcz, (2) 

as a function of mt. The rapid decrease of tcz* is caused by the decoupling of 

the heavier top from the running of the couplings. The heavy top also affects 

the overall normalization of rcz, , however, through ST (2)) and this pushes nz. (2) 

slowly back up for a very large top mass. 

Below the 2W threshold, the 2 width has the following form:P1 

CQCD = 1 for leptons , 

=,.(I+*) forquarks ; s=-g2 ; 

(C.10) 

“j” stands for sum over all accessible fermions. The W width due to fermion 

pairs (j, j’) is:“] 

rw* e: 
7 = 48~s: ff, ’ CL 

- +s, + bf) + @f - 6f 1)2 2 
, 3 

[ 

112 , t5f = -my/q2 ; 

1 - 2(6f + 6f 1) + (bf - bf ‘)2 1 * CQCD 

(C.11) 

Kobayashi-Maskawa mixing has been ignored. 
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The form C.6 can be used in fitting, for example, the 2 line shape to deter- 

mine the 2 width and mass. However, in an actual experiment, the 2 channel 

interferes with the ever-present photon channel. In principle, then, one needs 

to know the relative normalization [i.e., s!(Z)] of the 2 to the photon matrix 

element before one can determine the 2 mass and width. (This problem becomes 

more subtle and complicated with bremsstrahlung.) As the 2 peak is many times 

higher than the photon term in the neutral current, this effect is probably not 

large; however, it will be explored numerically in a subsequent paper.[l” Note 

that this difficulty does not occur with the W line shape. 
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TABLE CAPTIONS 

I. p*(O) as a function of the top (mt) and Higgs (mH) masses. All masses in 

GeV. 

II. p*(g2) from 1 MeV to 1 TeV in timelike energy, evaluated for different 

values of the top mass mt. All masses and energies in GeV. 

III. GPL*(Z) as a function of the top (mt) and Higgs (mH) masses. G,, in units 

of 10S5 GeVw2. All masses in GeV. 

IV. ~~~(2) as a function of the 2 vector boson (Mz) and top (mt) masses. All 

masses in GeV. 

V. se2(q2) from 1 MeV to 1 TeV in timelike energy, evaluated for different 

values of the top mass mt. All masses and energies in GeV. 

VI. The W vector boson mass as a function of the 2 vector boson (Mz) and 

top (mt) masses. All masses in GeV. 

VII. The W vector boson mass as a function of the 2 vector boson (Mz) and 

Higgs (mH) masses. All masses in GeV. 

VIII. The ratio Mw2/pt(0)ce2(Z)Mz2 as a function of the 2 vector boson mass 

Mz, the top mass mt, and the Higgs mass mH, illustrating the ratio’s 

stability against large radiative corrections. All masses in GeV. 



Table I 

P* (0) 
All masses in GeV: Mz = 93. 

mt = 40 mt = 100 mt = 300 mt = 500 mt = 1000 

mH = 100 .9999 1.0025 1.0282 1.0838 1.4517 
mH = 300 .9992 1.0018 1.0275 1.0833 1.4534 
mH = 500 .9987 1.0013 1.0271 1.0830 1.4546 
mH = 1000 .9979 1.0005 1.0264 1.0824 1.4563 

Table II 

P* (q2) 

All masses in GeV: Mz = 93, mH = 100. 

G mt=40 mt= 100 mt=300 mt=500 mt=lOOO 

10-3 .999 1.003 1.028 1.084 1.452 
10-2 .999 1.003 1.028 1.084 1.452 
10-l .999 1.003 1.028 1.084 1.452 

1 ,999 1.003 1.028 1.084 1.452 
10 1.000 1.003 1.028 1.084 1.452 

102 1.004 1.006 1.038 1.095 1.466 
103 1.000 1.000 1.000 1.009 1.284 



Table III 

G,* (4 
(x lo-' GeVm2) 

All masses in GeV: MZ = 93. 

mt = 40 mt = 100 mt =300 mt = 500 mt = 1000 

mH = 100 1.1526 1.1551 1.1515 1.1514 1.1550 
mH = 300 1.1515 1.1540 1.1504 1.1502 1.1538 
mH = 500 1.1511 1.1536 1.1500 1.1498 1.1534 
mH =lOOO 1.1506 1.1530 1.1495 1.1493 1.1529 



Table IV 

4 w 
All masses in GeV: ?7aH = 100. 

mt = 40 mt = 100 mt’= 300 mt = 500 mt = 1000 

Mz=91 .2348 .2337 .2250 .2089 .1436 
Mz=93 .2210 .2199 .2119 .1972 .1365 
Mz=95 .2086 .2076 .2002 .1866 .1298 

Table V 

4 b2) 
All masses in GeV: Mz = 93, mH = 100. 

&2 mt =40 mt = 100 mt =300 mt = 500 mt = 1000 

10-3 .2297 .2290 .2215 .2076 .1503 
10-2 .2296 .2289 .2213 .2074 .1498 
10-l .2295 .2288 .2212 .2072 .1494 

1 .2284 .2276 .2200 .2058 .1475 
10 .2254 .2246 .2168 .2024 .1429 

102 .2206 .2196 .2116 .1969 .1362 
103 .2272 .2266 .2189 .2041 .1403 



Table VI 

Mw 
All masses in GeV: mH = 100. 

mt =40 mt = 100 mt’= 300 mt = 500 mt = 1000 

Mz=91 79.541 79.779 81.402 84.490 101.797 
Mz=93 82.026 82.260 83.896 86.997 104.491 
Mz=95 84.457 84.686 86.343 89.465 107.168 

Table VII 

Mw 
All masses in GeV: mt = 40. 

mH = 100 mH = 300 mH = 500 mH = 1000 

Mz=91 79.541 79.476 79.441 79.390 
Mz=93 82.026 81.962 81.928 81.878 
Mz=95 84.457 84.395 84.361 84.312 



Table VIII 

M$/~*(o)c:(Wf; 

All masses in GeV: fnH = 100. 

mt =40 mt= 100 mt=300 mt=500 mt=lOOO 

Mz=91 .9985 1.0005 1.0042 1.0054 1.0064 
Mz=93 .9987 1.0030 1.0043 1.0057 1.0071 
Mz=95 .9987 1.0003 1.0045 1.0060 1.0075 

All masses in GeV: mt = 40. 

mH = 100 mH = 300 mH = 500 mH = 1000 

Mz=91 .9985 9985 9985 .9985 
Mz=93 .9987 A985 9986 .9987 
Mz=95 -9987 A987 .9986 .9986 



FIGURE CAPTIONS 

1. Oblique corrections. 

2. Direct corrections: vertices, boxes, bremsstrahlung. 

3. Higher-order vacuum polarization. 

4. Higher-order nonoblique correction. 

5. Four-fermion electroweak process. 

6. Neutral-current electroweak Dyson’s equations.“’ 

7. Charged-current electroweak Dyson’s equations.“’ 

8. Non-Abelian vertices. 

9. Longitudinal I&Q, proportional to non-Abelian vertex. 

10. Vector boson self-energies due to vector boson parts: loops, tadpoles, ghosts, 

would-be Goldstones, and mixed diagrams. 

11. 4r/e: (q2) a. timelike; b. spacelike 1 MeV to 1 TeV. 

12. S! (q2) a. timelike; b. spacelike 1 MeV to 1 TeV. 

13. p* (0) versus top mass mt in GeV. 

14. pa (0) versus Higgs mass ?nH in GeV. 

15. pa (g2) timelike 1 MeV to 1 TeV versus top mass mt in GeV. 

16. G,, (2) versus a common top/bottom mass in GeV. 

17. G,, (2) versus top mass mt and Higgs mass mH in GeV. 

18. G,, (q2) timelike 1 MeV to 1 TeV. 

, 19. ~3 (2) and s: (0) versus top mass mt in GeV. 

20. s: (g2) timelike 1 MeV to 1 TeV versus top mass mt in GeV. 

21. S: (2) and S: (0) versus Higgs mass mH in GeV. 



22. 6: (2) versus 2 mass Mz and top mass mt in GeV. 

23. st (2) versus 2 mass Mz and Higgs mass ?nH in GeV. 

24. W mass Mw versus 2 mass Mz and top mass mt in GeV. 

25. W mass Mw versus 2 mass Mz and Higgs mass ?nH in GeV. 

26. Experimental uncertainty in ALR and et (Z).““’ 

27. 2 width I’* (2) versus top mass mt in GeV. 

28. IC.* (2) versus top mass mt in GeV. 
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