
SLAC - PUB - 4032 
July 1986 
T 

CONFORMAL INVARIANCE ON CALABI-YAU SPACES* 

DENNIS NEMESCHANSKY 

Stanford Linear Accelerator Center 

Stanford University, Stanford, Cala’fornia, 94305 
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The possibility of superstring compactification on Calabi-Yau manifolds 

is analyzed. Despite the apparent non-zero p function at four loop order, 

it is possible to construct a conformally invariant sigma model on a Calabi- 

Yau manifold. The background metric is not Ricci flat, but is related to 

the Ricci flat metric through a (non-local) field redefinition. 
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During the last few months it has become clear that N = 2 supersymmetric 

models on Calabi-Yau manifolds with a Ricci flat Kahler metric have a nonvanish- 

ing ,&function at the four loop level. ‘~~1 This destroys the expectation that such 

models have a vanishing /?-function to all orders in perturbation theory. Despite 

the four loop contribution, I will show that it is always possible to choose a Kahler 

metric on a Calabi-Yau space such that the P-function vanishes to all orders in 

perturbation theory. This talk summarizes a recent paper with A. Sen.3] 

These theories are of current interest since they provide us with possible solu- 

tions of the classical string equations.4l This is based on the equivalence between 

the equations of motion of the massless fields and conformal invariance of the two 

dimensional sigma-model.5] In this talk I will only consider the equation of motion 

for the graviton. I will set the antisymmetric tensor field to zero and I will assume 

that the dilaton field is constant. It is a trivial generalization to include other 

background fields. My talk is divided into two parts. First I will show how the 

contribution to the p-function arises at four loops. In the second part of the talk 

I will sketch how to choose the new Kahler potential. 

The classical equation of motion for the string can be derived from the ef- 

fective action for the massless fields.2] To find this effective Lagrangian one has 

to consider tree level string scattering amplitudes. The three graviton scatter- 

ing is that of general relativity with no corrections coming from the string theory. 
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Fig. 1. Four graviton scattering. 

The situation changes for four gravitons.2] In 

terms of an ordinary Feynman diagram the 

four graviton scattering can be represented 

in the form shown in fig. 1. The sum is over 

all string states. Since we are constructing 

the effective action for the massless fields we 

have to subtract off the massless poles. This 

then leaves us with intermediate states with 

masses of the order of the Planck scale. For 

energies much below the Planck scale, the 

propagator (p2 + m2)-l of the intermediate 

states in fig. 1 can be expanded in powers of 

the momenta p2, giving rise to effective four graviton couplings. In order to repro- 

duce the S-matrix elements of the string scattering amplitudes, one has to add to 
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the effective Lagrangian new local four point vertices order by order in CY’. This 

procedure can then be repeated for five and higher graviton couplings to yield, in 

principle, the effective Lagrangian to all orders. 

The effective Lagrangian is not unique since any local field redefinition of the 

fields will not affect the S-matrix. However, the equations of motion derived from 

the effective Lagrangian do not change under this local field redefinition. 

As mentioned earlier, there are no additional three graviton interactions com- 

ing from strings to Einstein’s general relativity. Therefore we may conclude that 

in the generic case of Ricci flat metric the p-function is zero at one, two and three 

loop order. However, since the four graviton scattering was modified by the ex- 

change of heavy states the four loop /?-function does not vanish2pe] for the generic 

Ricci flat manifold. This result agrees with an explicit calculation of the four loop 

,&function for an N = 2 supersymmetric sigma model.l] 

Having shown how the four loop p-function arises I will spend the rest of the 

talk proving that despite the apparent nonzero contribution to the four loop p- 

function the theory can be made to have a vanishing p-function to all orders in 

perturbation on a Calabi-Yau space.3] 

Let me start the argument with the observation that the vanishing at the p- 

function takes different forms under the redefinition of the coupling constant of the 

two dimensional sigma model. Remember that the metric G;i is nothing else than 

the coupling constant of the theory. Under the replacement Gij + Gij + Tij, the 

P-function is given by the Ricci tensor calculated from the new metric Gij + Tij. 

To linear order in T this is given by 

Rii(G) + i(Gj;mrn + Tmm;ij - Tim;jm - Tjm;") (1) 

For a specific example Tij = RirnnpRJ .mnp the second term in eq. (1) gives a three 

loop contribution. Changing the metric in the sigma model corresponds to adding 

finite counter terms. Therefore the vanishing of the p-function depends on how 

we subtract the ultraviolet divergences in the theory. 

What we now have to show for the N = 2 supersymmetric sigma model is that 

we can modify the metric so that p-function vanishes. This corresponds to modi- 

fying the Kahler potential. The ultraviolet divergent terms can be summarized in 
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a single P-function ,8K 

PK=cTrG+APK (2) 

where the first term is the one loop contribution and the second term includes 

all the higher loop contributions. Unlike the one loop P-function the higher loop 

,&function AUK is a globally defined scalar on the Calabi-Yau manifold.3] 

It is very easy to show that for a Ricci flat metric Eij there exists a Kahler 

potential K such that the P-function vanishes31 To find K one has to solve the 

differential equation 

cTr!nG + A/~K = cTr!ng , (3) 

The most convenient way to solve this equation is to iterate it powers of (Y’. To 

lowest order in or eq. (3) takes the form q l(K - k) = A/3,. The solution of 

eq. (3) gives a metric in each coordinate patch. In order for the solution to be 

an admissible metric one must show that the metric is globally well defined. This 

means that when we calculate Gij in two different coordinate patches Gij must 

transform like a tensor. Since AUK is a globally well defined scalar it can be shown 

that Gij also has the correct transformation property to define a metric on the 

whole manifold.3] 

Thus I have shown to you that given a Calabi-Yau manifold we can always 

construct to all orders in perturbation theory a conformally invariant sigma model. 

The metric is not Ricci flat but it is related to it by a nonlocal (in space-time) 

field redefinition. The new metric is a globally defined tensor on the manifold and 

hence a valid choice of the metric. 

There is one more question that I would like to address. Does the procedure 

I have outlined converge ? For a string theory we cannot stop at any order of 

perturbation theory because this would ruin the conformal invariance of the sigma 

model. Today I have shown that the theory is conformally invariant to all orders in 

perturbation theory. Therefore a violation of conformal invariance can at most be 

an exponential. But from the work of Dine, Seiberg, Wen and Witten on the ef- 

fective four dimensional theory we know that a (2,2) supersymmetric sigma model 

is conformally invariant even when the nonperturbative effects are included. Hence 

for the case I have studied this means that the procedure converges.*] They also 

considered the (2,0) supersymmetric sigma model and they showed that conformal 
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invariance is violated by nonperturbative effects. Therefore, if one repeated the 

arguments I have presented here for the (2,0) case, the series could not be summed. 

Let me conclude by discussing the implication of our results for the superstring 

theory. Our results tells us that given a Calabi-Yau manifold we can always find a 

background vacuum expectation value of th metric which satisfies the equation of 

motion of the string theory. The background metric is obtained by solving eq. (3). 

For some purposes (e.g. the study of the four dimensional effective field the- 

ory obtained after compactification) we do not need to know what the metric that 

solves the equation of motion looks like in terms of the Ricci flat metric. We take 

the Calabi-Yau metric as the background metric and add finite local counterterms 

in each order of perturbation theory in order to have a vanishing P-function. The 

result is a two dimensional conformally invariant field theory. We may then cal- 

culate the particle spectrum and the interaction in the effective four dimensional 

theory by identifying operators of conformal dimension (1,l) as vertex operator 

and calculate their correlation functions in the two dimensional field theory ob- 

tained this way. It is in this scheme that Witten’s general argument showing the 

vanishing of the p-function on Ricci flat Kahler manifolds works. This argument 

is based on a study at the effective four dimensional field theory and does not 

specify the renormalization scheme in which his proof should work. 
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