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ABSTRACT 

The evolution of six-quark color-singlet state distribution amplitudes is formu- 
lated as an application of perturbative quantum chromodynamics to nuclear wave 
functions. We present a general method of solving the evolution equation for mul- 
tiquark bound states and predict the asymptotic Q2 slope for the deuteron charge 
form factor as a result. 

Because of the asymptotic. freedom property of quantum chromodynamics 
(&CD), a P er ur a ive analysis of strong interaction processes should be rigor- t b t 
ous when the momentum transfer q is much larger than the QCD scale parameter 
AQCD and the value of the strong coupling constant cyB becomes small. Applying 
light-cone perturbation theory,ll amplitudes for exclusive processes are given by 
factorized forms. For example, hadronic form factors at asymptotic high Q2 = -q2 
are generically given by 1 @(z)T~(z,y)@(y)[dz][dy], with the longitudinal mo- 
mentum fractions xi of the quarks in the hadron. Therefore, detailed analyses 
for exclusive processes require knowledge of the valence-quark distribution am- 
plitude @~(xi,Q) of hadrons. ls21 Since the QCD theory requires new degree of 
freedoms to form multiquark systems which do not exist in the conventional nu- 
clear theory (hidden-color states), it is important to construct a basis to cal- 
culate the multiquark bound state wavefunctions. The multiquark bound state 
wavefunction should be completely antisymmetric in the total color(C), spin(S), 
iso-spin(T), and orbit (0) quantum space. As an explicit example, a specific 
representation for the asymptotic six quark systems with the Young symmetry 
fT = (33),fcs = (222)~ X (6) S, and fo = (6) (2” = 0, S = Sz = 3, and S-wave) 
is given by31 
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Qdh,Q) = &[- %jkElmn (eadcbeccf + caecbd%f + EadEbfEce + CafCbdEce) 

+ Eijlckmn (caccbccdf + Eaccbf ede + CaecbcEdf + caf cbccde) 

- ( cijmekln f Eijncklm ) (caccbd%f + cadcbc%f) 

+ (Eikmcjln + ‘%knEjlm + Ejkmciln + fjkn%Zm) Eab’%d%f 

- ( Eiklcjmn + cjklcimn) (CabhEdf + cab%fcde )I 
x aT(l)bjf(2)cZ(3)d?(4)er,(5)f~(6) 

where the indices i, j, ... ,n and a, b, -a- , f are the color (r, y, b) and isospin 
(u, d) indices, respectively. The eijk’s and E&,‘S are the completely antisymmetric 
Cartesian tensors of SU(3)c and Su(2)T. The coefficient uo represents the six 
quark amplitude at the origin and can be calculated after the complete six-quark 
wavefunction is given. However, the variation of the amplitude at the asymptotic 
high Q2 region is mainly determined by the leading anomalous dimension 70. 
Anomalous dimensions of exclusive hadron amplitudes are given by solving the 
QCD evolution equation. 

The evolution of the amplitude for simpler hadrons such as quark-antiquark 
meson1p4] and three quark baryonl] systems have already been formulated and 
solved. While these conventional hadrons have only one color singlet representa- 
tion, six-quark systems considered here have five independent color singlet repre- 
sentations. The formulation of the evolution equation for totally antisymmetric 
multiquark states is not trivial even though it is a natural extension of the three- 
quark case. We have presented a general method for solving the QCD evolution 
equations which govern relativistic multi-quark wave functions.5] We have also 
applied it to a four-quark toy system in SU(2)c and derived some constraints on 
the effective force between two baryons.6] However, since the antisymmetric repre- 
sentation of a multiquark wave function must be constructed explicitly, it is hard 
in practice to solve the multi-quark evolution equation. 

We avoid this problem by exploiting the permutation symmetry of the evolu- 
tion kernel.3) Each eigensolution of a multiquark state satisfies a kernel equation 
of the form 

KI+A) = 7 I4A) > (2) 

where K,7 and IdA) p re resent the kernel, the eigenvalue (e.g., anomalous di- 
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mensions) and the eigenfunction which is given by a linear combination of the 
antisymmetric representations respectively. The most important observation in 
this formulation is that the kernel K is a linear combination of the operators Ofy 
in color space each of which has a definite Young symmetry f with Yamanouchi 
labels Y; 

K = xKfYOfY . (3) 
fY 

For simplicity (but without loss of generality), let us consider a six-quark case as 
an example of multiquark systems. The six-quark system has five orthogonal color 
singlet states l(222)a) with Q! = 1,2,. . . , 5 and the evolution kernel becomes 5 x 5 
matrix: 

K aD = ((222)c4KI@4cL+ (4 

An essential simplification can be obtained by replacing Kap with Kfy such that 

(222)ca ~Kfy+- (222)cP 
fY > 

(5) 
= c C((222)crw, fYI(222)CP)KfY 

f y 

where the possible f which gives the non-zero Clebsch-Gordon coefficient’] is only 
(6) or (42). For example, the leading anomalous dimension of the deuteron state 
can be obtained by following procedures. Projecting out a certain state which has 
common C, T and 0 representations, we get a set of equations for spin states. Since 
the kernel of each equation has a definite symmetry and its explicit representation 
is known, we can determine relative weighting factors among the independent 
equations by counting the number of spin annihilation terms in the kernel. The 
only equation which we have to solve explicitly is the equation which has the 
symmetric kernel K16). After taking into account the relative weighting factor we 
get the leading anomalous dimension for a deuteron state, 

3 CF 

7o =4P 
for Sz = 0 , 

7 CF -- 
=8 /3 

=fl . 

(64 

w 

Using the result of Eq. (6), one can calculate the asymptotic deuteron form fac- 
tor Fd(Q2). The QCD prediction for the asymptotic Q2-behavior of the deuteron 
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reduced form factor’] fd ( Q2) defined by 

fd(Q2) = 

is given by 

(11) 

The deuteron state which has the leading anomalous dimension is related to the 
NN, AA, and hidden color (CC) physical bases, for both the (TS) = (01) and 
(10) cases with Young symmetry of {33}, by the formula91 

The fact that the six-quark state is 80 percent hidden color at small transverse 
separation implies that the deuteron form factors cannot be described at large Q2 
by meson-nucleon degrees of freedom alone. 
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