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1. INTRODUCTION 

A question that is often asked in any experimental or observational science 

is whether statistical considerations are useful in the analysis of its data. This is 

a question that can only be answered by the scientists who understand the data 

as well as mechanisms and instruments that produce it. In order to help answer 

this question it is useful to know how data and data analysis is viewed by people 

who regard themselves as statisticians. It is the purpose of this report to give a 

necessarily brief overview of statistical data analysis as viewed and practiced by 

statisticians. 

First, it is important to understand what statisticians do not regard as data 

analysis, but which is never-the-less an important aspect of data understand- 

ing. This is the process of data reduction. In this phase the raw data from the 

detectors (telescopes, counters) are reduced to move useful and understandable 

quantities (such as images). The software (and sometimes hardware) that per- 

form this task are simply regarded as computing engines that transform the raw 

data to forms that are more convenient for further calculations. Although statis- 

tical considerations may be involved in the development of these systems, they 

are usually dominated by considerations specific to the scientific field and the 

particular instruments that produce the data. 

It is the further calculations that interest statisticians. That is, how to dis- 

cover from the (refined) data, the properties of the systems under study that 

produced the data (stars, galaxies, etc.), and deduce statistically meaningful 

statements about them, especially in the presence of uncertain measurements. 

Statistics can be viewed as the science that studies randomness. Central to 

statistical data analysis is the notion of the random variable or measurement. 
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This is a measured quantity for which repeated observations (measurements) 

produce different values that cannot be (exactly) predicted in advance. Instead of 

a single value, repeated measurements will produce a distribution of values. The 

origin of the randomness can be due to random measurement errors associated 

with the instruments, or it could be a consequence of the fact that the measured 

quantity under consideration depends upon other quantities that are not (or 

cannot be) controlled - ie., held constant. In either case, a random variable is 

one for which we cannot predict exact values, only relative probabilities among 

all possible values the variable can assume. 

The distribution of relative probabilities is quantified by the probability 

density function p(X). H ere X represents a value from the set of values that 

the variable can take on, and the function p(X) is the relative probability that 

a measurement will produce that value. By convention the probability density 

function is required to have the properties 

p(X) 2 0 and J p(X) dX = 1 

as X ranges over all of its possible values. Under the assumption that X is a 

random variable, the most information that we can ever hope to know about its 

future values is contained in its probability density function. It is the purpose 

of observation or experimentation to use repeated measurements of the random 

variable X to get at the properties of p(X). It is the purpose of theory to calculate 

p(X) from various mathematical (physical) models to compare with observation. 

It is seldom the case that only one measurement is made on each object 

under study. Usually several simultaneous measurements of different quantities 

are made on each object, each of these measurements being a random variable. 
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In this case we can represent each observation as an n-vector of measurements 

x1,x2,...,%& (1) 

where n is the number of simultaneous measurements performed on each object. 

We call the collection of measurements (1) a vector-valued random variable of 

dimension n. 

Statistics as a discipline has several divisions. One such division depends 

upon whether one decides to study each of the random variables separately- 

ignoring their simultaneous measurement-or whether one uses the data (collec- 

tion of simultaneous measurements) to try to access the relationships (associa- 

tions) among the variables. The former approach is known as univariate statistics 

which reduces to studying each random variable Xi, and its corresponding prob- 

ability density Pi(Xi), p se arately and independently of the other variables. 

The latter approach is known as multivariate statistics. Central to it is the 

motion of the joint probability density function 

p(hX2, . . .,Xn) (2) 

which is the relative probability that the simultaneous set of values Xl, X2, . . ., Xn 

will be observed. In multivariate statistics one tries to get at the properties of 

the joint probability density function (2) b ased on repeated observation of simul- 

taneous measurements. 

Another division in the study of statistics is between parametric (model de- 

pendent) and nonparametric (model independent) analysis. We begin with a 
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little notation. Let 

x= (xlJ2,...,q 

be an n - dimensional vector representing the simultaneous values of the n mea- 

surements made on each object. In parametric statistics the (joint) probability 

density function is assumed to be a member of a parameterized family of func- 

tions, 

P(X) = f(X; id, (3) 

where a = (al, az , . . . , ap) is a set of parameters, the values of which determine 

the particular member of the family. In parametric statistics the problem of 

determining the (joint) probability density function reduces to the determination 

of an appropriate set of values for the parameters. The parameterized family 

chosen for the analysis can come from intuition, theory, physical models, or it 

may just be a convenient approximation. 

Nonparametric statistics, on the other hand, does not specify a particular 

functional form for the probability density, p(X). It’s properties are inferred 

directly from the data. As we will see, the histogram can be considered an 

example of a (univariate) probability density estimate. 

Generally speaking, parametric statistical methods are more powerful than 

nonparametric methods provided that the true underlying probability density 

function is actually a member of the chosen parameterized family of functions. 

If not, parametric methods lose their power rapidly as the truth deviates from 

the assumptions, and the more robust nonparametric methods become the most 

powerful. 
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The final division we will discuss is between exploratory and confirmatory 

data analysis. With exploratory data analysis one tries to investigate the prop- 

erties of the probability density function with no preconceived notions or precise 

questions in mind. The emphasis here is on detective work and discovering the 

unexpected. Standard tools for exploratory data analysis include graphical meth- 

ods and descriptive statistics. Confirmatory data analysis, on the other hand, 

tries to use the data to either confirm or reject a specific preconceived hypothesis 

concerning the system under study, or to make precise probabilistic statements 

concerning the values of various parameters of the system. 

For the most part this paper will concentrate on confirmatory aspects of 

data analysis with a few exploratory techniques (associated with nonparametric 

analysis) coming at the end. 

2. Mini-Introduction to Estimation Theory 

In estimation, we assume that our data, consisting of N observations, is a 

random sample from an infinite population governed by the probability density 

function p(X). Our goal is to make inferences about p(X). In parametric esti- 

mation we would like to infer likely values for the parameters. In nonparametric 

estimation we want to infer p(X) directly. 

Consider a parametric estimation problem. Here we have a data set {&}Er 

considered as a random sample from some (joint) probability density function 

p(X) which is assumed to be a member of a parameterized family of functions 

f(x; a) characterized (for this example) by a single parameter a. Our problem 

is to infer a likely value for (ie. estimate) a. 
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Let 

y = d&,X2,. . . ,x,> (4 

be a function of N vector valued random variables. Here C$ represents (for now) 

an arbitrary function. Since any function of random variables is itself a random 

variable, Y will be a random variable with its own probability density function 

PN(Y; a). This probability density function will depend on the joint probability 

density of the X;, f(Xi; a), and through this on the (true) value of the parameter 

a. It will also depend on the sample size N. Suppose it were possible to choose 

the function 4 in (4) so that pjv(Y; a) is large only when the value of Y is close to 

that of a, and small everywhere else (provided the X; follow p(X) = f(TC; a)). If 

this were the case then we might hope that when we evaluate C$ for our particular 

data set that the value for Y so obtained would be close to that of a. A function 

of N random variables is called a “statistic” and its value for a particular data 

set is called an “estimate” (for a). 

As an example of how it is possible to construct statistics with the properties 

described above, consider the method of moments. Define 

G(a) = s(X)p(X)dX = g(X)f(X; a)dX J J (5) 
where g(X) is an arbitrary function of a single (vector valued) random variable. 

The quantity G(a) is just the average of the function of g(X) with respect to the 

probability density p(X). Its dependence on the value of a is a consequence of 

the fact that p(X) = f(& a) depends upon the value of a. Now, the law of large 

numbers (central limit theorem) tell us that 

2 = O&J,,... XIV) = f &(XJ (64 
i=l 
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has a normal (Gaussian) distribution 

PNGw4 = ko, exp { -i[Z - G(a)12/o&} w 

centered at G(a), with standard deviation 

ON = --&/[g(X) - G(a)12f(X; a)dX}; (64 

as the sample size becomes large. That is, the sample mean (of g(X)) has a 

Gaussian distribution centered at the true mean with a standard deviation that 

becomes smaller as N grows larger (- j$. Th ere f ore, for large enough N, likely 

values of 2 will always be close to G(a), and 2 is a good statistic for estimating 

G(a). If g(X) is chosen so that G(a) is not too wild a function of a, it then 

follows that 

y = G-‘(Z) = G-‘1; &(&)] 
i=l 

will be a good statistic for estimating the value for the parameter a. 

Note that in this development the moment function g(X) is fairly arbitrary. 

Therefore, this method can be used to construct a great many statistics for 

estimating the (same) parameter a. Some of these estimators will be better than 

others. The field of statistics is concerned to a large degree with finding good 

estimators (statistics for estimation). 

Statisticians rate the quality of estimators on the basis of four basic prop- 

erties: consistency, efficiency, bias, and robustness. Consistencv concerns the 

property of the estimator as the sample size N becomes arbitrarily large. In 
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particular an estimator (4) is said to be consistent if 

lim 
N ~ ,PN(Y;a) = b(y - a) 

where 6 is the Dirac delta function. For a consistent estimator, the estimate 

becomes more and more accurate as the sample size increases. Note that (6) im- 

plies that moment estimates are consistent provided that the bracketed quantity 

in (6~) is finite (second central movement of g(X)). 

Efficiency is concerned with the properties of the estimator for finite N. The 

efficiency of an estimator is inversely related to its expected-squared-error 

ITSEN = J (Y - a)2fN(Y;a)dY. 

This is the average-squared distance of the estimate from the truth. Note that 

if the estimator is consistent, then $‘&,ESEN(Y) = 0. The relative efficiency 

of two estimators Y and 2 is defined as the inverse ratio of their corresponding 

expected squared errors, 

REN(Y, 2) = ESEN(Z)/ESEN(Y). 

m is concerned with whether or not the average value of a statistic is equal 

to the true value of the parameter it is estimating. In particular, the b& of an 

estimator is defined to be 

BN(Y) = J Y~N(Y; a)dY - a. 

This is just the difference between the average value of the statistic and the truth. 

Note that if an estimator is consistent then $‘&BN(Y) = 0. An estimator for 
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which Z&(Y) = 0 f or all N is said to be unbiased. Generally speaking unbiased 

estimators are preferred if all other things are equal. However, all other properties 

are seldom equal. In particular, the efficiency of the best unbiased estimators is 

generally lower than that for the best biased estimators in a given problem. 

Unbiased estimators are almost never best in terms of expected-squared-error. 

Robustness concerns the sensitivity of an estimator to violations in the as- 

sumptions that went in to choosing it. In parametric statistics the assumptions 

center on the particular parameterized family (3) assumed to govern the probabil- 

ity density of the (random) variables comprising the data. For a given parametric 

family there is usually an optimal estimator for its parameters (in terms of ef- 

ficiency). However, it is often the case that the efficiency of such an optimal 

estimator degrades badly if the true probability density deviates only slightly 

from the closest member of the assumed parameterized family. Robust estima- 

tors generally have a little less efficiency than the optimal estimator in any given 

situation (if the true density were known), but maintain their relatively high effi- 

ciency over a wide range of different parameterized forms for probability density 

functions. Robust estimators are generally preferred since it is often impossible 

to know for certain that the assumed parametric form for the probability density 

is absolutely correct. 

As an example of robustness consider estimating the center of a symmetric 

distribution. If the probability density corresponding to the distribution were 

Gaussian, then the sample mean is the most efficient estimator. If, however, the 

distribution has higher density than the Gaussian for points far away from the 

center (fat tails), then the efficiency of the mean degrades badly. The sample 

median, on the other hand, is less efficient than the mean for Gaussian data 
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(relative efficiency approximately 0.64) but has much higher efficiency for fat 

tailed distributions. 

Although the method of moments described above can be (and often is) 

used to construct estimators, it is not the favorite way among statisticians. Far 

and away the most popular method is that of maximum likelihood. By def- 

inition, the relative probability of simultaneously observing the set of values 

x = (X1,X2,.*., XN) is the value of the joint probability density function 

p(X). Let xi(i = 1, N) b e one of the observations in our data set. The relative 

probability of observing this observation (before we actually observed it) was 

p(Xi). If we believe that all of our N observations were independently drawn 

from a population governed by p(X), th en the relative probability of seeing all 

N of our observations (again in advance of actually seeing them) is simply the 

product of the probabilities for seeing the individual observations. Thus the rel- 

ative probability among all possible data sets that we would have seen, the set 

of data that we actually saw, is 

LN(a) = I&P(Xi)=n~lf&;a)' 

This expression is known as the likelihood function. It is a function of the pa- 

rameter a through the dependence of the probability density function on this 

parameter. The principal of maximum likelihood estimation is to choose as our 

parameter estimate that value that maximizes the probability that we would have 

seen the data set that we actually saw, that is the value that makes the realized 

data set most likely. Let & be the maximum likelihood estimate of the parameter 

a. Then, 

L&C) = Max~mumLI+J (a). 
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In practice it is usually more convenient to maximize the logarithm of the likeli- 

hood function 

w&J) = ZogLj+) = 5 Zogf(&; a) 
i=l 

since it achieves its maximum at the same value. 

As an example of maximum likelihood estimation, suppose 

f(X;a) = &exp (-fr(X - u)“/o”} 

for a single random variable X and we wish to estimate the parameter a from a 

sample of size N. The logarithm of the likelihood function is 

WN(U) = &ogf(X,; u) = -& -&xi - (g2 - NZog(6o). 
i=l i=l 

Taking the first derivative with respect to a and setting it equal to zero, yields 

the solution 

i=l 

which is the sample mean. Thus, the sample mean is the maximum likelihood 

estimate for the center of a Gaussian distribution. 

If we want the maximum likelihood estimate for O, the standard deviation of 

the Gaussian, we set the first derivative of WN with respect to o equal to zero 

gives the solution 

y-1 = [$ &Xi - u)2]1/2 
i=l 

which depends on the value for a. However, we know that the likelihood solution 

for a, ii, is the sample mean X independent of Q, so making this substitution we 

:. 

;  

, . .-  . ,  
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have 

which is just the sample standard deviation. 

In many (classic) cases it is possible to calculate in closed form the maximum 

likelihood estimate as was done for the simple case above. More often this is 

not possible and it is necessary to explicitly maximize the log-likelihood using 

numerical optimization techniques in order to obtain the maximum likelihood 

solution. 

There is good reason for statisticians to like maximum likelihood estimation. 

First it always provides a prescription for parametric estimation. As long as 

one can compute the joint probability density given a set of parameter values, 

the likelihood function can be formed and maximized-either algebraically or 

numerically. The maximum likelihood estimate (MLE) can be shown to always 

be consistent. As the sample becomes large (N --+ oo), the MLE can be shown 

to have the highest possible efficiency. Also as the sample size becomes large, the 

distribution of the MLE estimate & can be shown to have a Gaussian distribution 

about the true value a 

Plv(Q4 = ko, - exp { -f(a - u)2/a~} 

with 

This information can be used to assign standard errors to maximum likelihood 

estimates. 
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There are a few drawbacks to maximum likelihood estimation. The estimates 

tend to be very non-robust. Also, if numerical optimization is used to obtain the 

MLE, it can be computationally expensive. 

3. Nonparametric Probability Density Estimation 

In nonparametric estimation we assume that the data is a random sample 

from some (joint) probability density, but we do not assume a particular param- 

eterized functional form. This is usually because-for the situation at hand-the 

correct functional form is simply unknown. The idea is to try to directly estimate 

the probability density of the population directly from the data in the absence 

of a specific parameterization. Such estimates are generally used for exploratory 

data analysis purposes. 

Nonparametric density estimation is well developed only for the univariate 

case. Here we have a set of measurements {Xi}zr presumed to be a random 

sample from some probability density function p(X). Figure 1 illustrates a possi- 

ble realized configuration of data on the real line. Consider an interval centered 

at a point X of width AX. The probability that one of our data points would 

have a value in this interval (before we actually observed it) is just the probability 

content of the interval 

Prob(X - AX/2 5 Xi 5 X + AX/21 

X+AX/2 

= 
/ p(c)4 

X-AX12 

N p(X)Az. 
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The latter approximation assumes that the width of the interval is small. A rea- 

sonable estimate for the probability content of the interval, based on the data, is 

simply the fraction of data that lies in the interval. (This is in fact the MLE of 

this quantity), ie. 

eet[Prob{*}] = $Nuwa(+ 

Combining these results yields an estimate for the probability density at X 

fiNCX) = (A~)N Num(X- A/2 2 Xi 5 X + A/2) 

in terms of the number of counts in the interval of width AX centered at X. This 

result is central to two of the most popular methods of nonparametric density 

estimation-histograms and window estimates. 

For the histogram density estimate the range of the data is divided into 

M bins or intervals (usually of equal width) and the density is estimated as a 

(different) constant within each bin using (7) (see Figure 2). The window or 

square kernel density estimate uses overlapping windows. At each point X for 

which a density estimate is required, a symmetric interval (window) centered at 

X of width AX is constructed and (7) is used to compute the density estimate 

(see Figure 3). The windows associated with close points will necessarily have a 

great deal of overlap. 

For both these methods, there is an associated parameter that controls the 

degree of averaging that takes place. For the histogram estimate it is the number 

of bins, M. The larger this number, the less smooth the density estimate will 
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become, but the better able it will be to capture narrow effects (sharp peaks) in 

the density. For the window estimate this trade-off is controlled by the width AX 

chosen for the window. The smaller the value of AX, the rougher the estimate 

will be, with the corresponding increase in sensitivity to narrow structure. 

For multivariate n > 1 data, nonparametric density estimation becomes dif- 

ficult. For two dimensions (n = 2) the straightforward generalizations of the 

histogram and window estimates involving rectangular bins or windows tend to 

have satisfactory performance. However, for higher dimensions (n > 2) perfor- 

mance degrades severely. This is due to the so-called “curse-of-dimensionality.” 

Consider a histogram density estimate in ten dimensions (n = 10). If we 

choose to have ten bins on each of the ten variables then there would be a total 

of lOlo bins. Clearly for any data set of reasonable size nearly all of these bins 

would be empty and the few that were not empty would generally contain only 

one count. Even with only two bins per variable (a very coarse binning) there 

would be over 1000 bins. 

The window estimate suffers similarly. If for a uniform distribution in a ten 

dimensional unit cube, we wish our window (centered at each data point) to 

contain ten percent of the data points on the average, the edge length of the 

window would have to be approximately 0.8; that is, it would have to be 80% of 

the extent of the data on each variable. Clearly with such a window it would be 

impossible to detect all but the very coarsest structure of the probability density 

with such an estimate. Therefore, the most we can hope for is to be able to get 

a general idea of the joint probability density p(Xl, X2,. . . , Xn) in high (n > 2) 

dimensional situations. 

Cluster analysis is one approach for doing this. Here the goal is to try to 
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determine if the joint density is very small nearly everywhere, except for a small 

number of isolated regions where it is large. This effect is known as clustering. 

Clustering algorithms attempt to determine when this condition exists and to 

identify the isolated regions. 

Mapping the data to lower dimensional subspaces (usually one or two dimen- 

sional subspaces) and studying density estimates on the subspace is often a quite 

fruitful approach. Good nonparametric density estimation is possible in one and 

two dimensions. The trick is to perform the mapping in a way that preserves as 

much as possible the information contained in the full dimensional data set. 

Let X = (X1,X2,... , Xn) be a point in n-dimensions and t = T(X) repre- 

sent its mapping to one dimension. Here T is a single valued function of the n 

arguments Xl, X2, . . . , X,. Since X is a (vector valued) random variable, t is also 

a random variable with a corresponding probability density function m(t), that 

depends on the transformation function 2’. This (one-dimensional) probability 

density can be easily estimated and examined for different choices of transforma- 

tions. 

For a mapping onto two dimensions, one defines two transformation functions 

t1 = Tl (X), t2 = T2 (X) creating the random variables tl, t2 with joint distribution 

mI,~2 (tl, t2), depending on the choice of the transformation functions. Again, it is 

straightforward to estimate and examine the two-dimensional joint density of the 

mapped points tl and t2. By performing judiciously chosen dimension reducing 

transformations and studying the corresponding density estimates, one can often 

gain considerable insight concerning the n-dimensional joint probability density 

P(X1, x2,. . . , q. 

Generally the choice of mapping functions is guided by the intuition of the 
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researcher using his knowledge of the data and the mechanisms that give use 

to it. There are also techniques that attempt to use the data itself to suggest 

revealing mappings to lower dimensions. The useful techniques so far developed 

involve only linear mapping functions 

t=eUjXj=cTx (one - dimension) 
j=l 

t1 = g&2 = UFX (two - dimensions) 

where the projection vectors CZ, al, u2 depend upon the data. 

The most commonly used data driven mapping technique is based on princi- 

pal components analysis. Here the basic notion is that projections (linear map- 

pings) that most spread out the data are likely to be the most interesting. This 

concept is illustrated in Figure 4 for the case of mapping two-dimensional data to 

a one-dimensional subspace. Here there are two symmetrically shaped clusters 

separated in one direction. This direction is the one in which the (projected) 

data are most spread out, and is also the direction that reveals the existence of 

the clustering. 

Principal components mapping can be fooled, however, as illustrated in Fig- 

ure 5. Here the clusters are not symmetrically shaped, but are highly elliptical. 

The separation of the clusters is along the minor axes in the direction for which 

the pooled data is least spread out. Principal components in this case would 

choose the direction along the major axes (direction of most data spread) which 

in this case does not reveal the clustering. 

This shortcoming of principal components mapping has lead to the develop- 

ment of projection pursuit mapping. Here, instead of finding mappings (projec- 
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tions) that maximize the spread of the data, one tries to find those mappings 

that maximize the information (negative entropy) defined as 

I(g) = - J ??I+) kJ PT(tW 

with t = aTX, and m(t) the probability density function of the projected data. 

This approach successfully overcomes the limitations of the projection pursuit 

approach but at the expense of additional computation. 

4. Conclusion 

The purpose of this report has been to give a broad (but necessarily quite 

shallow) overview of statistical data analysis. The intent was to introduce as- 

tronomers to the way statisticians view data so that they can judge whether 

increased familiarity with statistical concepts and methods will be helpful to 

them. 
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