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ABSTRACT 

We solve exactly the problem of diffusion in an arbitrary hierarchical space. 

We prove that for a given “tree-silhouette” 0 < s < 1 the dynamic critical expo- 

nent v ranges from - s f or 
l-s 

either uniformly or randomly multifurcating trees, 

to s for the most diverse ones, in qualitative agreement with a static measure of 

the tree’s complexity. We conclude that uniform trees are optimal for information 

diffusion, that in thermally activated processes the temperature dependence of v 

varies with the underlying tree structure, and that thin elongated trees (brooms) 

are the only ones capable of producing a l/f spectrum. 
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The realization that diffusive processes on hierarchical structures can lead to 

an anomalous decay of the autocorrelation function,l led to several other stud- 

ies generalizing the original work. 2-6 All of these, however, exploit the intrinsic 

self-similarity of uniformly multifurcating trees, which in particular allows for 

the application of renormalization group techniques.7 One may thus question the 

relevance of such calculations to the many natural8 and artificial9 systems that 

exhibit a hierarchical organization, since such an organization does not necessar- 

ily imply a uniform-tree representation. For example, the ground states of the 

mean-field spin-glass, which possess an ultrametric topology,8 cannot possibly 

be represented by the indistinguishable leaves of a uniform tree, since they are 

known to carry different weights.lO 

It is therefore desirable to determine how the relaxational dynamics of a hi- 

erarchical system depend on its underlying tree structure. This letter reports 

the results of such a study. By exactly solving the equation of diffusion in a 

generic hierarchical space, we have shown that for a given tree silhouette (to be 

defined below) relaxation is fastest for either uniformly or randomly multifurcat- 

ing structures and slowest for very diverse ones, in qualitative agreement with a 

static measure of the tree’s complexity. l1 Corollaries of these results include the 

identification of infinitely thin elongated trees (brooms) as the only ones capable 

of producing a l/f spectrum, and the realization that in thermally activated 

processes, the underlying tree structure can change the temperature dependence 

of the dynamic critical exponent u. 



Consider ultradiffusion in an arbitrary tree. The dynamical equation is given 

dPi N -= 
dt c Eij Pj 

j=l 

wherei= 1, . . . , N labels the tree leaves or sites, Pi is the occupation probability 

for site i, and the hopping rate cij is only a function of the nearest common 

ancestor A of i and j on the tree: cij = Eji = EA(i,j) for i # j, while Eii = -xcij 
i#i 

thus conserving probability. By appropriately stretching the tree, we can always 

assume that EA = eehA, where hA is the height of the branching point A from the 

bottom of the tree, as shown in Fig. l(a). We call such trees “metric trees”, to 

stress that not only their topology but also the heights of their branches matter. 

There is clearly one ultrametric space and one ultradiffusion problem for every 

metric tree. Note also that there is no loss of generality in having assumed 

symmetric transition probabilities, since the weight of any leaf can be effectively 

increased by letting it multifurcate appropriately at low altitude. 

We have solved the diffusion Eq. (1) explicitly, by deriving the complete set 

of eigenvectors and eigenvalues of the transition matrix E. In order to succinctly 

describe the results we first introduce some notation and terminology (see also 

Fig. l(a)): for any branch point or tree leaf 23, we denote by B, its unique nth 

ancestor (Bc = B by convention, Br is the father, B2 the grandfather and so on), 

by NB the number of final descendants or tree leaves generated by B (NB = 1 if 

B is itself a leaf), and by SB the number of immediate offsprings or sons of B, 

when B is a branch point. We also introduce the characteristic function 

1 if i is a descendant of B 
Xi (B) = 

0 otherwise . 
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where here i= 1, . . . , N runs over the leaves. We assume for convenience that 

branchings may only occur at integral multiples of some minimum adjustable 

height interval Ah, and will occasionally use the word mth generation for all 

branches at height h = m . Ah. If n(h) is their total number, we define the 

silhouette slope s(h) = - 
A log n(h) 

= &log n(h) Ah 
n(h + Ah) ’ 

and shall refer to its 

asymptotic value s = i&rr s(h) as the tree’s silhouette. Large and small values 

of s correspond to fat and thin trees, respectively. 

Now, for every leaf or branch point B other than the root, there is an eigen- 

vector of c 

Vi(B) = & Xi(B) - & Xi(B1) 
1 

(2) 

which corresponds to the exchange of probability between the descendants of 

B, and those of all his brothers. Its eigenvalue (or inverse characteristic time) 

depends only on the father Br: 

x(B~) - -2 = - 
root 

NB,. cshBi + C (NB,, - NB,-~) eshBn (3) 
‘ n=2 

and is in fact (SB~ - 1) times degenerate, since the SB~ eigenvectors corresponding 

to the sons of Br obey the linear relation: C NC - V(c) = 0. 
brothers c 

Finally there is an eigenvector with zero eigenvalue that corresponds to the 

steady state of equal probability l/N for all sites, and which we denote by 

Vi(rOOt). 

The reader can verify these assertions by working out simple examples; a 

complete derivation will be given in Ref. 12. 
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For a particle starting out at a leaf I at time zero, the initial condition can 

be written as 
root 

Pi(t = 0) = 61,; = C Vi (In) 
n=O 

It then follows that at later times 

root 

Pi(t) = C Vi (In-l) e-t/7rn + f . 
n=l 

(4 

We will be mainly interested in the autocorrelation function, i.e. the probability 

that the particle returns to its point of departure; using Eqs. (2) and (4) it can 

be written as 

PI(t) = $ + F (+- - -.&) emt/‘rn . 
n=l nl n 

(5) 

Summing over all initial conditions I, we obtain the average autocorrelation func- 

tion in the form 

p(t) = k + $ c (SB - 1) edtirE 
branch points 

B 

(6) 

For finite trees the decay of this function is clearly exponential, and is deter- 

mined by the smallest non-zero eigenvalue X(root). For infinite trees however, 

the asymptotic behaviour of F(t) is in general modified due to the accumula- 

tion of eigenvalues near zero. In the remainder of this letter we shall study the 

dependence of this asymptotic behaviour on the precise structure of the tree. 

Consider first a regular uniformly multifurcating tree,lm6 i.e. one for which 

every branch at every generation produces b offsprings as shown in Fig. l(b); its 
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silhouette is thus s = & log b. Since hgn = hB + n a Ah and NB = bhBIAh, we 

easily deduce from Eqs. (6) and (3) that 

F(t) = 2 (b - l)b-” 
m=O 

.exp[-t. (b.e-Ah)m- (@~~)] Mt-yuniform 

where the dynamic critical exponent 

log b S 
hniform = Ah _ log ), = - l-s 

depends only on the silhouette which we have assumed lies between 0 < s < 1. 

For s > 1 the eigenvalues of the transition matrix diverge, and relaxation is 

unstable. Notice however that the values s = 0 and 1 are allowed as asymptotic 

limits reached from above and below at large h, and leading to logarithmic and 

stretched exponential decay, respectively. 

From Eq. (7) we conclude that among uniform trees the fatter ones relax 

faster. We must therefore fix the tree’s silhouette, in order to study the effect of 

its structure on dynamics. The following result then shows that stable relaxation 

is fastest in uniform trees, which are therefore optimal for information diffusion: 

Theorem 1: The dynamic critical exponent of any tree with silhouette 0 < 
S 

s < 1, obeys Y < - 
l-s 

provided there exists some w < e so that no 

branch-point B has descendants growing faster that w(~~-‘).~~ 

Sketch of proof: Using the fact that the average of exponentials is larger 

than the exponential of the average and that: 

1 
N 

c (SB - 1) = n(h - Ah) - n(h) = e-s’h (e”*’ - 1) 
B:h*=h 
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we obtain 

F(t) 2 e (,a.Ah _ 1) e-m.Ah.se-t/rm 

m=l 
(8) 

where 7,;~~ is the average inverse characteristic time of the mth generation, 

that can be bounded from above as follows 

rG1 = c k (SB - 1) /~(,sB - 1) 5 em(8-1)Ah 

(WAh - 1) . 
(e eAh - 1) (1 _ (!E)Ah) 

(9) 

with the summations running over all branch points of the mth generation. 

Using inequality (9) in (8), we can finally bound P(t) from below by a 

function with asymptotic power-law decay with exponent Vuniform QED. 

We next consider random trees, constructed by allowing the multifurcation 

number x of every branch at every generation to be an independent random 

variable with probability distribution p(z). The average silhouette is 

1 
S=iix - hz(4 

where (5) = 2 p(z) . x. It will suffice to average Eq. (5) over all trees, as this 
z=l 

automatically takes care of averaging over initial conditions. The trick is to note 
NI, that on = - 
w ' 

and Aa, E N1c (2F-l for IC > n are (a) independent random 

variables, and (b) converge14 as n + oo to random variables a! and Aa with 

stationary probability measures PI(~) and p(l) . s(Ao) + P~(AcY) respectively. 
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Thus the summand on the right hand side of Eq. (5) becomes at large n: 

Sn = (X)vn( (2) - /m 2 PI(a) exp (-t . (L: ( @)‘n-l’Ah) . 
e 

(2)-“-l 

. n [dl~ +F2 (t ($)‘“̂ )I 
.!>n-1 

- J O” $Pr(ar)exp (-t-a(F)“““) (4 -I3 
. I--$) +F2 (t . pg.““)] 

C>n 

with P2 the Laplace transform of P2. If the vanishingly small cutoff of the 

a-integration, that comes from demanding NI” 2 1, could be removed the sum- 

mand would obey the homogeneity relation S,+l(t) = e-s’AhSn 
( 

te(s-l)‘Ah 
> 

, 

from which we could deduce that the average autocorrelation function has a 
S power law decay with exponent &n&m = - = 

l-s hmiform. Using the integral 

equation that defines PI, we have in fact shown that the divergence of the CY- 

integration is at most logarithmic12 which implies at most logt modifications to 

the above power law decay. This result can be understood by noticing that both 

uniform and random trees are balanced, self-similar structures and hence relax 

at roughly the same rate. 

In order to show that asymptotic diversity, or lack of balance, does actually 

lead to slower relaxation, we next consider a tree for which the left-half members 

of every generation trifurcate, while the right-half members only give rise to a 

single son, as shown in Fig. l(c). A straightforward calculation12 then gives a 
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log 2 
power-law decay with critical exponent Y = - 

Ah 
= s. The following theorem 

shows that, remarkably, this is the slowest allowed relaxation. 

Theorem 2: The dynamic critical exponent is bounded from below by the 

silhouette (V 2 s). 

Since NB 2 1, we have A 2 eshB Proof: and hence: 
TB 

p(t) 2 c (SB - l)estemhs = 

B 

00 
,s.Ah ,-n.Ah.8 . e-te-“‘Ah - 

QED 
n=l 

We summarize our results schematically in Fig. 2. As can be seen the dy- 

namic critical exponent is maximized (fastest relaxation) by both uniform and 

random trees, and minimized (slowest relaxation) by very diverse trees. The 

same qualitative picture actually obtains if instead of -u one plots a static mea- 

sure of the tree’s complexity, or lack of self-similarity, defined by counting the 

number of non-isomorphic pieces at every generation.” This measure should be 

contrasted with the information-theoretic measure (Shannon’s entropy), which is 

defined by the size of the smallest algorithm that describes how to construct an 

exact replica of a given tree, and is thus maximized for random trees.r5 

A couple of other interesting conclusions follow from our results: 

(1) In thermally activated processes Eij = eXP(-Vij/kT), and hence assuming 

that the structure of the tree is not itself a dynamic variable, resealing the 

temperature simply amounts to resealing all heights (uniformly stretching 

the tree). Thus s is proportional to T, which implies that u = & 
C 
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(2) 

-- .-_ -. 

for a uniform tree, while Y = T . for the unbalanced tree of 

Fig. l(c), where the critical temperatures are in both cases the thresholds 

above which relaxation becomes unstable. We conclude that the temper- 

ature dependence of the critical exponent may reveal the structure of the 

underlying tree. 

In view of theorem 2, the relaxation of a hierarchical system can have a l/f- 

noise spectrum, only if the underlying tree is a “broom”, i.e. has vanishing 

silhouette. Of course any tree would tend to a broom if infinitely stretched 

(eg. by taking T + 0). It is, however, also possible to construct brooms 

with finite hopping rates, by ensuring that the majority of branches are 

infertile;12 these can serve as models for the production of l/f noise at 

finite temperature or in processes that are not thermally activated. 

In summary, we have solved exactly the problem of diffusion in arbitrary 

hierarchical spaces, and shown that the dynamic critical exponent has the qual- 

itative features required for a measure of complexity. Our study also shows that 

although asymptoptic complexity (diversity) leads to slower relaxation, a l/f 

spectrum cannot be obtained unless the tree has vanishing silhouette. 
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FIGURE CAPTIONS 

Fig. 1. 

(a) A generic tree illustrating our notation; the root is the father of Br and 

C, and the grandfather of B; I31 has 3 sons and 6 final descendants. 

(b) A uniformly bifurcating tree. 

(c) A very diverse (non self-similar) tree, with the same silhouette as (b). 

At each generation the left-half members trifurcate. This tree gives the 

slowest possible relaxation as discussed in the text. 

Fig. 2. 

Schematic plot of the dynamic critical exponent u, versus the Shannon 

entropy of trees with fixed silhouette s. The broken lines are rigorous 

upper and lower bounds. A similar plot is obtained if --v is replaced by 

a static measure of complexity that counts non-isomorphic pieces at every 

level of the tree.ll 
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