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ABSTRACT 

Calculation of the effective Lagrangian for QCD in the presence of a covariant 

constant chromomagnetic background field encounters unstable quantum fluctuations 

at the one loop level. Previous computations simply regularize these unstable modes, 

which generates a residual imaginary contribution to the effective Lagrangian. Here 

we show that the one loop unstable modes are completely stabilized as one goes beyond 

the one loop approximation, and there is no need for an ad hoc regularization pre- 

scription. We show that our higher order computation yields an-effective Lagrangian 
i 

whose real part agrees with previous computations, and an imaginary part which is 

unambiguously zero. 

Submitted to Physical Review D 

*Work supported by the Department of Energy, contract DE - AC63 - 76SFOO515. 
- 



1. Introduction 

Much work has been done on the calculation of the effective Lagrangian for &CD 

in the presence of a covariant constant chromomagnetic background fie1d.l In the 

one loop approximation the computation is ill-defined a3 a result of the existence of 

fluctuations corresponding to unstable excitations of the background field. In order bo 

render the calculation finite the unstable modes must be regularized in the infra-red 

region, which generates a residual imaginary contribution to the effective Lagrangian. 

Recently, Dittrich and Reuter2 have pointed out the controversy with regard to 

the sign of the imaginary part. They perform the one loop computation of the effective 

Lagrangian using Hawking’s c-function regularization prescription3 and find that the 

imaginary part vanishes for this procedure. In their work, and the previous work 

referenced above, this ambiguity arises from the fact that additional input must be 

made to the one loop computation to specify how the unstable mode is regularized. 

In this work we will show that the one loop unstable modes are completely stabilized 

when one goes beyond the one loop approximation, and thus there is no need for 

an infra-red regularization prescription. We show that our higher order computation 

yields an effective Lagrangian whose real part agrees with previous computations1p2 

(as it must to have the proper asymptotically free limit), and an imaginary part which 

is unambiguously zero. 

. . _ 
2. Cpmpntation of the Effective Lagrangian . -. 

i A. ’ - The fluctuation .eigenmodea . 

We compute the effective Lagrangian by means of the Euclidean functional integral. 

The explicit connection is given by7 

ZE = N / [DA] ezp (J d4zLE) f N’ ezp($ d% L$j) (2.1) 

where N and N’ are normalization constants. The Lagrangian for the pure 

SU(2) theory is 
- 

LE = -54 ’ f’iv r;;“y (2.24 

2 



where 

: F/f” = +A; - d, A; - g cabc A;A; -. (2.2b) 

The configuration we will study is a covariant constant field of the form 

(2.3~) 

where - 

I-12 = B , E&j = d3 with O<tz<l . (2.3b) 

The magnitude of the constant chromomagnetic field is B, and we also allow for a 

parallel chromoelectric field of magnitude eB. This is the form of the most general 

covariant constant field for the O(4) invariant Euclidean theory, and connection is 

made with the previous computations as c -+ 0. 

The gauge fields are parameterized as 

A;(x) = A;(x) + b&(x) (2.4 

and the Lagrangian can be expanded in powers of the fluctuations bs. With this 

parameterization, and introducing a background gauge fixing term* with gauge fixing 

parameter equal to one, and including the associated Fadeev-Popov term, the Euclidean 

functional integral becomes . . 
-. 

+ gcaCdb;b~(&,)aeb& - $((b;b;)2 - (b;b;)(b;b;))] 

- 

(2.5~) 

- 

- . . -. 
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with 

(2.5b) 

and Dr = Sacdo - g ~~~‘Jit. 

The functional integral of Eq. (2.5a) is normally computed in the one loop ap- 

proximation. This corresponds to retaining terms in the e_xpone&ial only to second 

order in the--quantum fluctuation bt. This leaves a simple gaussian integration which 

is trivially done, yielding the effective Lagrangian by Eq. (2.1). The completion of this 

program is critically dependent upon the necessary condition that 

/ 
d*z b;(z) 6; b;(z) < 0 , (2.6) 

which insures that the gaussian integral-is convergent. The fact that Eq. (2.6) is 
not satisfied for the covariant constant field is the origin of the ambiguity in the 

aforementioned references. In this work, we will investigate the eigenvalue equation 

6$ b; = Xb; (2.7) 

and categorize the eigenmodes into those that are stable (A < 0) and those that are un- 

stable (X 2 0). This categorization is a gauge invariant procedure since the eigenvalue 

spectrum is trivially shown to be gauge invariant. The contribution of the eigenmodes 
. . _ which are stable will be computed in the usual one loop approximation and give a 

well defined result. The one loop unstable eigenmodes will be treated beyond the one -. 
loop approximation by retaining the higher order terms in the expanded Lagrangisn 

of-Eq. (2.5a). Due to the fact that the negative definite quartic term dominates the 

functional integral for large fluctuations, this also will give a well defined result, and 

an unambiguous contribution to the effective Lagrangian. In this way a finite effective 

Lagrangian will be calculated by a well defined gauge invariant procedure. 

- 
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The operator ei; of the eigenvalue equation, Eq. (2.7) can be written in terms 

of raising and lowering operators by the following familiar procedure. Define 

= &I + 9Bx. * lli- i + 
2 a 

a. a G -a + !Fx. i 2 a T 1 = 1,2 

!FB 
(2.8a) 

Oj E aj + 2Xj 
!FB a; E -8j + TXj , j CO,3 

and -form-the linear combinations 

C = a0 - iag D = al - ia 

C+ = a$ + iag D+ = a: + iaz 
(2.8b) 

which satisfy 

[C;C+] = 2g eB -, [D, D+] = 298. (2.8~) 

Also defining bz zs b: f ibi, the eigenvalue equation can be rewritten as 

s,,(--C+C - D+D - gB - gcB) F 2ig&,,, 
> 

byf = Xb,f . (2.9) 

The eigenvalue spectrum is immediately obtained using the commutation relations of 

Eq. (2.8~) and defining bo=i3 E bO+ + ib$, etc.: 

. . _ b* O*i3 : x= -2ngcB - 2mgB + gcB - gB 

-. b&i3 : -- X - -2ngcB - 2mgB - 3pB - gB 

b* lfi2 : x= -2ngcB - 2mgB - gcB + gB 
(2.10) 

-- 

b* lTi2 : x= -2ngrB - 2mgB - gcB - 3gB , 

where (m,n = 0,1,2 . . .). It is now apparent which of the modes are stable, and which 

are unstable to one loop. All modes are stable (X < 0) except for b;‘+iz and b~-i, with 

’ m=O and 05 n 5 d-2 The contribution to the functional integral for the stable 

and unstable modes will now be treated in turn. 
- 
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B. One loop stable modes 

The contribution of the one loop stable (OLS) modes to the effective Lagrangian 

is determined by evaluating the functional integral of Eq. (2.5a), retaining terms only 

to second order in the fluctuation field. This yields 

(2.11) 
Y - m 

where the functional integral is over all the OLS modes. When the fluctuation fields - - 
are expanded in the eigenstates of the operator 6;;, the functional integral becomes a 

product of integrals over each of the eigenmodes. For example, the contribution from 

the set of eigenmodes corresponding to the color and spin state bo=i3 is 

Z~“(b~i3) - [/ H dbf$“) exp{ k(-2ngcB - 2mgB + gcB - gB) 
n,m 

(2.12) 

x / d*x b;(x) b;(x)}lC. 

The power c reflects the degeneracy of each of the (n,m) eigenstates originating in the 

arbitrariness in the choice of the coordinate origin for the fluctuation. This constant 

is calculated in the appendix of reference 5, and is c(gB/2i)2 J d*x. The gaussian 

integral of Eq. (2.12) yields 

. . _ 
Z(OLs) (bo=i3) - n (2ngcB + 2mgB - grB + gB)-‘12 , 1 C 

(2.13) 
n,m 

which gives a contribution to the effective Lagrangian of 
i 

LE”fl(bot+i3) = - ~(~)2 c tTn(2ngcB + 2mgB - gcB -t- g-B) . 
n,m 

(2.14) 

Using the identity 

tna = - 
/ 

00 de - ema8 , 
o 8 

(2.15) 

and doing the sum over m and n gives for the contribution of the modes from the color 

and spin state bo=i3 

- ,2g&s 

sinh(gcBs)sinh(gBs) - 
(2.16) 

- _-. r -. 
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Performing the same procedure of Eqs. (2.12) - (2.16) for all of the OLS eigenmodes 

plus the ghost terms yields the contribution to the effective Lagrangian 

LE”//(OLS) = $70m5!-32 sinh(gcB8) + 2 sinh(gB8) + 1 
. sinh( gB8) ain h( gcB8) sin h( gcBs)sinh( gB8) 

cg2B2 
/ 

00 de eagql-e) (1 - e-gBs(l+c)) - 
-q,20 8 (l- e-2@4) -’ - (2-W _ 

Note that i expected the contribution is finite as s + 00, and has the usual UV 

(s + 0) singularities that will be removed by the ordinary W renormalization proce- 

dure in Section D. 

C. One loop unstable modes 

The contribution of the one loop unstable (OLU) modes to the effective Lagrangian 

is determined by evaluating the functional integral of Eq. (2.5a), retaining all orders 

in the fluctuation field. Since the OLU modes have the color and spin states Bali,, it 

is easily seen that the cubic term vanishes, giving the functional integral for the OLU 

modes 

$w - i db(,OU7’ exp 
n=O 

i(-2ngcB - gcB + gB) / d*x bE(x 

% _ 
g2 / d*x [(b;b;)2 - ($b;)(b;b;)] } 1: , --- 
4 i -. . 

(2.18) 

where N = ,& - i . _- 

The nth OLU mode is given by (C+)n 4;(x), where 4;(z) is the lowest eigenmode 

and satisfies Q;(x) = Dt#$(x) = 0. Using the expressions for C and D from Eq. 

(2.8), it is easily shown that the nth OLU mode is given by 

(2.19) 

- 

- 

. 
r -. 
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t 

with the arbitrary normalization chosen such that / d*x bf bi = 1, and foci:! is the 

constant color/spin vector for the OLU modes. Equation (2.19)can be used to simplify 

Eq. (2.18) to an integral over the strength of the OLU eigenmode fluctuation: 

The factor of two in the exponent comes from the two color/spin states. Note that this 

integral is convergent only because of the inclusion of the quartic term in the quantum 

fluctuations. The I&dependence of this integral can be scaled out, giving 

&gW’ N go (3: /f dt exp +-2 gc - gc + s)t2 - ($)c* } ] I’- i 2c . (2.21) 

The factor coming from the finite <- integration is Bindependent and does not show 

up in the renormalized effective Lagrangian. This gives the contribution of the OLU 

modes to the effective Lagrangian, 

N cg2B2 
LE”fl(OLU) = - c n=O 4t2 hB = . (2.22) 

. . _ 
D. Renormalised effective Lagrangian -- 

-: 
The total unrenormalized effe&ve‘Lagrangian is the sum of LgJ(OLS) and 

LE”l/(OLU), Eqs. (2.17) and (2.22). It has the usual W divergences at s + 0, and 

can be renormalized by the standard Coleman-Weinberg conditions 6 

-- 

af, QT=, = 0 , ~lg2+&2/2 = -1 (2.23) 

where 7 = : qv qv = d (1 +c2)B2 for the field configuration under study. Applying 

Eq. (2.23) to the total effective Lagrangian computed above yields 

- 
Ldf = 

E 
_ f (1 + &32 _ 11g2@lfi+ ‘2) {fn(‘(’ +:2):B) 7 f } . (2.24) 
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3. Discussion 

It has been shown that the fluctuations about a covariant- constant field configu- 

ration can be separated into gauge invariant classes that are either stable or unstable 

at the one loop level. The contribution to the effective Lagrangian of the one loop 

stable modes was computed in the usual gaussian approximation. The contribution of 

the one loop unstable fluctuations was computed by retajning allgr,ders in these OLU 
modes, yielding a finite well defined result. The obtained effective Lagrangian has the 

form for a constant chromomagnetic field (e + 0) 

L”ff = B2 11g2B2 
E --- 

2 48?r2 (34 

which agrees with the real part of Leli of previous calculations, and unambiguously 

determines the imaginary- part to be zero, in agreement with the regularization pro- 

cedure of Dittrich and Reuter.:! (It should be noted that a vanishing imaginary part 

is what should be expected since the Lagrangian in the exponent of the functional 

integrand, Eq. (2.1) is a negative definite quantity for all large and real fluctuations, 

and thus is a well defined and real quantity.) The form of xgJ indicates that the 

uniform chromomagnetic vacuum field has a stable minimum at B = 5 exp (- 24n2) llgz 
in this approximation scheme. 

It is also important to realize that although the two sets of modes (which are gauge 

invariant sets) were treated to different orders, the results obtained are gauge invariant. 

i Theapproximation is effectively that all modes--are calculated to one loop, with an 

additional ‘!all_orders” contribution from the one loop unstable modes, neglecting cross 

terms between the different gauge invariant subsets. All of the modes could have been 

treated in the same way, i.e. to quartic order in the fluctuations, giving the same result 

as was obtained above, but once again with the restriction that the cross terms between 

gauge invariant subsets would be necessarily neglected for computational feasability. 
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