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ABSTRACT 

a- The interaction of the J = 0 partial wave of a massless isodoublet Dirac fermion 

with an SU(2) gauge theory monopole of finite size is investigated by studying the 

original model of Callan and Rubakov with boundary conditions imposed at a core 

radius rg # 0. Both the chirality non-conserving and gauge-invariant “charged” con- 

densates are studied with special attention to their leading dependence on rg and a = 

e2/4n. It is found that, at fixed r > v-0 > 0, the CN -+ 0 limit reproduces the free field 

values of both condensates, in contrast to the limit obtained with rg = 0. For finite 

CY, however, the leading core effects are negligible for r > > Q/CY. A gauge dependent, 

charge-carrying condensate is also considered and shown to vanish. 
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1. Introduction 

The catalysis of proton decay at strong interaction rates by a variety of Grand 

Unified Theory (GUT) monopoles, as predicted by Callan and Rubakov [1,2,3], is a 

quite surprising result with important implications for monopole phenomenology [4]. 

It is of interest to investigate the approximations made in the reduction of fermion- 

monopole interactions to the original [1,3], exactly soluble model. In particular, a 

major approximation of that model consisted in scaling the monopole’s core radius, 

TO,* to zero at fixed finite cx = e2/47r. The solution in this approximation is similar 

to that of the Schwinger model. However, in contrast to the typical behavior of 

Schwinger-like systems, it is not possible to recover the free field theory in the limit 

(Y + 0.t Our results suggest that this is an artifact of the approximation of the 

a- monopole as a point-like object. It is instructive to examine in detail the physical 

situation, ro small but non-zero, to study how quantities of interest may tend to their 

free field values as cy + 0, yet not be significantly suppressed at finite cr. 

In this letter we address the effects of a finite core radius on the behavior of the 

J = 0 partial wave of a massless Dirac isodoublet in the field of an SU(2) monopole 

simply by imposing the standard boundary conditions at the core boundary, t-0 # 0, 

[5,6]. The validity of this approach will be discussed below. 

Two condensates in the original model have attracted considerable attention. These 

are the electrically neutral, chirality [I] (or fermion number [3]) non-conserving and 

the ‘charge violating’ [5,6,7,&g] condensates. Neutral condensates analogous to the 

former play a role in catalyzed proton decay by GUT monopoles. The ‘charged’ 

* The monopole’s ‘radius’ is the characteristic measure of the exponential approach 
of the Higgs field to its value in the vacuum sector. It is inversely proportional to the 
mass of the monopole configuration. 
t For example, the model contains an interesting, chirality non-conserving fermion 
condensate, totally unsuppressed by factors such as exp (-coplst/cw) or o. 
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condensate, when correctly interpreted [6], d oes not imply the breakdown of the electric 

charge superselection rule, but reflects the existence of very massive configurations of 

localized charge screened by the fermion vacuum. We reanalyzed these condensates 

for non-zero t-0. Their expressions evince a dependence on cr, such that their free 

field values are recovered as Q -+ 0. For finite Q, though, the core effects become 

negligible at distances far from the monopole center. It is also possible to construct a 

genuinely charge carrying, gauge dependent condensate. A careful calculation shows 

that it vanishes. 

2. The Model 

The model describing the J = 0 partial wave of an isodoublet Dirac field in the 

. as presence of an SU(2) monopole is well known. It is briefly reviewed below only to fix 

notations and to discuss the boundary conditions placed at the core radius. In Au = 0 

gauge, the classical monopole configuration consists of adjoint Higgs and gauge fields 

of the form 

a(O) = H(r) ia , a A(0.l = caij $. I- K(r) a: r 

where a = 1,2,3 in the SU(2) index. H(r) and K(r) approach their asymptotic values 

exponentially: 

K(r) -+ 0 r+ca 

and satisfy H(0) = 0, K(0) = 1. 

The lowest lying spherically symmetric excitations of this system can be parame- 

terized by a collective coordinate, X(r, t): 
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where 

VA = e i)r(r,t)i3/2 t X(O,f) = 0 . 

The J = 0 component of the Dirac isodoublet may be written as 

with [lo] 

where A and cy are, respectively, spin and isospin indices taking on the values 1,2, 

and r5@(*) = &%(*).* It is convenient to express the action of the J = 0 fermions 

a- interacting with the collective degree of freedom, A, in terms of a fermion field, 

(1) 

which is invariant under the residual time independent gauge transformations of the 

theory;t in Minkowski space 

Here we have introduced the two-dimensional Dirac matrices “ii, i = 1,2, ‘y5 = 7’7’. 

* To = 9 r5= , qi= 

t Under such a transformation, X(r, t) -+ X(r, t) + 6X(r) and x(x’) -+ e m(r)75Pxf). 
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In the limit of a point monopole (rn + 0), contributions to the action proportional 

to K(r) are dropped and a boundary condition imposed on the fermions. The condition 

is required to render the truncated Hamiltonian self-adjoint and is dictated by the 

behavior of the field deep within the core where X is heavily suppressed [1,3]: 

(1 - +)x(*)(0, t) = 0 . (3) 

Thus far, the system with a finite-size monopole has proven intractable. In order 

to investigate the possible significance of core effects, we adopt the somewhat naive, 

‘first-order’ procedure of imposing the standard boundary conditions on ,(*) and X at 

the finite radius ro. This approach can be justified as follows. Field configurations with 

X small throughout the core are liable to be dominant in the functional integral owing 

. a- to the positive definite term in the Lagrangian proportional to K2(r). Thus, within 

the core the fermions essentially interact only with the fixed monopole background. 

Their eigenfunctions can be shown to have small lower components (in a basis where 

’ 7’ = 73) throughout the core. It should be noted also that the exact form of the 

boundary conditions on the fermion fields is immaterial so long as they have the form 

f‘* x4 r=ro = 0, and [75, F*] # 0. Nevertheless, the validity of the approximation 

remains somewhat problematic. 

The resulting model remains essentially soluble. As usual, the fermion determinant 

can be explicity evaluated from the propagator in an arbitrary background field, X. 

The reduced, two-dimensional Dirac equation is solved by 

X(*) = e *i(b+arp,)Xf) 

where xt) is a free, massless, two-dimensional fermion, and 

-&b = &a, d,b + ata = -;&A . 

(4 

(5) 
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The boundary conditions on x(*) and X imply a(r = rg, t) = d,b(r = rg, t) = 0 and 

(1 - 7°)xrb = ro, t) = 0. The difference of the gauge field action and the logarithm 

of the fermion determinant forms an effective action depending quadratically on b 

alone. In Euclidean space 

SE[b] = / d2rE[-Fr2(nb)2 -b(8pb)2] . (6) 

This action, combined with the boundary condition on b at t-0 determines the b field 

propagator which is in turn the essential ingredient in the evaluation of fermion matrix 

elements. 

3. Gauge Invariant Condensates 

It has not been possible to evaluate the b propagator in closed form for all values of 

its arguments and of the coupling constant. However, if we restrict our interest to the 

_ : fermidn condensates mentioned above, it is only necessary to extract several limiting 

forms of this function. Thus, if we define 

Wr, 6 7, f) = (b(r, 7) b(f, T’))o , 

the chirality non-conserving condensate can be calculated from 

lim 
jT--7)poO 

(01 *(+I Q(-)(r, 7) $(-I d+)(r’, f)lO) 

=(Ol $(+I d-)(r, 7)10)(01 tf(-) d+)(f, #)jO) 

(7) 

=Ed&d ,,$!i, ezp[2K(r, r; 7,7) + SK(r), f; f, f) - 4K(r, r’; 7,7’)] 

X (01 $+I xi-)( r, 7) xi-) xi;f)(r’, 7’)jO) 
(8) 



where cluster decomposition has been used. The chirality conserving, “charged” con- 

densate is obtained directly as 

(01 ,(*I 7’ x(f)(r, 7)lO) = ezp[2L(r, r; 7,7)](01 RF) T5 xf’(r, 7)jO) (9) 

where 

L(r, f; 7, f) = (a(r, 7)u(f, f))o = - ds’ d,~,rK(s, s’; T, f) . 

(4 
It should be emphasized that the fields appearing in this bilinear (xc*) or both x0 & 

a) are explicitly gauge invariant. Thus a nonzero result will not imply the breakdown 

of charge superselection. 

,, 

The evaluation of K(r, f; 7, 71) is similar to the calculation when rg = 0 [3]. We 
a- 

will concentrate, below, only on the new salient features. K satisfies the equation 

167r 
,2n (r2Q -f~~K(r,f;r,r’)=b(r-f)6(r-f) . 1 

Then 

K(r,f;T,f) =-~[cI-'(~-f,r-f)+d'(r+f -2ro,r - f) -ii (r, f; 7, f)] (12) 

where 

q l(r, 7) = &ln 
[ 
(r2 + T2)p2 1 

and 

(a--&)K(r,f;r,r’)=b(r-@(T-f) , 

&K(r = rg,f;7,7')=0 . 

(13) 

(14) 

(15) 
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Introduce the fourier transform of k in r - r’ to solve these equations. 

IT (r, f; 7, f) = 1 K 1,” dw cos[w(~ - T’)] RF (r, f; w) 

I;rF(r,f;w) = -42 
[A.&r) + ~(wro)K~(wr)lK@-‘) for 

fL(wr)[ly(wf) + Wa$G.@fJ)l 
where 

and 

D(wr0) = - Ibhf0) ‘WL(wrd]-l 
K&q) - [&&ro) + 2wroKCtwro)l . 

c- Inserting eq. (19) into eqs. (16) and (17), 

I;r(r,f;T,f) =-&Qvm~j2(r2+f22+(17-T’)2) 

&Pm -- 
/ T 0 

dw COS[W(T - #)]D(wro)K,(wr)K,(wf) 

(16) 

r<f 
r > f (17) 

(18) 

(19) 

(20) 

Here, Qv-ri2 is the Lengendre function of degree v - l/2 of the second kind [II]. 

The second term is the non-trivial correction to the result of the calculation in the 

original model. Qualitatively, the behavior of the b-propagator at large distances is 

controlled by small w. In the limit of small wrg and 2, D(wr0) + i wru. Consequently, 

one expects to see the correction terms to the b-propagator vanish at large r for finite 

Q, though in a fashion non-analytic in Q. 

From eq. (20) it is clear that as Ir-r’l + 00 the correction will vanish as l/17-~‘1. 

Then, only the limit 7’ + r is needed. In fact, the correction is not singular in this 

limit and one can simply set 7’ = r in the integrand. 

The terms non-analytic in cy can be isolated by setting Q = 0 in the integrands 

wherever it is possible to do so without inducing any divergences. This can be done 



a- 

in the first term of D(wr0) in eq. (19). However, it cannot be done everywhere in the 

second term. Its denominator has the limiting forms 

- j/i&e-’ as z--,00 
Ky(z) + 2zK;(z) a 

-&-&E+O(a+) as z-+0 . (21) 

Setting Q = 0 in this quantity induces an infrared divergence in the w-integral. The 

non-analyticity in LY of the corrections to the b-propagator arise accordingly. The 

behavior of the chirality-breaking condensate in the limit r + oo with Q and t-0 fixed, 

and Q -+ 0 with r and rg fixed is determined by the limits shown in eq. (21). After 

some calculation involving eq. (8) * 

(01 d+) d-)(r, 7)jO) 
1 EQ 

~ r& 4a2l-3 e- Or 

(01 *(+I !d-)(r, 7)lO) azo 4Tc2ro 
J 

TZ-9 e7 
r 

(22) 

(23) 

up to a phase. Here, 7 is Euler’s constant. Note that as a + 0 at fixed r and rg, the 

._ chirali-ty-breaking condensate vanishes; the recovery of free field results in this limit is 

typical of Schwinger model physics. Through comparison with [1,3], we conclude that 

the limits a + 0 and rg -+ 0 do not commute. The first result is of more practical 

interest and indicates that finite-size effects on the chirality-breaking condensates are 

negligible for r >> ro/a. 

The u-propagator is given formally by the combination of eqs. (lo), (12), and (20). 

As before the leading terms in Q can be found by setting cx = 0 in the integrands 

when doing so does not result in spurious divergences; again, only the denominatior 

of the second term in D(wro) can not be assigned its value at Q = 0. The derivatives 

with respect to 7 and r’, and integrations over s and s’ indicated in eq. (10) can then 

* The corrections to the argument of the exponent in eq. (22) can be found by 
expanding D(wr0) for wrg << 1, and evaluating the resulting integrals using [13], for 

-M arbitrary u. The result is an expansion in 2 and Q, with the leading term as given. 
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be carried out leaving only an integral over w to be done. The limit # + r must be 

performed carefully as terms proportional to ln(7 - #)2 arise frequently, not just in 

the correction terms. An intermediate result is 

where 

2r0 L2(r,r;7, f) = - - iI--/ CQ dw cos[w( 7 - f)] 
T 

R o ,/w KV(wrO) + 2wruKt(wro) 
(25) 

x e-42r-r0) 
1 

_ 2esw’ + e-WrO 1 
The first two terms of LQ are identical to the term producing the non-analytic depen- 

dence of the &propagator on cu. The third term is slightly different in that it does not 
a-~ 

depend on r. In the limit 7’ + 7 it contributes a term --% ’ ln[y]. For small Q as 

well its leading contribution is -& (27 + ln[a(r - #)/2mo12}. It is then a matter of 

._ algebra to compute that 

(01 X(*) 75 $f)(r, 7)IQ) -b - 2i r” 
r-w3 7 

a,rgfixed (YFZ 
(26) 

(01 X(*)“/5 x(f)(r, 7)lO) -b - i 
ff+O 2n(r - rg) (27) 

r,rgtkced 

Again, the free field value (91 is obtained in the limit Q + 0 at fixed r, rg. The 

first result demonstrates the known [5,6] result that interactions heavily suppress the 

‘charge-violating’ condensate. The reason is that the charge carried by the fermions 

is compensated by charge deposited on the core, as required by gauge invariance. The 

high Coulomb energy of charge on the core suppresses this condensate [S]. 
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4. Charge Carrying Condensate 

The field x(*), used thus far, is gauge invariant and electrically neutral. We would 

now like to consider the matrix element of an operator which carries the global U(1) 

charge. To construct such an operator, define the charged fermion field (12,131 

x(z)(r, t) = e*ixmq5/2 x(*)(r, t) 
C 

where A, E X(r = 00, t). x(*) remains invariant under local gauge transformations, 

that is, transformations which vanish at spatial infinity, but responds as a charge &l/2 

object to global transformations, which entail a shift in the value of Am [12]. 

(*I - The Dirac equation for xch 1s again solved by eqs. (4) and (5) but with X replaced 

by X - ho, The consequent boundary condition is a(r = 00, t) = 0. The u-field 
c-~ 

propagator is thus given by 

bh(r, +; 7, +I = -/rM dsllpo ds’& l+ K(s, s’; 7,~‘) 

with K as in eqs (12) and (20). The charged operator we will consider is related to the 

operator of eq. (9): 

(01 2s’ q5 x$‘(r 7 7)lO) = exp[2L,h(r, r; 7 7)](01 j$)q5 Xv’ (r , 9 7)jO) (28) 
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We have 

Lch(r, r’; 7, T’) = f /rmds/+mds’& a,,(en[(s-s')2+(r-f)2] 

+ [en(s + 8’ - 2r0)2 + (7 - T1,21> 

+ f lrto ds 1,” ds’ & 8, Qv-42 
s2 + $2 + (7 - T’)2 

2ss’ 1 
+ f I,” ds /,” ds’ m & a,t 

/ 
,” dw cos W(T - #)D(wro)Kv(ws)K,(ws’) 

=A en (r-f)2+(T-Tr)2 
8 (r + r’ - 2ro)2 + (T - T’)~ 

+f /rmds/,mds’ h? 

J ,” dw w2 cos W(T - #)D(wro)K,(ws)K,(ws’) 

(29) 

where eqs. (13) and (14) have been used. As in sect. 3, this expression turns out to be 

finite at r = 7’; it does, however possess infrared singularities in the regions of large 

s or s’. The presence of this divergence has been previously noted [7] and explored 

in detail [S] using the bosonization formalism of Callan [2]. Therefore, our exposition 

here will be brief, and will be limited to the leading behaviour as Q --) 0. 

The term involving a% and that involving D(wro) are separately finite for 0 > 0. 

At Q = 0, however, they develop cancelling logarithmic divergences according to 

fi q2 + a/2n) 
$lio -raJ2’ - 

00 ds’ 
4 I’(3/2 + a/27r) R m 

+Ll” 
2 7rr0 

where R >> r. (At Q = 0, the tncu contribution is equivalent to $J O” ds’/s’, as can be 

-- easily seen by working out the last term of eq. (29) at v = l/2.) 

‘-.Spla 
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Thus, at (Y = 0, u = l/2, &is found to be finite and in agreement with free field 

theory. In particular, eq. (27) is obtained whether x(*) or xch is used. (*:) 

On the other hand, for cr > 0, the remaining integral in (29) proportional to 

a/27r, turns out to contain an a-independent large distance divergence. Specifically, 

for X >> 1 [ll], 

8: Jlr 
Iyv+1/2) x1/2-v 

I 
00 ds 1 

/ 
00 ds =-- 

r(v+l) u-l/2 r S=-2 r 7 + w4 

Evidently, this divergence has the correct sign to drive the expectation valve, eq. (28) 

a.-~ to zero, as required by unbroken charge symmetry. (The apparent persistence of this 

divergence at Q = 0 is not to be taken seriously. Clearly the free field limit must be 

taken before the divergent integrals are performed, in which case this term does not 

’ contribute. This behavior is in agreement with that found in ref. [S].) 

5. Conclusion 

We have identified the 1eadin.g corrections in cy to the chirality and “charge” non- 

conserving condensates of J = 0 fermions about an SU(2) monopole of non-zero size. 

When considering the effects of high frequency fermionic modes on the condensates, 

one should include higher partial waves, and the theory becomes renormalizable, not 

super-renormarlizable. In the context of an SU(5) monopole this raises the question 

of whether results of the sort we have found are consistent with the renormalization 

group. Probably, the basic conclusions that we have reached will remain correct in 

any case: the coupling constant dependence of finite-size core corrections to gauge- 

invariant quantities is such that the free-field results are recovered when the coupling 
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constant is taken to zero; otherwise, the corrections are negligible sufficiently far from 

the core. 
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