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1. Introduction 

Basically there are two areas of accelerator applications that involve beam polarization. One 
is the acceleration of 8 polarized beam (most likely a proton beam) in a synchrotron. Another 
concerns polarized beams in an electron storage ring. In both areas, numerical techniques have 
been very useful. 

2. Accelerating Polarited Beam8 in a Synchrotron 

In a proton synchrotron, a polarized beam is injected and then accelerated with its polarization 
parallel to the guiding magnetic field. If particles see only the guiding field, then there will be 
no depolarization effects. But perturbing magnetic fields, such as the quadrupole magnetic fields 
seen by an off--axis particle, will cause the particle spin to deviate from the vertical direction jr. 
This spin deviation will then precess around fi with 8 precession frequency a~/,,, where frev is 
the revolution frequency, 7 is the Lorentz energy factor and a is a fundamental constant given by 

t 
1.793 

a= 0.0011f3o 
proton 
electron 0) 

The quantity 

is called the spin tune. 
u = 07 (2) 

If v is close to ~0 which satisfies a resonant condition 

m = nzvz + nvvu + nd4 + n , (3) 
a small perturbing magnetic field will lead to a substantial deviation 01 the spin direction which 
then gives rise to depolarization. In Eq. (3) uz, uv and u, are the horizontal, vertical and 
synchrotron tunes 01 the orbital motion of the particles and n, nE, ny, n, are integers. 

The degree 01 this depolarization depends on the distance between u from ~0. The closer u is 
to uo, the stronger is the depolarization. The width sround uo within which the polarization is 
reduced by >SO% is defined to be the depolarization resonance width. It is designated by c and 
it depends on the strength of the perturbing magnetic field. 

The problem comes from the fact that the spin tune is proportional to the particle energy. 
As a result it varies 8s the beam is being accelerated and in doing so crosses resonances. We then 
need to calculate the amount of polarization lost due to each crossing. This is done by applying 
the FoissartStora equation’ 

P+CU = PBoo (2c-*gi2a _ 1) (4 
where Q is the crossing speed 01 u relative to m, P-, and P+, are the beam polarizations before 
and after crossing, respectively. 
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According to Eq. (4), there are two ways to 8ssure 8 small polarization loss.2-5 We either 
quickly cross a weak resonance (r2/o < 1) or slowly cross a strong resonance (t2/o > 1). In the 
later case, the polarization will be flipped after crossing. Anything in between the two extreme 
cases (c2/cr ,N 1) will be harmful for polarization. 

The resonance crossing speed Q is a strightlorward kinematic quantity given by 

a = $(aAT - Au,) 6) 

where A7 and Am are the changes 017 and ~0 per revolution during acceleration. Fast crossing 
speed can be obtained by last acceleration rate A7. For resonances that involve the orbital tunes, 
it can also be obtained by jumping the orbital tune8 8s the beam is being accelerated through 
the resonance by using pulsed quadrupole magnets. 

The quantity in Eq. (4) that remains to be calculated is the resonance width L. This needs to 
be done for all depolarization resonances crossed by the spin tune during the acceleration process. 

3. Calculation of the Depolarization Resonance Widths 

The basic equations 01 motion - the Thorn=BMT equation6 - for the spin 3 in a magnetic 
field is 

Lnx3 (6) 

where 

fi = & [i1+ 4~ + u+ a@,,] 
where $ and B, are the magnetic field components parallel and perpendicular to the instanta- 
neous direction 01 motion, respectively. Note that the spin motion depends on the orbital motion 
since it is the orbital motion that determines the magnetic field seen by the particle. This is one 
reason why the spin motion is more difficult to analize than the orbital motion. The depolar- 
ization resonance width, for example, can be calculated only after the orbital motion has been 
analized. 

More quantitatively, c is defined 8s the Fourier component 01 fi at the resonance lrequency,*~7~8 
i.e., 

where i and i are the horizontal and longitudinal unit vectors, p(8) is the bending radius and 8 
is the accumulated bending angle that increases by 2r every revolution. 

It turns out that the strongest depolarization resonances belong to the two lsmilies7-10 

u = n : imperfection resonances excited by vertical closed orbit distortion; (84 

u=nSfuy :intrinsic resonances excited by vertical betatron motion 01 
particles (S is the periodicity 01 the accelerator.) t 86) 

For these resonances, we need only to keep in fi those terms linear in the orbital coordinates8 
When this is done, Eq. (7) becomes 
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where C is the quadrupole strength. From Eq. (9), we see that most 01 the depolarization action 
results from having vertical excursion in quadrupoles. In deriving Eq. (Cl), we have assumed that 
the accelerator has a planar geometry by design and there is no solenoid81 field. 

The widths 01 the imperfection resonances are obtained by setting y=closed orbit distortion 
in Eq. (9). To do a calculation, it is necessary to input 8 Monte Carlo simulation 01 the closed orbit 
error with a certain given rms. The intrinsic resonance widths on the other hand are obtained 
by setting =betatron excursion in Eq. (9) and do not require any random number generations. 
Their strengths are calculated once the accelerator lattice is determined snd the beam emittance 
is known. 

Table 1 shows the number 01 imperfection and intrinsic resonances that the polarized proton 
beam has to cross for several accelerators, Obviously the high energy synchrotrons will have more 
resonances to cross thsn the lower energy ones. 

Table 2 shows the intrinsic resonance widths’ for three synchrotrons using the program 
DEF’OL.8 The results are for particles whose emittance is the average beam emittance. Res- 
onance widths have also been calculated for ZGS,Q KEK-PS’ and SATURNE.3 

4. Acceleration to High energies 

To accelerate polarized proton beams to very high energies requires special effort. This is first 
01 all due to the fact that the total number 01 resonances to be crossed is simply very large. (See 
Table 1.) Secondly, high energy synchrotrons typically have strong locussing lattices which tend 
to give stronger resonances than the weak locussing lattices. Thirdly, resonance widths tend to 
increase as energy goes higher. 

r- Somewhat more quantitatively, let us take the resonance widths to be very roughly” 

chp -3 X lO"(E/25 GeV) 

The imperfection resonance width is meant to be that after an orbit correction has been applied. 11 
we then take the last crossing approach, the total loss 01 polarization after crossing all resonances 
is 

11 we assume that the acceleration speed is determined by a given rf acceleration per unit distance 
while the UN-jump is determined by jumping vu by 0.2 in 1 psec, then the resonance crossing speeds 
scale like 

Qint ~0.05(~/25 GeV) 

ubp m 5 X 10-s(b/25 GeV) 
(12) 

where 6 is the maximum energy 01 the synchrotron. Note that part 01 the increase in rest+ 
nance widths with energy is compensated by the increase in crossing speed for higher energy 
synchrotrons. 

Substituting Eqs. (10) and (12) into Eq. (11) and assuming a periodicity 01 S = 8, we obtain 

AP - w 6 X 10B3 E(GeV) + 1.5 X 10” E(GeV)2 P 
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Note that for very high energy synchrotrons, the imperfection resonances dominate the 
depolarization. r2 If we demand AP/P < SO%, the maximum energy that a polarized proton 
beam can be accelerated to is then found to be about 40 GeV, which is not too much beyond the 
AGS energy. 

Accelerator 

Table 1 
Number 01 

Energy Intrinsic 
WV Resonances 

Number 01 
Imperfection 
Resonances 

ZGS 12 10 22 
SATURNE 3 2 6 

FNAL (booster) 8 1 14 
KEK-PS 12 10 21 

AGS 30 9 56 
CERN-PS 30 12 55 
CERN-ISR 11.5-31.4 10 38 

FNAL (main ring) a400 250 749 
SPS 1MOO 249 745 

FNAL (Tevatron I) 15@1000 541 1626 

!hbIe 2 

CERN-PS AGS FERMILAB 
(main ring)* 

U 7 I4 u 7 I4 u 7 I4 
10-u, 2.06 .00005 

-o+uy 3.53 .00933 
20-uy 7.64 .00045 
10+ ugl 9.12 BOO47 
30-U&l 13.23 JO087 
20+ UN 14.70 .00050 
40-uvy 18.82 a0077 
30+ ug 20.29 .00309 
so-uy 24.40 A4192 
4o+uy 25.88 .00174 
60 - ug 29.99 .00195 
so+ U# 31.64 .16773 

12 - uy 1.82 .0054 
0 + U# 4.89 .01535 

24-uvy 8.52 .00059 
12+ ug il.59 AI0539 
36-q, 15.22 .01373 
24+ vu 18.29 .OOlOl 
48-q/ 21.93 .00148 
36 + vu 25.00 .02663 
60- vu 28.63 .15666 
48+ U# 31.70 .00233 

0 + UN 10.84 .0256 
6 + vu 14.19 .0060 

12+ I$ 17.54 .0035 
18+q, 20.89 .0016 
24 + ug 24.25 It025 
30 + uy 27.60 a049 
36+q, 30.95 .0062 
42+uy 34.30 .0057 
48 + UN 37.65 .0028 
54 + UN 41.01 XI021 
60 + ug 44.36 XI048 
ss+u, 47.71 .0098 
72+1+, 51.06 -0133 
78 + uv 54.41 .0198 
84 + U# 57.77 .0321 
90 + U# 61.12 .0518 
96+u, 64.47 .1653 

192 + vu 118.10 .0560 
288+u, 171.73 .2952 
384+uy 225.36 -0921 
48O+vy 278.99 .2138 
576 + a+, 332.63 AN98 
672 + vu 386.26 .2995 
768+uy 439.89 .0244 

*Only dominant ones. 



In view 01 this, a better way of acceleration to high energies is needed. One such possibility is 
called harmonic matching. Another is to install Siberian snake devices in the accelerator. These 
two topics are discussed in the following two sections. 

5. Harmonic Matching 

The idea 01 harmonic matching is to make c = 0 at the moment 01 crossing a resonance so 
that there will be no loss 01 polarization due to the crossing. For the imperfection resonances, 
the condition for achieving this is given byr3 (cl. Eq. (9)) 

& 1,‘” exp(iv9e)de C(B)y,,(B) = 0 

where y,,. is the vertical closed orbit distortion. Equation (14) is a Fourier harmonic 01 the 
vertical closed orbit, thus the name harmonic matching. Since (14) is a complex quantity, it 
imposes two conditions on ye., for each resonance to be crossed. 

Before applying (14), there needs to be a good orbit correction in the rms manner. The orbit 
is then slightly changed to fulfill (14). The amount 01 change is rather small and is obtained not 
by the beam position monitor measurements but by empirically optimizing the polarization. 

Harmonic matching for the imperfection resonances has been used successfully in ZGS and 
SATURNE. On-line controls have been applied so that a vertical orbit distortion with the right 
harmonics is generated shortly before crossing and switched off shortly after crossing the rest+ 
nance. The control program makes orbit distortions in symphony with the acceleration process. 

r- To accelerate polarized protons in high energy synchrtrons using the harmonic matching 
technique, however, one needs to do a more accurate matching than ZGS and SATURNE so that 
the imperfection resonance widths are much narrower than Eq. (10) gives. 

To harmonic match the intrinsic resonances is more difficult. The quantity to be matched isr4 

where $+, and & are the vertical betatron phase and beta-function, respectively. 
At the moment of crossing, the quadrupole strengths are changed to satisfy (15). To minimize 

the effect on the betatron motions, this may have to be done keeping the tunes constant during 
the crossing process. Note that the quadrupole strengths are calculated by a lattice fitting routine 
rather than found empirically. 

So far harmonic matching for intrinsic resonances hss not been applied to existing syn- 
chrotrons. It is conceivable, however, that some intrinsic resonances (in the smaller synchrotrons 
for which Siberian snakes are not applicable) can be crossed this way. 

6. Siberian Snake8 

A Siberian snake15 is a series 01 horizontal and vertical bending magnets that does two things: 
1. Makes spin tune u equal to l/2, and 
2. Does not agect the beam orbit outside the device. 

A Siberian snake therefore makes the spin tune independent 01 the beam energy and thus elimi- 
nates the need to cross resonances. 

There are two types of snakes: 
Type I rotates the polarization by 180’ around the longitudinal &axis, and 
Type II rotates the polarization by 180’ around the horizontal i-axis. ---L.-am 
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One way to use the snake is to insert a type I snake at a symmetry point in the synchrotron. 
Another way is to have a type I snake at a symmetry point and another type II snake at the 
opposite symmetry point. The spin tune in both cases will be l/2. 

ip 
There are several possible designs 01 Siberian snakes. An explicit example 01 a type I snake 

(L) (E) (-LO) (z, (ii) (eH0, (-LO) (-z55) (4vg) (16) 

where H and V mean horizontal and vertical bending magnets and the quantities in parentheses 
are the spin precession angles in degrees. 

An explicit example 01 a type II snake isI6 

V HV H VH V 
(-90) (90) (90) (-180) (90) (90) (-99) (17) 

To make spin to precess by fixed angles like the snake magnets do, the magnet strengths have 
to be independent 01 beam energy even during acceleration. One consequence 01 this is on the 
beam-stay-clear requirements. Although there is no net effect on the beam trajectory outside 01 
the snake, the orbit distortion in the snake is not negligible, especially at the lower energies. (For 
this reason, Siberian snakes are not applicable to synchrotrons 01 low injection energy.) This 
beam-stay-clear requirement imposes strong constraints on the snake aperture and is a major 
concern lacing the snake designers. 

Error effects with snakes also need attention. Some analytical work has been perlormed,l’ 
which concludes that if a resonance existed before inserting the snake, then it may still have a 

r- remnant depolarization effect after the snake is inserted. In particular, if the accelerator has a 
resonance width c in the absence 01 the snake, and if the two circular arcs 01 the accelerator 
contribute equally to the resonance width, then after the snake is inserted the resonance will shift 
the spin tune away from l/2 according tol’tll 

single snake : u = f+ ICI cosd 

double snake : cos xu = cos 24 sin2(r14/2) 
(18) 

where I$ is the phase factor 01 the complex resonance width. Clearly if the spin tune is shifted to a 
value that satisfies a resonant condition, then even the great snakes do not save the polarization. 
Numerical simulation 01 errors and tracking the spin motion crossing resonances in the presence 
01 a snake will yield useful information here. 

7. More rtudies 

In this section, we mention a few additional effects that can be studied by numerical means. 
(1) The imperfection and the intrinsic resonances are not the only ones encountered during 
acceleration. The other resonances, although weaker, can still contribute to loss 01 polarization. 
Among them are 

v = n f uU : excited by quadrupole field errors that destroy the periodicity (84 
u = n f uz : excited by horizontal excursion in skew quadrupoles (84 

u=nSfutfuy : excited by sextupoles (84 

Furthermore, multipole field errors will excite higher order resonances. Widths 01 these res- 
onances need to be calculated. The programs that are used to calculate the imperfection and 
intrinsic resolaaces can be extended easily to calculate for resonances 01 type (8~) but not for 
types (8d) and (Ge). * 



It should be pointed out that Eq. (9) is a result after linearization. To calculate the width 01 
a nonlinear resonance, the more general result, Eq. (7), must be used in which nonlinear terms 
up to the proper order are included in fi. One step toward this direction has been made in Ref. 
18; the spin rotations are calculated to second order for quadrupoles and for sextupoles. 
(2) The Froissart-Stora equation assumes a single isolated depolarization resonance. This as- 
sumption is not valid if the synchrotron oscillation plays a role during the resonance crossing. 

According to the F-S equation, the polarization after crossing versus the resonance strength 
is a simple exponential function given by Eq. (4). What wss observed in SATURNE for the 
imperfection resonance u = 2, however, looks like Fig. l(a).3 The discrepancy has been re 
cently explained by the SATWRNE group” using a tracking simulation taking into account 01 
synchrotron oscillations. Part 01 their results is shown in Fig. l(b). The agreement is rather 
convincing. 

2.0 v I I I I I I 

1.5 - - 6= Lexlo-3 (b) 

-  l -  & :o.gx10-3 

--- 6 = 0 (Froissart-Store) 

I I - 
-5 0 5 I I I I I I 

RESONANCE STRENGTH 0 5 IO 15 20 25 30 
9-83 RESONANCE STRENGTH 4643A2 

Fig. 1. (a) measured polarization after crossing the u = 2 res- 
onance in SATURNE versus the resonance strength which is 
controlled by exciting a vertical orbit distortion. (b) result 01 
a simulation taking into account 01 synchrotron oscillations. 

(3) In performing a slow crossing 01 an intrinsic resonance, particles with small emittance may 
not get flipped since their resonance widths are narrow. Simulation may help in estimating 
polarization loss due to this effect. 
(4) Crossing is not necessarily done with a uniform speed from u-u0 = -co to +oo. For instance, 
when crossing an intrinsic resonance, the crossing speed may be temporarily much enhanced by 
a UN-jump. This makes the FroissartStora equation not applicable. 

Equivalents 01 the F-S equation exist for a few special csses 01 crossing scheme.8p20 However, 
one might still need to consider complicated crossing schemes in practice. One resson is that the 
pulsed quadrupoles generally have complicated time response. Another remon (perhaps minor) is 
that the crossing speed assumed in the F-S equation is uniform in the variable 8 (the accumulated 
bending angle), while in practice the energy accelerations are made at the rl cavities. Numerical 
tracking will 01 course be useful for general crossing schemes. 
(5) When crossing an intrinsic resonance with a uz-jump, the pulsed quadrupoles alters the 
accelerator locussing lattice. Effects 01 this on the orbital motions - and thus on the depolarization 

-- resonance width - should be studied. 
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8. Polarization in an Electron Storage Ring 

In a proton synchrotron, the main problem is to accelerate a beam crossing depolarization 
resonances. In an electron storage ring, we have a different problem. The beam energy is constant 
in time and depolarization comes from the noise associated with synchrotron radiation. 

Another difference between protons and electrons is that a stored electron beam will slowly 
polarize itself through the Sokolov-Ternov mechanism. 21 11 an unpolarized beam is injected into 
a storage ring, its polarization will build up exponentially along the vertical 0 direction according 
to 

P(f)+-[1-ex,(-Q-$ f)] 

where PO = 8/S & = 92% is the polarization level reachable in the absence 01 depolarization 
effects, rp is the polarization time constant given by 

rP 
= gg set R(mMm)2 

E(GeV)5 (20) 

with R the average ring radius and p the bending radius. 

a.- The depolarization effects are lumped into the parameter ?D. In a planar ring without errors, 
there is no depolarization effects and SD = 00. Otherwise rD needs to be calculated. In the next 
two sections, we will describe a program SLIM that offers such a calculation. 

9. SLIM Without Spkn 

Before going on to discuss the polarization calculations, we will first describe the part 01 SLIM 
that calculates the orbital quantities regardless 01 spin since the technique used here is different 
from the conventional method and will be useful in describing the spin calculations later. 

We begin with the vector= 

t 2 
2’ 

x= y”, 

_ A&E 

21 
22 
=3 

= x4 (21) 

25 
m =6 A 

that describes the orbital deviations 01 an electron. All beam-line elements (bends, quads, rl 
cavities, skew quads, solenoids and drifts) are then described by 6 X 6 matrices. Sextupoles are 
included by linearization around the closed-orbit. 

The most distinct feature 01 SLIM is that it employs an eigen-analysis and all interested 
physical quantities are expressed in terms 01 the eigenvalues and eigenvectors resulting from the 
analysis. This is in contrast to the conventional technique which expresses the physical quantities 
in terms 01 the various machine functions (the @-functions and phases, the dispersion functions, 
etc). The adavantage is that by using a 6 X 6 formalism, all coupling effects among the three 
dimensions a.re included. As a comparison, the @-functions are undefined when there is x-y 
coupling. This advantage becomes critical when performing the polarization calculations because 
spin motion depends sensitively on the orbital motions and it is necessary to include the spin-orbit 
couplings between spin and all three orbital degrees 01 freedom. a 
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Once the storage ring lattice - including the quadrupole misalignments and orbit correctors 
- is determined, a closed-orbit is calculated in the &dimensional phase space. 

As shown in Fig.2, there ate two places (indicated by dotted boxes) where SLIM makes detours 
to calculate the unperturbed and the perturbed machine functions. These are for display only 
and not used later. 

Lott ice r-------- 
(including errors) ~~x,y,lyx,y~~x.yl etc, 

Machine Functions] 

1 

-w-w---- 

6dimensional 
Closed Orbit 

1 ---m--w 
Set Up ‘Perturbed Machin 

6x 6 Matrices *L~ct~ion~xJ j 

Fig. 2. Flow chart for SLIM. 1 
Radiation 

Damping Constants 

$ 
21 Distribution 

Moments <xi xi) 

IF ISPIN=l 
*- 

Spin Bose Set Up lo and Beam 
Vectors fi,r3r,f - 8x8 Matrices - Polorizotion 

cm - 

Knowing the matrices 01 all the beam-line elements, we multiply them sequentially to obtain 
a total 6 x 6 matrix. The eigenvalues 01 this total matrix form three complex conjugate pairs. 11 
the linear lattice is stable, all eigenvalues have absolute value 01 unity. Otherwise the motion is 
unstable and the program is stopped. The eigenvalues then give the three tunes according to 

Xk = exp (ki!huk) k = I, I&III (22) 

Radiation damping constants are calculated by slightly modifying the 6 X 6 matrices. For 
example, the rl cavity matrix will take into account 01 the reduction in z’ and r/ due to the 
acceleration by changing the 22- and the 44elements from 1 to I-eV/E. The bending magnets and 
the quadrupoles will also be similarly modified. After these modifications, we multiply matrices 
to obtain a total 6 x 6 matrix whose determinant is no longer unity. The eigenvalues 01 this 
matrix then give the radiation damping constants crk: 

hk = exp (-ok f i2nuk) A = I, II, III (23) 

The beam is stable iI all three damping constants are positive. Otherwise, the program is termi- 
nated. 

The program also gives the beam distribution in the &dimensional phase space by calculating 
the second moments: 

(ziZj)(8) = 2 kMg m (l&12) Re IEki(8) E;t(S)I 
, 

(24) 
- TLisBb 
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with 

(lAk12) = 7.2 X 1O-28 $ f d8 ‘$“;~* 

where Q(s) is the k-th eigenvector (complex) of the 6 X 8 matrix for one revolution around s and 
Eki is the i-th component of Ek. We have assumed that the eigenvectors have been normalized 
and all lengths are expressed in meters. Eq.(24) of course contains information on the z- and 
y-emittances, bunch length, beam energy spread, tilting angles in z-z’, y- 9, z- y planes, etc. 

If the flag command for doing the spin calculations is on, we then proceed to the next section. 

10. SLIM with Spin*‘~*~ 

Knowing the electric and magnetic fields along the closed orbit, spin motion of a particle 
that follows the closed orbit can be determined by the Thomas-BMT equation. Each beam-line 
element is then associated a 3 x 3 rotation matrix that describe the spin precession in this element. 
Multiplying all these 3 X 3 matrices together gives a total rotation matrix T. 

The beam polarization at equilibrium is going to lie along a direction ri (8) at position s. It is 
given by the rotational axis of the rotation T, i.e. 

Tii=ii (25) 

A fully polarized particle will have its spin along ir. Two axiliary unit vectors ri, and 2 are then 
-J1- defined so that A, ti, and C form an orthogonal set and precess according to the Thomas-BMT 

precession along the closed orbit. In general, a slightly depolarized electron will have spin 

3 =ti+c?l?a+pi (26) 

where la, /?I < 1. 
The spin part of SLIM is a generalization of the orbital part. The difference is that the spin 

degree of freedom is included in addition to the three orbital degrees of freedom. The vector 
instead of (21) is now 

x= (27) 

The next step is to form the corresponding 8 X 8 matrices for all beam-line elements that transform 
the vector (27). The upper-left corner of these matrices will be simply the 6 x 6 matrices used in 
the orbital calculations. The upper right 6 X 2 will be zero because spin motion does not affect 
orbital motions. The lower-right 2 X 2 gives the spin precession while the lower-left 2 x 6 gives 
the critical spin-orbit coupling coefficients. The matrix looks like 

[T2zpy%-] (28) 

We then multiply all 8 x 8 matrices in sequence to obtain the total matrix and calculate its 
eigenvalues and eigenvectors. Three pairs of the eigenvalues and eigenvectors are the orbital OIIU+~ 
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obtained before. The fourth eigenvalue gives the spin precession tune, while the fourth eigenvector 
is used to calculate TD ’ 

ri'(sec-l ) = 3.64 X 1o-'g ; f &s I(lm c E;5 Ek,)* + (h c E;, Ek8)2]8 (29) 
k A 

where C is the circumference of the ring. Eq. (29) is the final result. The procedure of spin 
calculation is illustrated in Fig. 2. 

To simulate the depolarization effects, we start with a perturbed lattice with a known dis- 
tribution of orbit distortion dipoles representing quadrupole misalignments. The resulting orbit 
distortion is then corrected by a set of orbit correctors to an rms value similar to that observed. 
Such a distorted lattice, including sextupoles, are fed into SLIM to calculate the equilibrium 
polarization, Po/(l + z) of Eq. (19). The results are typically plotted while scanning the beam 
energy. 

If the beam energy is such that the spin tune Y = ay is close to one of the linear depolarization 
resonances 

u l ut,fl,6 = n (30) 

SLIM predicts a strong spin-orbit coupling and thus a loss of beam polarization. Due to the 
matrix technique used, SLIM does not give any information on the nonlinear resonances. 

Figure 3 is the result of a simulation for the storage ring SPEAR. The rms orbit after correction 
*- is 1.2 mm. Figure 3 also shows the experimental results.% As can be seen, the agreement is 

satisfactory except that the nonlinear resonance u-u,+u, = 3 has been missed by the simulation. 
It should be emphasized that the orbit distortion in the simulation is the one after correction. 

The Fourier contents of a corrected orbit and an uncorrected orbit are very different - yielding 
very- different predictions on polarization - even if the two have the same rms value. See Fig. 4. 

0 

+ 
* 

I ’ 1 I 1 I ,I I 
3.6ot 3.62 t 3.64 t 3.66 

v-v; =3 Y-YI+‘L$=3 l&=3 

.-. E GeV) - 

Fig. 3. SLIM simulation compared with 
the measured data for the storage ring 
SPEAR. 

(b) 

Fig. 4. (a) orbit before correction; 
(b) orbit W ~WRUM. 
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Clearly calculations of c for a proton synchrotron and rg for an electron storage ring are 
closely related. It has not been demonstrated explicitly how this can be done and how programs 
can be applied to both csses. If this is established, then for instance the eigen-analysis can be 
applied to proton synchrotrons as well and vise versa for the proton programs. 

11. Nonlinear Effects 

As mentioned before, one serious drawback of the SLIM technique is that it does not treat the 
nonlinear resonances. These include the sextupole resonances (Se) and the synchrotron sideband 
resonances u f ut,y f kv, = n with k # 0. These resonances have been observed in SPEAR26 
and will only be stronger for the higher energy rings because 

- the sextupoles tend to be stronger, and 

- the energy spread is larger and synchrotron motion becomes important 

lb) 

- 37.0 37.5 3zo 37.5 38.0 
w-03 SPIN TUNE Y 484X6 

Fig. 5. (a) results of SITROS tracking for the storage ring PETRA; 
(b) SLIM results for the same lattice. 

One effective way of studying the nonlinear effects is by numerical simulations, as done by 
Kewisch using the program SITROSn The result for the storage ring PE3’R.A is shown in Fig.5(a). 
It clearly contains a structure of nonlinear depolarization resonances. Fig.S(b) gives the linear 
SLIM calculation for the same lattice. There is a general qualitative agreement between these 
results. 

A simulation program can also be used to study the effect of beam instabilities on polarization. 
One might expect that if the beam intensity becomes high enough so there is a significant blow-up 
of the beam emittance, the effect on polarization will not be negligible. 

One more possible application of a tracking program is to simulate the spin motion when 
two beams collide. The beam-beam interaction is a very nonlinear effect, potentially exciting 
depolarization resonances of high orders. 38 In this respect, there has been suggestions29*30 of 
imposing a special set of spin matchin 

lo 
conditions (see next section) exclusively for the beam- 

beam interaction. One such suggestion is based on the argument that, although higher order 
resonances are excited, beam-beam depolarization is dominated by the linear u&u, = n resonance 
with the higher order resonances smaller by a factor of the order of rrad/rp (where rrod is the 
radiation damping time) which is < 1. If such a beam-beam spin matching c8n indeed be achieved, 
the beam-beam interaction will no longer cause depolarization. Tbese expectations need to be 
confirmed by a large amount of tracking eflorts. - -‘_;--=- 
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12. Longitudinal Polarization and Spin Matching 

Up to now, we have been talking about a vertical beam polarization. The experimenters, 
however, may request for a longitudinal polarization at the interaction points (IP) where beams 
collide. To do that, we install a “spin rotator” which consists of a few horizontal and vertical 
bending magnets on one side of the IP to rotate the polaeizarion from 9 to i-direction and similarly 
on the other side of the IP to restore the polarization from i- back to #-direction. In the rest of 
the ring, polarization is along i. 

One design of spin rotator is the “mini-rotator” for HERA.31 On one side of the IP, the 
rotator consists of 

arc + (-3kI25) (-g.3) (7715) (ii) (-3ik25) (44t53) -) Ip (31) 

On the other side, the H magnets are symmetric with respect to the IP while the V magnets are 
anti-symmetric. The total length of the section (31) is 45.5 m. The H magnets are part of the 
normal bending in the ring geometry. There are no quadrupoles in the insertion. 

Fig. 6 shows the lattice and beam envelopes for HERA with mini-rotator. A typical problem 
for the spin rotator designs is the orbit distortion inside of the rotator (just like for the Siberian 
snakes) and the associated stringent beam-stay-clear requirements. The mini-rotator has a 17 cm 
maximum vertical orbit displacement at 27.5 GeV snd varies with the beam energy. 

There is another more subtle problem: rotators are very strong depolarizing devices. To avoid 
their depolarization effects, it is necessary to fulfill a set of conditions on the quadrupole distri- 
bution of the ring called the spin matching conditions. 32 The exact number of these conditions 

*- vary with details of the rotator design. Typically there lue 10 conditions with several of them 
automatically satisfied due to symmetry of the lattice. 

Triplet Triplet 
A . ---mastlfG-.. . . ..1..1..1 -- 

Mini-rotator rf Cells lnteroction 
Region 1 

Fig. 6. I-ERA lattice with the mini-rotator. 
For the mini-rotator, there are 4 nontrivial spin matching conditions to f~lfill.~~ Two of them 

are imposed on the regular IVC sections: 



where tOapin and & are the spin precession phase and the vertical betatron phase defined to be 
zero at the midpoint of the arc. The other two conditions are for the interaction region: 

(34 
/I.R.Gfi ~0s hi h-0 

where &,# are set to zero at the IP. 
A fitting program is needed to simultaneously perform the optical and spin matchings. For 

the mini-rotator, quadrupole strengths in the interaction region and in the arc are used as fit- 
ting variables. Such a fitting program eventually will become part of the on-line lattice control 
program. 

13. Imperfections and Harmonic Matching 

Depolarization resonances are excited by imperfections. It turns out that for each resonance, 
there exist two conditions that would eliminate its strength. (This is similar to the proton syn- 
chrotron case, remember that t is a complex quantity and to make c = 0 requires two conditions.) 
In PETPA, the beam polarization has been shown to improve from 30% to 80% by varying a 
certain Fourier components of the vertical closed orbit. l3 Such a procedure is called harmonic 
matching. The change in orbit to reach the best polarization is hardly noticeable. These effects 
have been simulated on SLIM, yielding Fig.7.= 

=- 
loo 

c--- , 
80 - 

12+u, 
‘SPIN TUNE Y 

Fig. 7. Simulation of improving beam polarization by harmonic matching. 
The spin matching and harmonic matching described above are linear effects. Strong nonlin- 

eariCes may contaminate these matchings and cause depolarization. This is especially a question 
for the higher energy storage rings such as LEP, as explained before. A tracking program would 
provide useful information here. 

Each depolarization resonance caused by imperfections requires two knobs for harmonic 
matching. The number of nearby resonances then determines the total number of knobs needed to 
optimize the polarization. Since the spin matching and the harmonic matching are both based-on- 
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the principle of eliminating the resonance strengths, it is conceivable that some of the harmonic 
matching knobs can be conveniently provided by the quadupoles that are used to spin match the 
rotators. The right hand side of eqs.(32) and (33) are then replaced by values that an operator 
desires to tweak into the storage ring. 
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