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ABSTRACT 

In this paper it is shown that supersymmetry is broken at any finite temperature. 
r- 

The current algebra relations that indicate the presence of a Goldstone fermion are 

generalized to finite temperature in the real time formalism. 

The existence of a massless pole in fermionic thermal Green’s functions is thus pre- 

dicted. Explicit calculations in several models confirm the existence of this Goldstone 

fermion at finite temperature. It is found that the residue at the pp = 0 pole vanishes 

as the temperature goes to zero. 
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INTRODUCTION 

Supersymmetry plays a very important role in current attempts to construct realis- 

tic models in particle physics. (It might provide for solutions to outstanding problems 

like, for example, naturalness because it provides a natural mechanism for cancelling 

divergences.) However, despite its appealing features, supersymmetry (SUSY) must be 

broken in nature since we do not observe any bosonic partners of fermions. If SUSY is 

to be incorporated in the framework of unified theories it is necessary to understand 

the effect of finite temperature in these theories since they are expected to describe 

physics in the early universe. 

Das and Kakul were the first to realize that at high’ temperature SUSY behaves 

differently from other symmetries. While most symmetries - with few exceptions2 - 

4 broken at zero temperature are restored at sufficiently high temperature, unbroken 

SUSY at T = 0 breaks at high temperature. 

In a more recent work, Girardello3 et al., have studied SUSY breaking at finite 

-temperature. They conclude that such breaking is a natural consequence of different 

statistics for bosons and fermions. 

However, despite this automatic breaking of SUSY at 2’ # 0 they state that there 

are no Goldstone fermions associated with this breaking, instead they suggest that 

SUSY breaking is explicit due to boundary effects. Their argument relied heavily on 

the fact that in the Matsubara (imaginary time) formalism the minimum energy of a 

fermion is 2wT. 

Van Hove4 has recently argued that there is a subtlety in the definition of the 

thermal averages of variations of operators under a SUSY transformation. This point 

has been further investigated by several authors5v6f7 and they conclude that a careful 

treatment of the SUSY transformations leads to a “graded” thermal average in which 

both bosons and fermions obey periodic boundary conditions in imaginary time. 

‘-..s* 
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Thus they were led to conclude that if SUSY is unbroken at 2’ = 0 it stays unbroken 

at any temperature. 

Their proof relies on the fact that a SUSY transformation involves a constant 

anti-commuting (Grassman) parameter and proper account of this parameter in the 

density matrix leads to the “graded averages.” 

However, these authors compute Green’s functions which do not have physical 

realization because they do not obey the physically correct boundary conditions in 

imaginary time. As it has been realized by Girardello et al., this Grassman parameter 

cannot be constant in imaginary time if one decides to preserve the right boundary 

conditions for the physical Green’s functions. In this paper we try to clarify some 

aspects of the problem looking at the behavior of Green’s functions with the correct 

--boundary conditions in imaginary time. 

Although at finite temperature Lorentz invariance is lost, one can still quantize 

a theory in a Lorentz covariant way. 8 Indeed, it is known that there are two differ- 

ent formalisms that can be used to study field theories at finite temperature8jgp10: 

imaginary time (Matsubara) where the energy is discrete but momentum is continu- 

ous (non-covariant) or real-time where energy and momentum are continuous variables. 

Whereas the first is best suited to study the perturbative aspects of the theory, it is well 

known that in order to analyze real-time response functions the second is necessary.” 

There are subtleties in going from one formalism to the other, and we argue that when 

Green’s functions are studied in real-time formalism, the essential physics is exposed 

clearly. 

It is shown here that zero temperature Ward identities do translate with minor 

modifications to finite temperature in the real-time formalism and, as a consequence of 

this, a Goldstone fermion is associated with SUSY breaking at T # 0. Since Goldstone 

particles arise as excitations produced in a system as response to long wavelength 
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pe,Aturbations, it is necessary to study the corresponding Green’s functions in the real- 

time formulation to see the presence of these particles. 

The paper is divided as follows: in Section 1 the zero temperature Ward iden- 

tities and current algebra relations are reviewed. In Section 2 the finite temperature 

formalisms are reviewed exposing the differences between the imaginary and real-time 

approaches. The results of Section 1 are extended to finite temperature in the real- 

time approach. 

Section 3 is devoted to the explicit computation of the fermion thermal Green’s 

function for several models exposing the physical mechanism that gives rise to the 

massless pole and its limit as 2’ + 0. 

Since some doubts have been raised as to the validity of the effective potential in 

2. terms of the auxiliary fields, an Appendix is devoted to this point. 

The conclusions are summarized at the end of the paper. 

1, REVIEW OF ZERO TEMPERATURE WARD IDENTITIES 

Before analyzing the behavior of the SUSY theories at finite temperature, we will 

briefly review the standard T = 0 Ward identities and their relation to well known 

results in current algebra and Goldstone’s theorem. 

The theories we will deal with consist of supermultiplets (4, $J, F) of bosons, Ma- 

jorana fermions and auxiliary fields. 

The supersymmetry transformations are written as 
sqi = Sz$(z) 

W(4 = 1-i aw - fwlfi~ 
6F(z) = s P i p $!+r) 

(l.la) 

(l.lb) 

(l.lc) 

where 6~ is a constant grassman (Majorana) parameter. These relations can be gen- 

eralized to chiral theories in a straightforward manner. Under the transformations 
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(l.la,c) the change in the action is: 

where SP(s) is supercurrent. 

We will generahze the transformations (l.la,c) with k(z) a space-time dependent 

parameter. Define 

where pa(si) stands for either bosonic or fermionic fields. Let us perform the infinites- 

imal transformation (l.la-c) in the numerator of (1.3) this amounts to a change of 

variable in the functional integral and since it is invariant under this change we see 
e- 

that 

writing &i(z) = (aCpi/aZ) k(z), Eq. (1.4) reads: 

a,,(S,(z)cpl(zl).‘.(pn(sn))J + S(zi- 2) 
( 

~l(~l)‘..~;(zz;)...~~(Z~) 
i 1 J 

+ J&)(IWP~ . -4 + (6 iW4 - F(4) ~1. -4 J+, + J&z)@ i’ $J(~CPI . . .> = 0 . 
(1.5) 

This is the most general form of the Ward identities.12 Consider the case n = 1, 

cp1 = T$ and Ji = 0 in Eq. (1.4). This gives 

or 

/ ddz $&,(4 4 (4) = (F) . 
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In Eq. (1.7) we have assumed that the fields 4 and F can have position independent 

vacuum expectation values. Equation (1.7) is the well known current algebra relation, 

if (F) # 0 it implies that there is a Goldstone fermion in the spectrum. Another 

interesting relation can be derived. Consider Eq. (1.4) with n = 0 but J # 0. 

a~z(S~(Z)>~ + J&)($(~))J + (i ?4(Z> -F(z)) JJ~(z) + JF(z)(~ B$(z))J = 0 . (1.8) 

Perform a Legendre transformation 

r [PiI = F[ Jl + / Ji(s)Pi(z) 

Ji(z) = 6r [pi(‘)] 

biCx) ’ 

- -thus after integrating over Z, this leads to the result: 

(1-Q) 

(1.10) 

Now take the functional derivative S/&~(Z), and set the sources to zero assuming 

@k))J Jx 21 (F(z)) J Jz f we find: 

or 

0 _ WFY $1 - I a4 $z, = f s;yp = 0) ) 

(1.11) 

(1.12) 

where V[F, ~$1 = -I’[$, F] f or constant fields ($ = 0) and ST’(p) is the inverse of the 

full fermion propagator. Relation (1.12) is another expression of Goldstone’s theorem, 

since it implies that whenever / # 0 the full fermion propagator has a pole at zero 

momentum. 
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2. FINITE TEMPERATURE FORMALISM 

Although at finite temperature a field theory looses its Lorentz invariance because 

the plasma of excitations define a reference frame (its center of mass), the theory can 

still be quantized in a fully covariant fashion.’ 

One can write down a covariant density matrix operator 2~ (see Ref. 8) and the 

thermal averages of physical operators as (0) = (Tr 0 2~ /Tr 2~). The heat bath 

defines a reference time-like vector Ua with UJJ* = 1. Thermal averages will depend 

upon the invariants pPUp, p,& and pPp” where pP = (l/T) UP and T is a Lorentz 

invariant quantity (temperature in the rest frame of the heat bath).8 In the rest frame 

of the heat bath 

2~ = Tr eBBH (2.1) 

(0) = 
Tr 0 e-pH 

Tr e-bH (2.2) 

In Euclidean space (imaginary time) the partition function (2.1) can be written as 

a functional integral over fields10p13: 

2~ = J D$...exp[- 
B 

10 J d7 d34v(4, 41 , (2.3) 

where the r variable (imaginary time) is restricted to the interval 0 5 r 5 /3 and the 

fields obey the periodicity conditions: 

NJ, 3) = 4(0,4 (bosons) 

w, 2) = -$(O, 3) (fermions) . 
(2.4 

An alternative way of quantizing the theory is the real time method in which, for 

example, the Minkowski space propagator is: 
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D(z) = fiWBHT 9 (4 8 W 
Tr e-fiH (2.5) 

where $ (z, t) = eiHt cp(z, 0) eSiHt is the Heisenberg field operator. 

While the imaginary time formalism leads to non-covariant Feynmann propagators 

in which energies are discrete [(2n + 1)~//3 for fermions, 2n(n//3) for bosons] and 

momenta are continuous , the real-time approach leads to fully covariant propagators 

with continuous energies and momenta. 

The imaginary time method is best suited for the study of the perturbative ex- 

pansion of the theory. However, in order to study the response of the system to 

external perturbations one has to examine the real-time linear response functions.g 

-*The real-time (Minkowski space) propagator D(Z, t) is the analytical continuation of 

the imaginary-time (Euclidean) propagator D(T, 2)'~~' to --oo 5 t = ir 5 +co. As 

has been pointed out in references 10 and 11, the fourier transform D(ko, z) is not the 

.= continuation of D(w,, i). D( wn, Ic) has to be continued to arbitrary Euclidean energy 

w (this continuation is uniqueg), D(w, Ic) is analytic in the right and left w plane with 

possible discontinuities along the imaginary axis that yield the spectral density: 

p( ko, ;) = D( iko - E, z) - D( iko + c, i) (2-f-3 

and finally: 

D&o, k) = D[i(ko + ic),;] + P(ko, k) 
(e@O - 1) . (2.7) 

The poles of D(ko, i) define the energy of excitations of momentum i in the reference 

frame of the heat bath. 
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The real-time free propagators for bosons and fermions (in the heat bath reference 

frame) read*yl’: 

6(k2 - m2) 
Ddk)=&;2+jr+2s e@E-l (bosons) 

Sg(k)= 
F- 

;+ic-27r(,X+m) a(e;;-+;2) (fermions) (2.8) 

E = (SE2 + rn2p2 . 
Now we are in position to extend the result of Section 1 to finite T. 

We start our discussion recalling Eq. (2.3). It has been recognized by Girardello3 

et al., that the SUSY transformations (l.la,b) with constant 6~ are incompatible with 

the boundary conditions in Euclidean time for the physical fields, therefore one must 

impose e- 

k(O) = -S@) . (2.9) 

_ We generalize the transformations (l.la-c) with a(??, r) with the antiperiodicity con- 

dition (2.9) in the T variable. 

Define the thermal Green’s functions in terms of the physical fields in Euclidean 

time: 

De -+ - 
exp (- I/ dr / d3rL + I/ d7 1 d3z Jipi) 

(same with J = 0) 

The steps leading to Eqs. (1.6) and (1.12) can be followed leading to: 

%,r ( s/@ 9 7) $ (2, T’) > B + 6(t - ?) 6(r - r’)(i y$(2)7) - F(%, T))a = 0 . (2.10) 

In this expression we can continue analytically to real-time and integrate over Z, t 

leading to 

/ d%d%z,t &L(%, 0 + (T 0)/g = w/9 * (2.11) 

‘-..a* 
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By the same token, introducing the Legendre transform I’B, and continuing to real 

time we find 

I 1 
a-8 

d%dt WJ - S(t - 2) 6(f - 1’) + (F) Pr@ 
@ ww%w(~,t) =O 1 (2.12) 

where we have assumed that $J and F may acquire position independent thermal av- 

erages. 

Equation (2.11) can be written: 

avw4) 
34 <4>)g==v = f Sj@o =o, LO)=0 . 

<F>p=/ 

(2.13) 

The physical meaning of Eq. (2.11) is that if the auxiliary fields acquire a non-vanishing 

-*thermal average a zero momentum (long wavelength) fermionic (collective) excitation 

can be created with zero energy, this is the analogue of the Goldstone theorem at 

T = 0.14 

The-above analysis indicates that whenever f # 0 there is a “massless” excitation; 

however there remains the question of under which circumstance f # 0. To understand 

this we recall the zero temperature relation15 

m&m+(F) (2.14) 

where “B = mass of a boson and mF = mass of the fermion. This relation can be seen 

to hold at finite temperature leading to the result that (F)a # 0 at T # 0. Indeed at 

finite temperature the left-hand side of (2.12) is replaced by the temperature dependent 

“effective” masses and the right-hand side by (F)p. However, since the thermal bath 

of excitations treats fermions different from bosons through the statistics we expect 

their “effective” masses to be different, indicating that (F)@ # 0 at T # 0, and indeed 

-w explicit calculation shows this expectation to be correct. 

‘-..e* 
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We are, therefore, led to conclude that at any finite T # 0 SUSY is broken and 

as a consequence there is a massless fermionic excitation. Mass here is defined as the 

value of the energy necessary to create a long wavelength excitation in the reference 

frame of the heat bath. 

In the following section we will carry out the calculations outlined above for some 

specific models, to show how the Goldstone fermion arises in these examples. 

3. EXPLICIT CALCULATIONS IN SOME MODELS 

In this section we will compute explicitly the fermion propagator at finite temper- 

ature in the real-time formalism as well as the effective potential for the scalar fields 

in different theories and the relation (2.13) will be checked. We study examples for 

“which SUSY is unbroken at T = 0 and show the mechanism of breaking at T # 0 

and the appearance of the massless fermion. 

Model A: Wess-Zumino in D = 4.16 

The model is defined by the supermultiplet Q, = (2, \Ir, U) where 2 = I/ fi (A+ 

iB), \Ir a majorana spinor and U = l/ fi (7 + is) an auxiliary field. A and 7 are 

scalar and B and 5 are pseudoscalar fields. The Lagrangian is: 

L =a,za,z*+~~;~~+u’u+wP(z)+u’P(z*)-~~[~+~ff(z)+r-p”(Z 
(3.1) 

where rk = [l/2( 1 f 75)] and P( 2) is a polynomial of at most third order in 2. We 

choose: 

P(Z)=-eZ+;z3 (3.2) 

with ! and g positive constants. In order to calculate the effective potential, we assume 

that the scalar fields A and 7 can acquire expectation values A and F, respectively. 
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We shift the fields A = A’ + A ? = 7’ + F, the induced masses for the particles can 

be read off: 

m$ =-$=(-$A2-F) (3.34 

rni =-$(-$A’+F) 

The one-loop effective potential in terms of A and F is: 

V,,,[A,J’] =Vtree[A,J’l +f/ $$g Cn[k2 + m$] + f / &(n[k2 + m2B] 

/ 

d2k - 
04 

tn[k2 + m$] 

(3.3b) 

(3.3c) 

(3.4 

V&.[A, F) = - f F2 - & F[; A2 - t] 

Follbwing the methods of Dolan and Jackiw lo the finite temperature effective po- 

tential can be written as T/e// = VT=O + Vp with: 

Ei = (k2 + mf)lj2 . 

To apply the results of Section 2 we are interested in cW,~j/l?A. From Eqs. (3.4) 

and (3.5) we find: 

3 

+igzA/ & 
1 1 

EA(eaE A - 1) ’ EB(eBEB - 1) +2 
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It is interesting to note that the first two terms (the T = 0 contributions) vanish 

for F = 0, thus there is a supersymmetric solution at T = 0; however, the finite 

temperature contribution does not vanish at F = 0. A similar result is found for 

~IV,JJ/~~F, so that at T = 0 there is a solution for the set of equations S$,j/cYA = 0 

dV,j~/c?F = 0 with F = 0; at finite temperature these equations cannot be satisfied 

with F = 0. 

This interesting result can be traced back to the fact that bosons and fermions 

obey different statistics in agreement with the conclusions reached in Section 2 and by 

Girardello3 et al. From Eq. (3.6) we find that the solution to aTr,~l/LlA = 0 gives rise 

to: 

*- F - Ca 

where Ca is the third contribution (temperature correction) in (3.6). 

At low temperatures we can set mA = mg = rn$ = m in CD and we find: 

d3k exp(-/3 dm) - ,2 T 
0 

3/2 

cw3 dzq-ii? - m 
e-(m/T) 

T 312 
Fw2g2Am m 

0 
e-(m/T) 

P-7) 

(3.8) 

(3-Q) 

for Tern. 

The next step is to compute the real-time inverse fermion propagator at po = 0, 

j3 = 0. 

s-‘(P) = S{‘(P) - C(P) 

Q(P) = -i(j- m+) . 
(3.10) 
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Using the real-time propagators quoted in Eq. (2.8) we find for one loop: 

. 2 mtl, d4k 
CT=&+ = 0) = rg 2 / iw 

1 

(k2+mi;(k2+m$,)-(k2+m%)(k2+m$) 1 (3.11) 

where we have used the relations (3.3a,c). Comparing Eqs. (3.11) and (3.6) we find 

that indeed: 
e- 

~ = F(iS--‘(PO = 0, i; = 0)) = 0 . a%f 
OA (3.12) 

-Therefore, since F # 0 (see (3.9)) S-‘(~0 = 0, 3 = 0) = 0; thus there is a pole 

at po = 0, j! = 0 in the fermion propagator. It is interesting to notice that due to 

conditions (3.7) and (3.9) CD in (3.11) turns out to be temperature independent (at 

low temperatures). 

Although we have not mentioned the renormalization procedure for this theory the 

reader can be easily convinced that renormalization will not affect our results, since 

renormalization can be performed in a temperature independent fashion. 

Model B: 

Now we will study the non-linear sigma model in two dimensions in the large N 

limit.17 The model is described by a supermultiplet (na, $a, P) of real fields and 

a= 1, 2 . . . N. The Lagrangian for the theory is: 

L = $ [n”(--a2)na + $” i jf Tp + PP] (3.13) 
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with the constraints 

nana = 1 (3.14a) 

a a 
0 =o (3.14b) 

2naFa = it”+” (3.14c) . 

We introduce a supermultiplet of real Lagrange multipliers (Au, Fo, $0) and write the 

Lagrangian of the theory as (after integrating over Fa): 

LI=f ~+~na[-a2-~-Fo]“a+~~u[ia-Ao]+~o~a~a (3.15) 

where we have integrated over Fa and resealed the supermultiplets (n”, Fat $“) + 

l/g(na, Fa7 +a) and (Ao, Fo7 $01 -+ l/g2 (Au, Fo, $0). The leading order in the large 

N expansion is obtained integrating out the no and +” fields. We end up with an 

-*effective theory in terms of the fields Au, FO and $0 with effective Lagrangian: 

1 Fo 
Ldl=~~- 2 !!!! Tr,h(i~-&)+~Trth(-a2--&-Fo-& i8i Ao +o) - 

(3.16) 

and effective potential: 

VzjjI-47 FOl = -- ; ;+;I &t?n[k2+Ajj+Fo]-;/ $ln[k2+A$] . (3.17) 

The finite temperature effective potential is written as Tre// = VT=O + VP with 

EB,$ = (k2 + m&J 112 mi=&+Fo 

m% 
=4 

(3.19) 

The extremum condition for 4 reads: 

dV 
O-a& 

--=m$N 

(3.20) 

+ / & 
1 1 

EB(eaE8 -l)+Eti(eBE+ +l) * 

15 



At zero temperature it has been recognized by Alvarez17 that the particle associ- 

ated to the field Au is a fermion-fermion bound state created by the operator $” +!J” and 

$0 is associated to a fermion-boson bound state created by the operator no i 3 V/J” and 

is the super-partner of Au, their propagators have a pole (and branch cut) at k2 = 4m2 

with m = (Au), the ground state being supersymmetric (mg = m+) the extremum 

equations allow a solution with (Fo) = 0. 

For T # 0 the extremum conditions c?V/i3& = 0, W/tYFo = 0, cannot be 

satisfied with (Fo)B = 0 and we find (Fo)B % mesmjT. 

To calculate the self-energy of the fermion $0 we use the real-time propagators 

given in Eq. (2.8). Th e interaction vertex is Lint = $0 n* $“. The leading contribu- 

tion in large N is: 

+ 2ni (d+ $+ m+) W2 - mi) 
(eBEB - 1) [(p + k)2 - rni] 

(3.21) 

_ 2ni (d+ >+ m+) S[(P + kJ2 - m$] 
(k2 - mi)(ePE+ + 1) ’ 

Using (3.19) and (3.20) we find ((Fo)B # 0): 

0 = g = (Fo)B S$ (p. = o, 3 = o) . (3.22) 

In this case the “Goldstone fermion” arises as a boson-fermion bound state. In leading 

order, the model is renormalized by wave function renormalization for Fo and, as can 

be seen, this does not modify our results.18 

At this point there are two puzzling questions that can be raised, the first is: how 

is it that at T -+ 0 SUSY is explicit and the fermion is massive, and at T # 0 SUSY 

=--a@ 
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is broken and the fermion Green’s function acquires a massless pole even at very low 

T? The second question is: how is the current algebra relation (2.11) realized?lg 

To answer these questions we will study a simple model in two dimensions in which 

the physics of these phenomena will be clearly exposed. 

Model C: 

The Lagrangian for this model reads 

L =k[(t3,$)2+~ i~~+F2-2mF(~2-b)-2m~~$] (3.23) 

As usual to calculate the effective potential we shift the fields 4 ---) 4 + p, F --) F + j, 

(F) = 0. Using by now standard techniques we find at T # 0: 

e- 

= rn$,f - 4m2 j me Co + 2m rn+ Ca 

(3.24) 
8V 
J-j-1 

P, 
, = js;‘(po = 699 = 0) * 

. , 

where 

rn$ = 2m(p 

rni = 2m j + 4m2p2 

co = I 
d2k 1 

(2n)2 (k2 + m$,) (k2 + mi) 

1 1 
EB(eaEB - 1) ’ E+(eBE$ + I) 

with the definitions of EB, E$ given in Eq. (3.19). From (3.24) we find at low T: 

jrV-2me -(2m/T) X (power of m/T) . (3.25) 

Since the inverse propagator vanishes at po = 0 3 = 0 it can be written at small po, 9 

s-l x -;dA(p2=0)-iropoBg-i~.p’Dg (3.26) 
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where BP, Dg are temperature dependent (momentum independent) constants. Since 

at finite temperature the theory is not Lorentz invariant BP # Dg and we will calculate 

S--YPO, ?i = 0). The one loop contribution to the self-energy C can be calculated 

using again the real-time propagators. We find the finite temperature contribution to 

C linear in po: 

4m2i IY~(po, jl= 0) = E* 
1) + (ebE+ + 1) 1 (3.27) 

From Eqs. (3.24) and (3.25) CD can be written as 

(3.28) 

Therefore we see that as T -+ 0 this term overwhelms the zero temperature contribu- 

tion to S-l(p), hence 
=?- 

S(Po7 a = 0) po+o 
e4m/T) j 

x- 
T-+0 %Po 

~opo X (powers of T/m) . (3.29) 

This expression indicates that the residue of the Goldstone pole vanishes as T -+ 0 

- *(from (3.27) we see that the residue is positive) clearly exposing the fact that the 

Goldstone contribution should vanish as T + 0. 

To study the way in which the current algebra relation (2.11) is realized we notice 

that in this model the supercurrent is: 

Scl =()Q+iF)+$ . (3.30) 

After shifting the fields Eq. (3.30) can be written as: 

Scl =;frL”11,+(@+iF)79 . (3.31) 

Since ($ $I) is proportional to f as p -+ 0, it is easy to see that the first term in (3.31) 

contributes to higher order in e-(m/T) to (2.11). The second term gives rise to: 

%SP, =(nCb+i$F)++W+i~)y$ . (3.32) 

=--am 
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Using the linearized equation of motion for F: 

F=m&+... 

and adding and subtracting the mass terms for 4 and II, we find: 

8pSp=(m$-mi qfqb+ 
) { 

(ID+ m~~)d+(bi+jm~~)(a~+imlld)} 

Up to one loop (2.11) can be written as: 

I(p) = - C2m / $ 2 {(-zmf)-(k2-m~)+(jCfm~)(d+/f-m~)J 

x D(k) S(P + k) S(P) S(P) 

(3.33) 

(3.34) 

(3.35) 

where D(k), S(k) are the real-time boson and fermion propagators respectively. In 
=?- 

Appendix B it is shown that the p,, independent contribution cancels out and as p,, + 

OandT-,0 

I(p) = ,‘s i4m2fC$(0) S(p) (3.36) 

where E;(O) is the linear term in po of the temperature correction to the self energy. 

From Eqs. (3.26) and (3.27) we find the relation 

% -’ = 4m2iC$(0) . (3.37) 

Therefore the relation (2.11) is fulfilled. 
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4. CONCLUSIONS 

In this paper we have shown that in any theory with unbroken SUSY at T = 0, the 

symmetry is broken at any temperature, T # 0 due to different statistics for fermions 

and bosons in agreement with previous work. 

Furthermore, looking at the real-time thermal Green’s functions, we established 

that the breaking of SUSY is associated to a massless pole in fermionic Green’s func- 

tions - Goldstone fermion - as a consequence of the Goldstone phenomenon. Therefore, 

there is a definite physical observable as a consequence of this breaking. 

We have shown that at very low temperatures the residue at this massless pole is 

of the form e -trnjTl where m is the common mass of the supermultiplet at T = 0, 

hence the contribution of this pole vanishes at T = 0. 

*- We have also shown how current algebra relations are fulfilled at finite temperature. 
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APPENDIX A 

The Controversy of the Dummy Field 

In a recent paper by Alvarez-Gaume2’ et al., there was a conflict regarding the 

effective potential as a function of two varibles f and 4. In their computations, the 

effective potential as a function of f and C$ was different from the one obtained after 

eliminating the field f at the classical level. It is shown in this Appendix that in the 

loop expansion there is no such puzzle which we believe is due to an inconsistency in 

their solution to the extremum equations for f. The Lagrangian of the theory is given 

by Eq. (3.23) without the Fermi fields. 

After integrating out the field F using the equations of motion and shifting c!~ -+ 

qb + p we find up to one loop: 

=?- 
It d2k 

VeJj[‘p] = Vtree[Pl + 2 / pj-$tn[k2 + zrn2t3P2 - b)l (A-1) 
where we explicitly wrote g in the one loop contribution. 

If we keep F as a variable the effective potential is calculated as usual after shifting 

- -F+F$-f,4+4+ptheresultis: 

&jj[.f, P] = vtree[/, PI +i/ & en ik2 + 2mf + 4m2P21 

the extremum conditions read 

dV 8m2p 
z= 

o= 
k2 + 2mf + 4m2p2 

t3V 2 
-=O=--f+m(p2 

1 

af -b)+d/ & k2+2mf+4m2p2 * 

(A4 

(A.3c.z) 

(A.3b) 

Equation (A.3b) has to be solved iteratively in powers of g, and we find up to order & 

j = m(p2 - b) + rn6/ d2k 
1 

(2a)2 k2 + 4m2p2 + 2m2(p2 - b) * (A4 
Using this result for f in (A.2) and keeping terms up to order & we find Eq. (A.1). 

This result generalizes to higher orders. This is in agreement with what has been 

.- suggested recently by Murphy and O’Raifeartaigh.21 

-e.;q!& 
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APPENDIX B 

Here we perform the computations leading to Eq. (3.36) in the text. 

Using the real-time propagators (2.8) the term: 

Bl= i2m ,2 J 
d2k 

(2 1 (k 
2 - mi) D(k) S(p + k) 

can be written as 
2 

B1 = -2m “11 &2 k2 ; m$ 

The term 

BP = 42m / ~($2 v+ m$) (d+ /I-- “$A D(k)S(P + k) 

is written as 

B2 = 
a- 

Therefore 

Bl+Bz=-4m2fm+ (k2 + rn&)l(kz + m$) 

The PP = 0 part of the term 

C(P) = i4m2f / 
d2k D(k) S(k + p) (2?r)2 

(B4 

(B.2) 

(B.3) 

VW 

(B.5) 

yields 

/ 

d2k 1 
C(P = ‘) =4m2f mtl) (Zn)2 (k2 + m$,) (k2 + rni) 

P.6) 

therefore B1 + B2 + C(p = 0) = 0. Hence as p -P 0, T + 0, the leading contribution 

comes from the term in C@(p) linear in po (at i> = 0) giving rise to Eq. (3.36) in the 

text. 
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