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ABSTRACT 

We describe a simple, softly broken supersymmetric model of electroweak 

interactions. In its simplest form, supersymmetry breaking is imposed via explicit 

mass terms for scalar quarks and leptons. We apply this model to the discussion 

of the decay properties of the scalar neutrino, vg. The one-loop process V, -+ u+? 

(7 = photino) is computed as well as multi-body (tree-level) decays of the vs. 

The relative branching ratios are crucial for determining the phenomcnological 

signatures of the scalar neutrino. Complications to the model due to Majorana 

mass terms for the gauge fermions are discussed. Explicit Feynman rules for the 

model are listed. 
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1. Introduction 

All high energy physics experiments seem to be consistent with what is known 

as “the standard model”.’ This model describes particle physics by an SU(3) x 

X7(2) x U(1) gauge theory which is spontaneously broken down to SU(3) x 

U( 1) at a scale of roughly-300 GeV. Many models have-been-made which unify 

- the standard model into one grand-unifying gauge group2 (e.g. X45)). All such 

attempts have the unpleasant feature that the grand unification scale is at least a 

factor of 1012 larger than the scale of weak interaction. The appearance of such 

a large dimensionless number is known as the hierarchy problem.3 A related 

problem called the naturalness problem4 is slightly more technical; it occurs 

due to the existence of elementary scalar fields required to initiate spontaneous 

W(2) x U(1) y s mmetry breaking. The masses of these scalars must be orders of 

magnitude less than the grand-unified scale; this is highly “unnatural”. Due to 

the scalar particles, the unrenormalized theory contains quadratic divergences. 

As a result, the tree-level hierarchy is unstable under quantum corrections. One 

has to fine-tune the parameters of the scalar potential to very high order in 

perturbation theory to insure the required hierarchy of scales. 

. --- 
Super-symmetric’ theories have been proposed as a possible solution to the 

. problems described above.’ In such theories, the existence of elementary scalar 

particles is required by the underlying supersymmetry. Furthermore, there exists 

a scalar partner for each presently-known fermion. If supersymmetry is relevant 

to the solution of the hierarchy and naturalness problems, then the masses of 

supersymmetric partners of known particles cannot be much larger than 1 TeV. 

Furthermore, various super-symmetric models allow for the existence of much 

lighter supersymmetric particles, some of which may already be accessible to 
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accelerators either presently running or soon to be built. Thus, one way to 

test supersymmetric models experimentally is to search for new scalar particles. 

However, it has been a major disappointment that absolutely no experimental 

evidence for or against supersymmetry has been found.6 Therefore, it is essential 

to seek further means for determining whether supersymmetry is relevant and 

which classes of models are indicated.’ F - - 

In general, for a given fermion j there are two complex scalar fields which 

we will henceforth denote as j8~ and j8~.8 However, if right-handed neutrinos 

do not exist (or are extremely massive with mvR >> 300 GeV), then t.here is 

only one scalar neutrino relevant for low energy physics. Supersymmetry also 

leads to fermionic partners for both spin 1 (gauge) bosons and spin 0 (Higgs) 

bosons. The physical mass eigenstates are model dependent; they typically mix 

-various combinations of two-component fermion fields into charged Dirac four- 

component fermions and neutral Majorana fermions. ’ We illustrate these features 

by constructing a simple softly broken supersymmetric model of electroweak 

interactions in Section 2. This is accomplished in two steps-first an unbroken 

supersymmetric SU(2) X U(1) model is constructed where the gauge symmetry 

spontaneously breaks at tree level to U(~)EM. Supersymmetry is then broken 

bj, adding explicit supersymmetric breaking terms. These terms are chosen to 

. be soft, i.e. they do not add new quadratic divergences to the unrenormalized 

theory. The simplest set of terms one can add are explicit masses for scalar quarks 

and leptons. Feynman rules for the resulting model are listed in Appendix A. 

Experimental searches have already been made at PEP and PETRA for 

charged scalar leptons and scalar quarks. lo Their results set lower limits for 

the masses of such objects. For example, assuming the photino is massless, the 
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hlAC and MARK II groups state a lower limit on the scalar electron mats to be 

about 21-24 GeV. The limits on the scalar muon and tau leptons from MARK-J 

are 18 GeV and 16.5 GeV respectively. Limits on scalar quarks are harder to 
- 

come by and more model- dependent. If the decay<q, -+ q + ;Z were dominant, 

(and & e 0), then the lower limits on the scalar quark masses are 15-16 GeV. 

As for the scalar neutrino, the only known experimental bounds can be de 

duced from the non-observation of anomalous r-decays.ll From this, we ascer- 

tain the non-existence of the decay r- --) usfew tise which roughly implies that 

M+ + iUv,,, 2 m, (depending on the size of the wino mass). In order to search 

experimentally for evidence of the scalar neutrino, one needs to know its decay 

modes and branching ratios. The calculation of these modes has already been 

summarized by us in a previous paper. l2 In Sections 3 and 4 we present the 

calculation for twobody and multi-body decays of the scalar neutrino using t,he 

model described above (and in Section 2). 

The model which we shall discuss in Section 2 is certainly a minimal one. 

However, we argue that the results obtained are not likely to change much in 
--- -. . 
more complicated versions. In order to illustrate some of the complications that 

may occur, we study in Section 5 how the model changes by the introduction of 

Majorana mass terms for the gauginos. This introduces non-trivial mass matrices 

in the gaugino-higgsino sector and new mass eigenstates which are different linear 

combinations of the gauginos and higgsinos. As a result, new Feynman rules for 

these particles are needed and are discussed in Appendix B. 

Section 6 contains our conclusions. We have provided two further appendices 

(C and D) which provide useful details needed for the computation of scalar- 

neutrino decay rates. 
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2. A Softly Broken Supersymmetric SU(2)xU(l) Model 

In order to make a phenomenological study of various processes involving 

new supersymmetric particles, it is necessary to make use of some model. At 

the same time, it is desirable to proceed in a fashion as “model-independent” as 

possible. We have chosen- to use a softly broken scpersym&kic SU(2) x U(1) 

model which is described in this section. There are a number of reasons why we 

did not use a spontaneously broken supersymmetric SV(2) X U(1) model. First, 

it is well known among model builders l3 that it is difficult to build a compelling 

spontaneously broken supersymmetric model which at low energies resembles the 

st.andard model. Second, there has been much recent work in supergravity,14-lG 

which shows that the effective low-energy theory of a spontaneously broken su- 

pergravity coupled to matter fields is simply a globally supersymmetric theory 

broken by various soft terms.14 

In constructing a softly broken supersymmetric model, we shall start from 

an unbroken (globally) supersymmetric theory and add to it all possible soft 

supersymmetry-breaking terms (following the rules of Girardello and Grisaru”). 

This would almost be a “model-independent” procedure, in that one would then . --- -. . 
require experiment to determine all unknown coefficients of the newly added 

terms. Unfortunately this procedure is too general (without any prior experi- 

mental information) and theoretical predict.ions depend on too many parameters. 

We propose to be less general at the beginning by first constructing an unbroken 

supersymmetric version of the SU(2) X V(1) model of electroweak interactions. 

We then add (at first) only those soft supcrsymmetry breaking terms necessary 

-to avoid conflict with experiment. Specifically, we will only add mass terms for 

the scalar quarks and leptons (and for the gluinos). This allows us to make 



predictions for various supersymmetric processes which--depend only on a few 

unknown masses. It is important to consider how such predictions change if the 

set of soft supersymmetry breaking terms is more complicated. In Section 5, we 

briefly study the effect of a more complicated gauginehiggsino mass matrix. 

&s for the unbroken supersymmetric versions of &J(2) 
m 
X U(l), we first in- 

troduce the minimal number of fields necessary to break the gauge symmetry 

down at tree level to U(~)EM and give masses to the quarks and leptons. This 

requires two SU(2) doublet chiral Higgs superfields and one SU(2) x U(l) singlet 

chiral Higgs superfield. We note that Fayet l8 first wrote down a supersymmetric 

W(2) x U( 1) model whose chiral multiplets were exactly those mentioned above. 

- However, Fayet” originally attempted to interpret those multiplets as ones which 

contain the leptons along with the Higgs. lg We shall maintain a strict separa- 

tion and add separate chiral superfields which contain the ordinary leptons (and 

quarks).20 This is necessary, because if the scalar partner of the neutrino gains 

a vacuum expectation value, it will spontaneously break lepton number.21 

.. _ Our model consists of the superfields listed in Table 1. Our notation is as 

. follows.22 For gauge muitiplets (in the Wess-Zumino gauge), we denote V = --- -. . 
(VP, X,D) where VP is the gauge field, X is the gaugino, and D is an auxiliary 

scalar field. For chiral multiplets, we denote S = (As, $s,l;s) where As is 

the scalar partner of the fermion @s and FS is an auxiliary scalar field. The 

Lagrangian for the model is obtained in the standard fashion.= All we need to 

provide is the superpotential: 

W = hcijT’SjN + 8N + WF (1) 

where i, j are SU(2) indices and WF contains terms which are responsible for 



quark and lepton masses: 

WF = Cij fabTiLjaRb + habTiQ&, + hab S’Qj,& 1 (2) 
The Yukawa couplings jab, ha*, and iat, are related to quark and lepton mass 

matrices. With the possible exception of the t-quark,-these Yukawa couplings 

are small and we will neglect them for the remainder of the paper. The scalar 

potential, V, is obtained from 

&A;ZAk)’ 
k 

(3) 

In eq. (3), W[A] is obtained from W given in eq. 1 by replacing the superfields by 

-their corresponding component scalar fields (denoted collectively here by Ak). In 

the second term in eq. 3, the first (unlabeled) summation represents a sum over 

all SU(2) multiplets of scalar fields (in our model, the sum is over SU(2) doublets); 

Ta are the corresponding generators in the appropriate representation. In the 

third term of eq. 3, yk = 2yk are the U(1) hypercharges of the Ak. It is then 

straightforward to compute the scalar (Higgs) potential. The potential has a 

minimum when 
. --- -. . 

0 (As) =$ F 1 0 
(4 

1 
(AT) = 5 F 0 

0 

and all other scalar fields having zero vacuum expectation values.24 The constant 

F is related to h and 8 of eq. 1 by 4 F2h + s = 0. It is easy to see that at 

this minimum, V = 0, thus implying that the theory remains supersymmetric. 

-Equation 4 indicates that sV(2)~ X V(l)y has broken down to U(l)~hf. We 

will momentarily add explicit scalar-mass terms for the scalar quarks and leptons 
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(which are massless in the approximation that WF given by eq. 2 is neglected). 

First however, let us study the supersymmetry theory of broken SU(2)w x U( 1)~. 

Some of the supersymmetric multiplets listed in Table 1 must get rearranged 

(in a supersymmetric way) to reflect the fact that the IV* aiid 2’ gauge bosons 

get mass via the Higgs mechanism. The simplest way to see the results of this re- 

arrangement is to first compute the fermion mass matrix which couples higgsinos 

and gauginos. This mass matrix arises because of the coupling X$A which occurs 

in supersymmetry; when A gains a vacuum expectation value, this results in a 

fermion mass term. In the model described here, we find the following fermion 

-mass terms (using two-component notation for the fermion fields): 

(5) 
iFg 

+ 3 (x-$‘s, + A+@,) + h.c. 

where A* = $9 T- !-X2), xz = (gX3 - g’X’)/ dm and the subscripts l,2 

are SU(2)w indices. By. computing the vector boson mass matrix, one learns 
_~ ‘that Y&, = i g2F2 and rni =;{ (u2 + g’2)F 2. This implies that the following 

- four-component Dirac fermions exist in the spectrum: 

with mass ml+ 

I= (tiTl - tiS,)/ 8 
ii, 

with mass rnz 

i;= (?k, + tiTl)/ fi 

4N 
with mass mh c hF 

(7) 

Finally, there is a photino 1, = (g’X3 + gX’)/ dm which remains massless. 



The final step is to compute the scalar masses. One finds 

H+ = L2 J( As1 + A;;) with mass rnw 

HO = Ret AT, - AS2 ) with mass rnz 
(Q) 

and four mass degenerate scalar fields: 
< - d 

6 = Rek2 + AT, ) 

4 = ‘m(ATl - As21 with mass mh 

hi 
(10) 

= ReAN 

4 = ImAN 

Thus, the new supersymmetric multiplets consists of a massless gauge multiylet 

(;I, q), three massive vector multiplets: (H-, ~1, W-), (H+, wl, W+) and (Ho, 

So, 2’) and a massive chiral multiplet: (hi, h) (i = 1, . . . . 4). Note that each 

multiplet has equal numbers of fermionic and bosonic degrees of freedom. 

The photino 7 is a four-component Majorana spinor of the form: 

By comparison, 20 is a four-component Dirac spinor (see eq. 7). In fact, the 
. --- -. . 

existence of such an object is very special to the model considered so far. Hence, 

- it will be useful to rewrite 4’ in terms of the two mass degenerate four-component 

Majorana spinors. We will find later that these two fermions will be split in mass 

in more general circumstances, for example, when an explicit Majorana gaugino 

mass terms is added. 

Let us define: 

(12) 



where 

(14) 

It then follows that the mass terms become: 

which allows us to identify two Majorana spinors 21 and 52: 

Note the factor of i in eq. 13; this insures that the fermion mass eigenvalue is 

positive. 

The Feynman rules for the model are obtained by the straightforward but 

tedious procedure of expressing all fields in the supersymmetric Lagrangian in 

. terms of physical fields thereby obtaining all interaction terms of interest. When 

we next add soft supersymmetry breaking consisting only of scalar mass terms, 

there are no changes in rules obtained. A list of rules that were required for our 

computations are given in Appendix A. However, adding additional soft super- 

symmetry breaking can indeed change the Feynman rules. This is illustrated in 

Appendix B by adding explicit gaugino mass terms. 

With the Feynman rules listed in Appendix A, we may begin to compute 

Parious properties of the scalar neutrino. Note that by using these rules, we 

are assuming the most simple form for the soft-iuperiymmetry breaking terms. 

Given the complexity of the computation of the decay rate for v8 + w ;i which 

. . 
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we present in Section 3, it is clear that the appropriate course of action is to 

always make this simplifying assumption. This, we shall %gue, will provide at 

least a ballpark estimate and allow for further phenomenological work. Possible 

changes of these results due to additional soft supersymmetry breaking terms 

will be briefly discussed in Section 5. - - e 

12 
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3. The Decay of the Scalar Neutrino: Two--Body Decays. 

The mass of the scalar neutrino is at present unconstrained by experiment. 

Thus, the various possible decay modes of the v8 will vary depending on what 

mass assumptions are made. The first possibility is that the v8 is the lightest 
s 

supersymmetric particle. In this case, the v8 would be stable in the model studied 

here.25 Such a Y8 would interact with cross sections of weak-interaction size (due 

to the exchange of an e8) and would therefore behave like a neutrino. The second 

possibility is that U: or 4 is lighter than Y8 so that one of the following two-body 

decays (which can occur at the tree level) are kinematically allowed: v8 -+ w:e- 

or vg -+ ?v. 26 Such decays could conceivably be the most important in models 

-which predict the existence of a tiino and zino with a mass substantially less 

than the mass of the W and 2 respectively.n To discuss this situation requires 

the addition of new soft supersymmetry breaking terms which can split the w 

and 1: masses from those of the W and 2. This will be discussed in Section 5. 

Another possible decay of the v8 is v8 + v + 6 where ?: is the Goldstino. 

Technically, this decay only occurs in models where the global supersymmetry 

_~ _~- is spontaneously broken.-- In ref. 12, we showed that if the scale of supersym- -. . 
metry breaking MS were much larger than 1 TeV, then the decay rate (which 

is proportional to MF4) would be negligible compared to other decay rates dis- 

cussed in this paper. In softly broken supersymmetry, no Goldstino is required. 

However, if the soft supersymmetry breaking is the low energy manifestation of 

a spontaneously broken supergravity, then the &’ is the helicity A$ components 

of a massive gravitino g3/2 and the decay &, --* v + 9312 is in principle possi- 

_ ble. However the gravitino mass is roughly mg,,* - i@/M,, where Mpl is the 

Planck mass. In theories with mgsfi w mwy>p16 (which attempt to explain the 
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origin of the weak scale by this relation), one finds MS - 10” GeV. Thus we 

may use the argument above to conclude that the decay rate into the gravitino 

can be ignored. 

The remaining possible twclbody-decay mode is v8 + u+r .28 Except for the 

cases described above, this is expected to be the dominant decay mode. Because 

- there-is no bare v8v 5 vertex in supersymmetric models, this process must occur 

by a one-loop graph. In our model, the contributing diagrams are given in fig. 1. 

Most of the graphs are divergent, but renormalizability of the theory requires that 

the sum of all graphs be finite. In addition, the matrix element must vanish in the 

supersymmetric limit. This is true because the v8 + u+? matrix element is then 

related by supersymmetry to the electromagnetic form factor of the neutrino at 

9” = 0 which is known to vanish. This will serve as a check of our calculations. 

The matrix element for v8(p) + +(/~l) + v(k2) is computed to be 

M = WI 

where g E e/sin 6~ is the weak coupling constant, i (1 + 75) is the right-handed 
_~ 

- ‘irojection operator ‘and F is a sum‘of integrals obtained by evaluating the dia- 

. grams of fig. 1. The final state particles are taken to be massless. The integrals 

depend only on the masses Mv,, Me,L and rnw. The dependence on rnz and 61~ 

disappears from the integrals, when the relation rnw = rnz cos 0~ is used. F’ur- 

thermore, since M? = 0, graph (g) in fig. 1 vanishes and hence no dependence 

on MeR survives. Let Fk be the integrals resulting from graph k of fig. 1. In the 

case of graphs (e) and (f), Fe and F’, will denote the sum over all possible graphs 

as indicated. Then, using the notation t-1 E Mz,/m& and t-2 E M!,L/mb, our 
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results are as follows: 

(18) 

Fd = J 
dz 

- r2 - rlz 
2 + (1 - 2)( t-2 - qz) tw 

< - - 

j$ e 2n(“12)-2(m2W)(‘/2)-2r (20) 

F, = -*(n/2)-2( m$)(n/2)-2r (21) 
Fg = 0 (22) 

where we have used dimensional regularization to perform the integrations in 

a = 4 + e dimensions. The dilogarithm &2(q) is discussed in Appendix C. Fa 

and Fc are the most complicated, although the expression simplifies when they 

are added resulting in: 

Fa + & = (mw) 2 (n/2)-2#/2)-2 I’(2-~)2Fl(2-~,1;2;1-r2) 

-. _ 

(23) _- _~. 

X log(z + (1 - z)(rZ - rlz)) 
II 

. 

It is now a simple matter to compute F E & Fk and show that the divergent 

pieces do indeed cancel (as n + A).*’ Thus, we may set n = 4 in the expression 

which is left. The remaining integration can be evaluated in terms of diloga- 

rithms. The decay rate can then be calculated, and the end results is as follows: 
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where the function F originally defined in eq. 17 is: 

r1 
Li2( rl) - 2 

r) 1 
F:(rl, r2) = 2t1 - r1) i log2 t-2 - log&( 

-q+q+X 

2J’2 8 

+ ( 2 - r1 - r2 
r1 )C Li2(1 - t-2) - Liz ( 1-r2+rl-X 

2 > (25) 

- 
- Liz ( l-rz+rl+X 

2 8 

and X E [(I - rl - r2)2 - 4rlr2]1/2. A discussion of the properties of the above 

function in Appendix C allows us to obtain the following useful limits of eq. 25. 

First, if t-1 = r2 then defining rl = t-2 = r we find: 

- F(r,r) = -2(~Br)logrlog(l-r)+ 

Second, if rl = 0, then 

F(O, rd = s (1+‘;?;). (27) 

Note in particular that in the limit where rl, t-2 + 0, one finds F(r1, r2) = 0. 

This verifies our claim th.at the matrix element for v8 --+ Y + 3 vanishes in the 

‘supersymmetric limit. -. . 

Plugging in the numbers leads to the following lifetime for the v8 into II?: 

Ii 1 1 
7 c-c 

r 
1.13 x lo-l6 ( 

M~,tGev) 
1 

[Wl, rdJ 
2 seconds. (28) 

A graph of F(rl, t-2) for various choices of rl and r2 is shown in fig. 2. Note that 

F(rl,rQ) tends to be a number between 0.1 and 1.0 for interesting masses. We 

shall compare the lifetime given by eq. 28 with three and four body channels in 

the next section. 
. 
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4. The Decay of the Scalar Neutrino: Three and--Four-body Decays 

W7e show in fig. 3 all possible diagrams leading to four-body final states 

within the model which we are using. One should note that unlike the case of 

u8 -+ u + 5, many different kinds of four-body channels are accessible. To get 
r - - 

- a feeling for the expected size of the rates, let us look at the diagram which 

is expected to dominate, namely u8 --* e-u 23 (or u8 ---) e-C 8 i). There are a 

number of enhancements worth mentioning. First, because the gluino ij is being 

produced, there is a color factor of four relative to the photino for the squared 

amplitude. Second, the gluino couples with the strength of the strong QCD 

coupling (as opposed to the electromagnetic coupling of the photino 5). Thus, 

-unless the scalar quarks are significantly heavier than the charged scalar leptons 

or the gluino mass is much larger than 5 GeV, it is clear that this process will 

be the dominant four-body decay mode. The neutral current processes u8 + 

uqijij are slightly smaller in rate but are still important. We have computed the 

four-body decays numerically. An analytic expression may be obtained for the 

dominant rate by using the method discussed in Appendix D. In the limit that 

Mv, -ez MuIt, rni (and all final state particles are taken as massless), the result .~ _~- . -.- -. 
is: 

r(v8 --) e-u ;iij) = ff2,9 Ml?, 
11520~~ sin4 8~ mkM&L 

. (29) 

We may compare this with eq. 28. For example, if MU,,, = Me, = rnw >> M,, 

then: 

r(u8 -, e-u 2 ij) 
r(u8 + Uq)-. 

17 
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We see that if all the relevant supersymmetric particles have the mass of the 

I+‘, then the four-body decays will be negligible. Alternatively, consider the 

case where MuaL < Mv,. Then, the decay process just described is in fact the 

three-body decay u8 ---* e- au8~. (Of course, the decay process is effectively a 

four-body one since the ti8~ immediately decays vTa u& +-u’ + ij.) This decay 
^ 

rate is easily computed in the limit of Mv,, Mu,L << rnw. The result is: 

r( u8 + e- a u8L) = 
G$Mj 
s;lT;;j I 

(1 - x2)( 1 - 82 + z2) + 12 log r 1 (31) 
where x c Mz,,/Mz, and a color factor of 3 has been included. We may compare 

eq. 31 with eq. 28 evaluated when rnf+, is large. In that limit, 

r(v8 -, u + ?) = 
(rG$M;,(l+ z)~ 

64n4 (32) 

which shows that the three-body decay will dominate as long as it is kinematically 

allowed (with z not too close to 1). 

Finally, suppose Mv, < A& x Me,L << rnw. From eq. 30, it is plausible 

that the four-body branching ratios could be significant. We have computed all 

_ i the diagrams in fig. ,3, explicitly,and have calculated the phase space numerically. 

We present our results in two cases: first, we set My, = Me,L and vary this 

mass (fig. 4). For convenience, all masses of scalar quarks and charged scalar 

leptons were set equal to MelL. One sees that the four-body final states which 

include the gluino could have significant branching ratios totaling about 40% 

if the parameters of the supersymmetric model are in the approximate ranges 

discussed above. Second, we fix Mv, = 40 GeV and vary Me, (which again is 

- assumed equal to the scalar quark masses). The results are displayed in fig. 5. 

For Me, < K,, we are in the regime of three-body final states (namely the 
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scalar quark or lepton is produced on shell). For Me, > Mv,, the decay is truly 

a four-body decay. By putting in the explicit widths in the propagators of the 

scalar quarks and leptons, namely: 

r(e8 -+ e + q) = f QA& Wb) 

we can use the four-body phase space formulas in both regimes. We have checked 

the numerical results with the analytic expression given in eq. 31. 

The conclusions one draws from fig. 5 is that the invisible mode u8 --) u + ;i 

will totally dominate (say, with branching ratio 2 95%) over the various three- 

and four-body charged decay modes only when Mu, - Mv8 2 15-20 GeV. This 

conclusion is not particular to the choice of scalar neutrino mass; from fig. 4, 

one can see that such conclusions are fairly stable for a range of scalar neutrino 

masses below rnw. In the event that the scalar quark and scalar lepton masses 

are unequal, one can still use fig. 5 to estimate the various branching rat.ios. 

-‘For example, suppose Mu, is much larger than M,,, but A&, x Mv,. Then the 

- branching ratio of modes containing final state gluinos are negligible. In addition, 

the remaining four body final states would occur with branching ratios less than 

10m2. Nonetheless, there are cases where rare scalar-neutrino decay modes could 

play an important role. For example, e+e- annihilation at the Z* resonance 

could be a copious source of scalar neutrinos. Hence, in such situations, certain 

rare decays (such as u8 + e-p+v, 7) would be observable because their signature 

-is so unusual. 

Applications to the results of Se&ion 3 and 4 have been discussed in ref. 31. 
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5. Complications in the Gaugino/Higgtiino Sector 

The computations of the previous two sections were performed using a fairly 

simple model, namely a supersymmetric version of the SU(2) X U(1) model of 

electroweak interactions with explicit mass terms for the scsl,ar quarks and lep- 

- tons which softly break the supersymmetry. However, there are other terms one 

could add which would softly break the supersymmetry and further complicate 

the model. For a theory with chiral (A, $, F) and gauge (VP, X, D) multiplets, ex- 

amples of such terms are: ReA3 which is a non-supersymmetric-interaction term, 

XX which is a Majorana mass term for the gaugino, and explicit mass terms for 

various scalar Higgs particles. In addition, low energy supergravity models often 

lead to an additional supersymmetric term 

m [. .Tisj 
‘3 

which would have to be added to the superpotential (eq. 1) and would modify a 

.. _ number of our results. One effect of these terms is to modify the scalar potential, 

_~ _~- _ ..-eq. 3, and thereby change the, ground state vacuum expectation values, eq. 4. 

In order- to simplify the discussion, we shall mainly discuss here some of the 

effects result,ing if we add Majorana gaugino mass terms to the model described 

in Section 2 (such a change by itself would leave eq. 4 unchanged). 

Consider the effect of adding an explicit Majorana mass term for the gauginos. 

Clearly, such a term must respect SU(2) X (/( 1) gauge invariance. Hence the most 

general mass term is 

mX& - m’X’X’ + h.c. 
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Rewriting X0 and A’ in terms of A*, A, and A,, we obtain 

m[2X+X- + cos* ewx,x, + sin* ewx,x, + 2sin ew cos 0,A,A,] 

+ m’[sin2 0wX,X, + cos2 tj.jfX,X, - 2sin 8~ cos BwX,X,] 
(36) 

We first consider the charged gaugino/higgsino sector. We may write the mass 

terms asi 

imW(h+$T, + x-t),) + m(X+X- + x-ii+) + h.c. (37) 

When m = 0, the charged eigenstates wl and w2 were half-gaugino and half- 

higgsino (see eq. 6) and degenerate in mass with the kV*. If m # 0, by 

diagonalizing the mass matrix, we-see that the two states split in mass. The 

resulting states are four-component Dirac spinors and will be denoted: 

?,!qz cos (b + ix- sin $6 
WG = 

iI+sinfj-$sl co.94 
, mass=m+ 

, mass=m- 
_~ _~- _ .-.- 

- where 

mf=&PG&fm 

co!3qb = (m+ymBl’2 

(38) 

(39) 

(40) 

(41) 

-Note that the subscripts G (and H) indicate that the fermion dominantly consists 

of gaugino and higgsino componentsrespectively. Inthe limit of m = 0, cosqb = 
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sin 4 = J i and we see that WG and OH are degenerate in mass. They are related 

in this limit to WI and w2 of eq. 6 as follows: 

=&dG+b$.f]y _ e, 
O1 & (42) - 

w2 = $ [WH - (,& (43) 

where the superscript C denotes charge conjugate. Note that the Feynman rules 

involving WG and WH must now be recomputed since the relation between in- 

teraction eigenstates and mass eigenstates has changed. These are discussed in 

Appendix B. 

The following observations are noteworthy. First, in the model just described, 

one of the charged winos3 (WH) is necessarily less massive than the IV. This can 

have important consequences for phenomenology in that it might be possible to 

find the WH at current accelerators. Second, since the WH has dominant higgsino 

components, it couples less strongly to matter as compared with WG. However, 

_~ _~- -,=these two remarks are extremely model dependent. For example, if the term 

_ given by eq. 34 is present and if ti >> m, then it is a wino resembling WG which __ 

is lightest. In fact, we can find values of m and ii, such that both winos are more 

massive than the IV*, although currently fashionable supergravity models seem 

to favor models with at least one light wino. 

The neutral gaugino/higgsino sector is potentially more complicated. We 

may write the mass term as 

imZXz$ + (m cos2 8~ + m’sin* +)X,X, + 2(m 
_-, ~_ -. 

+ (m’cos2 8 + m sin2 0)X,X, + h.c. 
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where $ E (tier - $~ss)/ fi. Note that because we take- fi = 0 (see eq. 34) 

tC’N and th2 + +Tl )/ fi remain decoupled; in principle, one could have a 5 x 5 

matrix to diagonalize. In the case described above (eq. 44), even the 3 x 3 matrix 

diagonalization does not result in a simple analytical expression. Aspects of the 

diagonalization in a more -complicated case have b;en numeyically worked out _ 
and are discussed in detail in refs. 34 and 35. 

Here we shall make one further simplification, namely m = m’ in order to 

illustrate the results. In that case, the photino A-, decouples and acquires a mass 

2m. In addition, the computations of the AZ - tc, sector are identical to those of 

the charged wino sector just discussed. The results are as follows: the spectrum 

of neutral fermions consists of three Majorana fermions: 3, ?H and ?G with 

masses m, p- and p+ respectively where 

P*=Jq fm (45) 

Our notation here is that the states with tildas over them are four component 

Maj orana spinors: 

where 

i.?H = -iX, cos x - II, sin x 

I (46) 

(47) 

(48) 

(49) 
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As before, the subscripts G (and H) indicate that the fermion dominantly consists 

of gaugino (and higgsino) components respectively. Also, new Feynman rules 

involving ZG and ZH are obtained in Appendix B. Note the factor of i in eq. 48; 

this is needed so that the-neutral fermion mass eigenvalues “are positive. When 

m=m’=O,p+ = JJ- and eqs. 47-49 reduce back to eqs. 12-16 of Section 2, 

where we identify :r = %G and i2 = iH. 

One could now go back and recompute all the results of Section 3 with some 

choice of parameters m and m’. The calculations are far more complicated 

and we do not pursue this possibility here. However, it is worth commenting 

on some new subtleties which arise. Suppose one sets m = m’ and computes 

all the graphs of fig. 1. Let us concentrate on the graphs (g); these are the 

only graphs proportional to the number of generations of leptons and quarks. 

Originally in Section 3, we found Fs = 0. In this case, Fs is proportional to 

&z$; however, there is a serious problem in that E’9 is divergent! Clearly, this 

divergence cannot be cancelled by other graphs since it is proportional to the 

number of generations. The problem here arises because the relation m = m’ 
_~ _ .-.- -. 

is not stable under radiative corrections. Working to one loop, one finds that 

a X,X, term is generated (cf. eq. 44) and therefore a new graph (fig. 6) must 

be added which will in the end cancel this divergence. Thus, it is clear that a 

calculation of I(vg + u + q) in the presence of an explicit gaugino Majorana 

mass term is far more involved than the computation presented in Section 3. 

Aside from being an interesting exercise in field theory calculations, we feel 

-that there is not much more to learn by pursuing the more complicated computa- 

tion. The results of Section 3 and Iindicated-that the dominant scalar-neutrino 

decay modes were sensitive to unknown supersymmetric masses. This conclusion 

24 



is not likely to change in more complicated softly-broken models. If anything, 

the results will become more dependent on unknown parameters. One interesting 

possibility that is worth considering briefly is the possible existence of winos and 

zinos lighter than the W and 2. Since some of the effects we have computed m 
_ depend on the exchange of virtual winos and zinosrone might hope to enhance 

these effects if the winos and zinos become lighter. Unfortunately, in the present 

context, this does not occur. The reason for this is that the lighter particles 

WH and ZH are more higgsino-like than gauginelike. Because the former cou- 

ples to matter with strength proportional to fermion masses, their interactions 

are weaker than the heavier WG and ZG. Thus, the enhancement due to lighter 

masses is compensated by the weaker interactions and the overall result is not 

much different from the model used in Sections 3 and 4. However, it is important 

to keep in mind that this result is an artifact of the superpotential we have cho- 

sen. As argued earlier in this section, the conclusions can change dramatically if 

t?r >> m (see discussion following eq. 43). But this simply means we have been 

conservat,ive in our search for supersymmetry. If supersymmetry turns out to be 

_~ easier to find, then all the better! _ .-.- -. . 
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6. Conclusiona and Discussion 

We have described here a simple softly broken supersymmetric model of elec- 

troweak interactions. This may be used for a phenomenological study of how 

supersymmetry might be revealed in current andfuture experimental particle 

- physics; As an application of the model described, we considered the decay 

properties of the scalar neutrino. The results obtained in Sections 3 and 4 will 

be useful for enumerating various signatures of the scalar neutrino. The two 

potentially most interesting places to search for evidence of the scalar neutrino 

are in W and Z decay.31j36 In W decay, the cleanest signature requires the u, 

to decay into unobserved particles. In that case, one searches for W ---) e,v,, 

e, -+ e + ;i and looks for an isolated electron with missing transverse momentum. 

In 2” decay, observation of the v8 requires that the us decay at least some of the 

time into charged particles. Then 2’ ---, v8 tid can be best detected by observing 

charged hadronic jets in one hemisphere and nothing in the other hemisphere. 

The probability of the occurrence of such a dramatic signal can be easily com- 

puted using the results of Section 3 and 4 and is summarized in fig. 7. Details of 

_~ -‘= the analysis concerning the signatures of the scalar neutrino are given in ref. 31. 

_ Observation of any one of the events just described would be a significant step 

in confirming the supersymmetric picture. 
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Appendix A: Feynman Rules 

We list some of the relevant Feynman rules for the supersymmetric model of 

electroweak interactions described in Section 2 in%gs: 8-13.’ Note that if one 

softly breaks the supersymmetry by adding only explicit mass terms for scalar 

leptons and quarks, then there is no change in the rules stated. (Of course, 

propagators and kinematics must reflect the actual masses.) 

Our conventions and the Feynman rules of the standard model of electroweak 

interactions can be found in ref. 37. We always represent 0, i, and 1 particles 

by dashed, solid and wavy lines respectively. Dealing with Majorana fermions 

can sometimes be confusing. We have found the rules given in the appendix of 

ref. 38 to be useful since it makes it possible to use the familiar four-component 

language for fermions. 

The following comments may be helpful. In fig. 8, for example, the direction 

_~ - ‘= of the arrows on the final state line gives the flow of electric charge. ,The momenta 

_ are also defined as indicated by the arrows but the outgoing lines are labelled 

by the names of the emitted particles. So, in fig. 8(b), Z” + e+e- whereas the 

arrow indicates the flow of negative charge. 

In fig. 11, we give the rules in terms of 21 and 52 as defined in eq. 16. 

The rules for the 52 vertices are obtained from the corresponding Zl vertices by 

- multiplication by 4 as illustrated in fig. 11(d). This factor i is a consequence 

of the factor i which appears on the left hand side~of eq. 11. .Alternatively, one 

could write these rules in terms of t and fC (see eq. 7). However, this is only 
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possible in the special case where the zino masses are degenerate. One finds an 

int,eraction: 

ig 

2 Jzcosew 
[D (1 + 75) i vu + (sin2 8~ - cos2 0~) e (1 + 75) i esL] 

- i Jii g.sin2 0~ - 
c - m  

- 
2 cos ew 

.?(l + q5)ee,R + h.c. 

This form is often more convenient when only left-handed fermions appear. Note 

that @ ” =CqTwhereC= iv2yo in the standard basis. 

Finally, note that we have only written out explicitly rules involving leptons. 

One can obtain rules involving quarks in a straightforward manner. As an exam- 

ple, consider the rules given by fig.. 11(a)-(c). They can be summarized by one 

rule: 

igFc,‘, :5) (T3 - Q sin2 f?$v) (A4 

where T3 = 5 - 4, and 0 and Q = 0, -1, and +l for u, e-, and eS respectively. 

Thus, formula (A.2) can now be used for zino interaction wit,h quark-scalar quark 

pairs. Similar considerations can be applied ,elsewhere. 
i :- 

We have also omitted writihg dut explicit rules involving the’gluino. The 

- vertices for qqa 9 are easily obtained from fig. 10(a)-(b) by replacing e with the 

strong coupling constant gs. Color factors are computed in the usual fashion. 

. . 
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Appendix B: The Effect of Gaugino Majorana Masses 

When explicit Majorana mass terms for the gauginos are added, the relation 

between “interaction” eigenstates and “mass” eigenstates is changed. The La- 

grangian, expressed in terms of interaction eigenstates, is unchanged except for 
c - m 

the additional new term. But, the Feynman rules are expressed in terms of mass 

eigenstates and hence they are modified. We list here some of the relevant new 

interactions. 

1. w-e8-u and w-e-u81 
. 
*’ 
5 1 

E (1 + qh)(WG sin 4 + wh cos 4)~~ + h.c. 

(B-1) 
+ D (1 + T~)(WH cos t#~ - w&sin #)e,L + h.c. 

I 
(See eqs. 38-41 for definitions of the angle 4, and states WG, WH.) One 

curious feature of eq. B.1 is the appearance of both WC a.nd w& (and 

likewise WH and wh). One consequence is the appearance of fermion- 

number violating propagators since, for example, the process free,, + 

WC + e- p8 is allowed by eq. B.l. The way to deal with such processes is 

by using the same fermion-number violating propagators which were used 
:~ . -.- 

in the appendix of ref. 40 for fermion-number violating propagators of 

Majorana fermions. Note that it is easy to check that in the limit of m ---) 

0, the linear combinations given by eqs. 42 and 43 are the appropriate 

ones which appear in the rules of fig. 12(c),(d). Namely, e-u, decouples 

from w2 and e,u decouples from 01 in this limit. 

2. w-w-q: 

- : W: 5 r,,( 1 + 75)(uG sin 4 + w$ cos 4) + h.c. 

-~W;~~~(1~75)(Wi:sin)--Hcos0)+h.c. 
(B.2) 
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3. t.-u-u8 and E-e-e8: 

We use the notation given by eqs. 47-49, which is relevant to the special 

case of m = m’. the resulting interaction is 

+ (sin2 ew - COS2 ew) z (1 + 75)( 2~ sin x - i ?H cos x)e& 

- 2Sin2 &+(&sin x - i&cosx)(l + ys)ee,R 

+ h.c. 
P.3) 

An expression like this is (in principle) easily generalized to the case of 

m # m’. 



Appendix C: Mathematical Properties of F(q, 5) 

The function F(tr, t-2) defined in eq. 17 (where rl E M&/m& and t-2 E 

h!zsL /m&) is proportional to the effective interaction matrix element for ugu 5. 

At one loop, it was calculated in Section 2 and the final expression is given by eq. 
c - 6 

25. In this appendix, we shall study the mathematical properties of this function. 

It is useful to define a secondary function 

Gb-1, rd = + Li2( 1 -t-2) -Liz 
l-rz+rl-X 

2 > ( 
-Liz l- r2; r1 + “>] (C.1) 

- r-1 - r2)2 - 4qr2] l12. The dilogarithm is defined as3’ where X zz [(l- 

Li2(2) = -- 
/ 

= Wl - t) & o 
t 

(C.2) 

It is an analytic function defined in the complex plane cut from 2 = 1 to 2 = 00. 

For real x 5 1, Liz(x) is manifestly real. A useful integral expression for G(q, r2) 

is: 

-. _ Gh 7 r2) = ;f;/ol$log (1- y1’--;$ (C.3) 

in - For 0 5 rl 5 (1 +‘r2 - 2 Jrz); the arguments of the dilogarithms in eq. C.l 

. are real. For (1 + r2 - 2 fi) 5 rl 5 (1 + r2 + 2 fi), X is purely imaginary so 

that G(q, rp) is still real. In this range of parameters, the following expression 

in place of (C.l) is more useful: 

Gh, r2) = k b52P - t-2) - 2Li2( fi ,e)] (C-4) 

wherecostIG(l+q - r2)/(2 fi), 0 5 8 5 12 and 

Li2@, 0) 
1 = -- ,-z 

I 
logpT,2tc0se+ i)dt 

2 0 t W.5) 

32 



or equivalently, Liz(x, 0) = Re Li2(xeie) for 2 real. . 

The properties of the functions Liz(x) and Li2(2,0) allow us to deduce the 

following interesting special cases: 

W, r2) 
r2 log r2 1 l-r2 - (C.6) _, 

G(rl,O) = -i Liz(q) W.7) 

G(q, 1) = -i [sin 
-1 @i 

(1)1 
2 (C.8) 

where - $ 5 sin 5 ZJ in eq. C.8. 

For rl >_ (1 + r2 + 2 fi), G(q, r2) is a complex-valued function. Its vaiue 

can be deduced by analytic continuation of eq. C.l; however extreme care must 

be taken with defining the dilogarithms above and below the cut. 

. . _ 

N’ith the properties of G(q,q) already described, it 

obtain the properties of F(rl,rz) defined by eq. 25. We 

below: 

is straightforward to 

rewrite this function 

in . -.- F(rl, r2) = 
-2(1 - q) 

rl -. LG(rl) i (2 - rl - rdG(rl, rd 

(C-9) 
-2r2 1 

( 
i log2 r2 - log 

2 l-rr+rz+X 
( 8 

__ 

rl 2pi 

The only remaining subtlety involves the logarithm when X is purely imaginary. 

In that case, we use: 

log2 
( 

l-r~~+~)=-(cos-l(l;~~r2)) (C.10) 

-which is used when 1 + r2 - 2 ,/& 5 rl 5 1 - r2 + 2 ,/Q. The arccosine then 

takes on values between 0 and X. ~_.. 
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Equations (26) and (27) are now easily derived. Other limits of interest are: 

F(q,O) = -Liz(q) 

r2 ‘?m F( rl , ‘2) = - log2 r2 
(C.11) 

These limits are helpful to check the curves given in fig. 2. 

One final observation: t-1 2 (1 --rZ+ 2 fi) corresponds to MV, 2 A&, + rniv 

which means that a physical threshold has been crossed. Hence, F(q, t-2) becomes 

complex there as it should. Note that the complexity of F(rl, t-2) occurs, because 

cutting the triangle graph results in real processes on both sides of the cut. For 

example, if iWe, < M,, < mw, then real three body decays can occur but this 

does not alter the reality of F(rl, t-2). 

34 



Appendix D: Computation of Four-body Decay Rates 

We provide here some of the necessary details for the analytic calculation 

of the four body decay rate of the scalar neutrino. We have found very useful 

the appendix of ref. 40 which provides a nice technique for computing massless 

four-body phase space. c - m 

The-formula for the decay rate of the us with a four-momentum p into par- 

ticles of four-momenta ki is: 

- kl - k2 - k3 - k4)l if I2 (D.1) 

where 1 h I2 is the squared matrix element averaged over initial states and sum- 

med over final states (with all group-theoretical factors included). Consider now 

the process us(p) + e-(k3) + u(ki) + a(kq) + g(kq) (see fig. 3(e)) with four- 

momenta as indicated, where all final particle masses are neglected. Then I .& 1” 

is given by: 

IM12= 64( 4n)3ct2ctJ kl - k4) 
sin4 8,&t!& -(Ccl + k2 + k4)2]2[M& - (kl + k4)‘12 

VW . . _ X [h - k2)@1 - kd + h . k2)@3 - k4) + (h - kd(k2 - k-i) 
_~ . -.- + (k; $ Wi - k4) - (4 - k3)(k; - k4)1 

_ Note that- we have included the color factor: Tr TaTa = 4. For simplicity, we __ 

will evaluate eq. D.l in the limit that My, << mw, Mu, which allow us to replace 

the propagator factors in eq. D.2 with (mwM,,) -4. To carry out the integration, 

let JV = p - kl - k4. Then we first compute: 

+ (h - kdk2 - h) + (k2 - Wk3 - k4) - (k2 - MWl . WI (D.3) -. ~_ _. 
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This is easily evaluated using 

d3k2 d3k3 
2E 2E k2 . r k3.8 6’(N - k2 - k3) 

2 3 

and 
_ 

d3k2 
/- 2E2 

= ; [2(q a N)(s . N) + (q . s)N2] 

2 k2. k3 b4(N - k2 - k3) = $ 
3 

(D.4 

(D.5) 

Thus, for At”, < mw, MU,, we find: 

I-= 
2cA& 

3x4Mv,M&Mj, / 
22 kl . k4[(N. (kl + k4))2 - 2N2kl . k4] (D.6) 

where N = p-kl-k4. To evaluate the remaining integrals, choose the rest frame 

3;= 0, let i4 be along the z-axis and let i1 lie in the x - .z plane. Define cos 8 = 

i, . I,. In this frame, using massless kinematics and denoting the respective 

energies by E3 = j&l and E4 = j&l, we find: 

I-= 4cz2aJ Mu, 
3r2m4 M4 / 

EldElE4dE4dx E1E4(1 - x)[(El + E4)2 - 2E1E4(1 - x)] 
w U# 

P-7) 

where x E cos 8. The limits of integration can be obtained from ref. 40: 
:~ -.- -. . 

(4 0 L E4 L fM,, 

(iii) If 0 5 El 5 ; Mv, -E4, then-l 5 x 5 1 

(iu) If f M,,, - E4 5 El 5 f Mv,, then 

-l<x<l- 
( 

2Mv,(El+ E4) - M;, 

-. 2ElE4 > 
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The integration now is straightforward, though tedious. .-The results of the in- 

tegral is Mf,/(( 15)(210)). I nserting this into eq. D.7, we end up with the result 

given by eq. 29 in the text. 

We used the analytic calculation above as a check of our numerical integra- 

tion. c - e 
_ 

in . -.- -. . 
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Table 1 

Superfield content of a supersymmetric SU(2) X U(1) model. We list the gauge 

and chiral multiplets of our model. The charge Q is obtained via Q = T3 + Y/2. 

The label r refers to multiple generations of quarks, leptons and their scalar 

partners. 
c - s 

Superfield Label Description Particle Content 

Gauge Multiplets : 

VU 

v’ 

Chiral Multiplets : 

ti 

Tj 

N 

a = 1,2,3 SU(2)w gauge multiplet 

WY gauge multiplet 

j= 1,2 Y = -1, SU( 2)~ doublet 

Y = 2, SU( 2)~ singlet 

j=1,2 Y = l/3, SU(2)~v doublet 

Y = -4/3, SU(2)w singlet 

Y y 2/3, SU(2)w singlet 

j= 1,2 Y=l, SU(2)w doublet 

j=l,2 Y = -1, SU(2)w doublet 

Y = 0, SU( 2)~ singlet 



FIGURE CAPTIONS .- 

1. One loop diagrams for v8 --) v;i. These are the contributing graphs in 

a supersymmetric SU(2) X U( 1) model with the supersymmetry broken 

only by explicit mass terms for the scalar quarks andleptons. Note that - 

in (e), the loop consists of either W-w: or IV+U~. Similarly in (f) with 

H replacing w. In (g) the loop consists of either eyLe+ or e:Re- as well 

as all relevant members from other generations of leptons, quarks and 

their scalar partners. 

2. A graph of the function F(rl, r-2) defined by eq. 25 for various values of 

t-1 and t-2 = aq. The function is actually negative definite, so we plot 

its absolute value. 

3. Four-body decays of the scalar neutrino. See caption to fig. 1. Note 

that we use the symbol u and d for all up-type and down-type quarks, 

etc. For convenience, the Cabibbo angle is neglected. 

4. Branching ratio for four-body models of the scalar neutrino. We label 

: . -.- the various. mod& as follows: 

(ii) e-u;iij+ e-cBij: 

tb) CivBiQi9; 

(c) e-u27 + e-cB;i; 

(d) ue+e- 5; 

(e) up+p- q or ur+r- 5; 

The rates for up+e- 5, and de- $ and Ci u pi qi 5 occur approximately 

at the level of (d). We use a value of oa = 0.2. We have taken the 

charged scalar lepton and scalar quark masses to be equal. 
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5. Branching ratio of charged modes as a function of Ale,, (which is as- 

sumed to be equal to Mu,). We have chosen iI&,, = 40 GeV. Note that 

for Me, < Mv,, the dominant decays are actually three-body decays 

containing a physical e, (or u,) in the final state. The labelling here 

is the same as in Fig. 4 except that we have to di?tihguish between d 

--( w ic h’ h corresponds to u#e- q final states) and d’ (which corresponds 

to uijqg. 

: 

6. Contributing graph to u, + u+ if rnq # 0. In general, 5 mixes with 

Zl,62 and a counterterm is required. When added to the graphs in fig. 1, 

the resulting decay rate would be finite. If rn? = 0, this counterterm is 

not necessary. 

7. Fraction of e+e- + u, fid events where one of the scalar neutrons decays 

into charged particles and the other one decays into invisible neutrals 

(solid line); and fraction of events where both scalar neutrinos decay 

into charged particles (dashed lines). We haven chosen M,,, = 20 GeV; 

the graph follows from the results of Sections 3 and 4. 

8. Feynman rules for the coupling of neutral gauge bosons to fermion and 
. -.- -. . 

scalar pairs. 

9. Feynman rules for the coupling of charged gauge bosons into pairs of 

ordinary and supersymmetric fermions and bosons. The photino is mass- 

less, the 5 is degenerate in mass with the Z” and the wi and wz are 

degenerate in mass with the W+. 

10. Feynman rules for the coupling of photinos and winos to a lepton-scalar 

lepton pair. (See the caption to fig. 9.) 

11. Feynman rules for the coupling of ziaos to a lepton-scalar lepton pair. 
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12. 

13. 

We have omitted two diagrams involving 22 analogous to (b) and (c). 

These rules are obtained in the same way as getting (d) from (a), i.e. by 

mult,iplying by -i. The zinos Zl and 22 are Majorana fermions which 

are degenerat.e in mass with the 2’. (See the caption to fig. 9.) 

Feynman rules for the coupling of the chargedHiggs bosons. The II* 

and I+‘* are degenerate in mass (see the caption to fig. 9). 

Feynma,n rules for the coupling of one of the neutral Higgs bosons. The 

Ho is degenerate in mass with the 2’ (see the caption to fig. 9). 
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