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1. Introduction 

The field of linear accelerators has grown to be so voluminous that compressing 

it into a few elementary lectures, as is our intention, requires one to be selective in 

some arbitrary way. In this first section, we will list some of the broad topics which 

the subject of linear accelerators encompasses and then indicate which of these will be 

covered in some detail. F- - s 

l-.1 THEACCELERATING STRUCTURE AND THEBEAM 

Linear accelerators consist of two basic elements: the accelerating structure and 

the particle beam. 

The accelerating structure depends on the type of linac. The main types of linacs 

are: 

1. DC linacs, like Van de Graafs, in which the structure consists of some kind 

of column of electrodes. These electrodes sustain a DC electric field which 

accelerates a continuous stream of particles. DC linacs are limited to a few tens 

of MeV. 

2. Induction linacs in which the accelerating electric fields are obtained, according 

to Faraday’s law, from changing magnetic fluxes. These changing magnetic 

fluxes are generated by large pulsed currents driven through linear arrays of 

magnetic toroids. The beam path, along which the electric field develops, can 

be considered as the single turn secondary of a transformer. Induction linacs 

are generally used in medium-energy high-current pulsed applications. 

3. RF linacs, the type on which we will concentrate here, can be categorized in 

a number of ways: low frequency (UHF), microwave frequency (L, S, C, or X- 

band), laser frequency; CW or pulsed; traveling-wave or standing-wave; room 

temperature or superconducting. In all these cases, the structure is a conduct- 

ing array of gaps, cavities or gratings along which rf waves with an electric field 

parallel to the beam can be supported and built up through some resonant pro- 

cess. RF linacs are used for a wide spectrum of applications from injectors into 

circular accelerators, to entire high-energy accelerators such as SLAC, medical 

accelerators, and many others. 
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While the accelerating structure can be considered the heart of each individual 

machine, it cannot work without its associated systems such~-as the power source, the 

vacuum, cooling, support and alignment, and instrumentation and control systems. It 

is important to note that a technological breakthrough in any one of these associated 

systems can have profound effects on the main design of the accelerator. 

The second basic element of the linac is, of course, the beam and the particles which w 
compose it. The vast majority of linacs today are elect& (for positron) machines; they - _ 
number about 1400 accelerators of which a large percentage are commercial radiation 

therapy machines. The other linacs accelerate protons (H*) and in a few cases ions. 

There are about 50 proton or ion linacs in existence in the world. 

Very little will be said in these lectures about the sources of these particles, guns, 

ion sources, duoplasmatrons, polarized beams, strippers, positron radiators, etc. This 

is an encyclopedic subject by itself with many specialties and sub-specialties which 

cannot profitably be summarized here. The reader should not conclude that because 

the subject has been left out, it is not of crucial importance to the design and operation 

of a given linac. Not only does the source have an effect on how well the accelerator 

can perform its function, but in some cases it determines how a new concept can or 

cannot be approached. An example of this is the electron source for the linear collider 

for which a conventional electron gun cannot create a beam with a sufficiently small 

emittance and must be followed by a damping ring to “cool” it down. 

The fundamental problems in beam dynamics are: 

1. Longitudinal bunching and stability, 

_ 2. Focusing and transverse stability, and 

3. Steering and transport to a target or interaction area. 

As long as the number of particles or current density is not too high, the analysis 

of many of these problems can be carried out by following single particle trajectories 

and then formulating the behavior of t,he beam in terms of its envelope. The important 

parameters are transverse emittance, bunch length and energy spectrum. 

Far more difficult are the beam dynamics associated with collective effects such as 

e%ttance growth, beam break-up, beam-wall and wakefield effects in general. These 

problems are treated in other chapters-of this book. 
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1.2 PLANOF THELECTURES 

These lectures come in five sections. The first is this introduction. The second is 

a short chronology of what are viewed as important milestones in the field. 

The third covers proton linacs. It introduces elementary concepts such as transit 

time, shunt impedance, &, but defers a more systematic discussion of periodic ac- 

celerating structures to the next section. Critical issue such M phase stability and 

transverse forces are discussed. Finally, examples of existing facilities are given and 

modern developments are mentioned. 

The fourth section contains an elementary discussion of waveguide accelerating 

structures. It can be regarded as an introduction to some of the more advanced treat- 

ments of the subject, such as are contained in the book on Linear Acce~erahm?, edited 

by P. Lapostolle and A. Septier in 1970, which, except for some recent developments, 

is undoubtedly the best single source of detailed information on the subject. The en- 

cyclopedic nature of this volume, to which we will henceforth refer to as m, partially 

excuses the sparsity of other references given in these lectures. 

The final section is devoted to electron accelerators. Taking SLAC as an example, 

various topics are discussed such as structure design, choice of parameters, frequency 

optimization, beam current, emittance, bunch length and beam loading. Recent de- 

velopments and future challenges are mentioned briefly. 

Since proton and electron machines will be discussed separately, it may be useful, 

before starting, to take a broad look at the full spectrum of linear accelerator appli- 

cations shown in Fig. 1. In this figure, the kinetic energy EK, which is the variable of 

greatest interest for most physics applications, is shown in the horizontal axis and the 

normalized velocity (in the form ,L? = V/C), which determines much of the linac design 

is plotted along the vertical axis. For particles of a given mass mu, these variables are 

related by the formulae: 

EK = T$- tnoc2 (14 

1 
ZZ 2mov2 (non - relativistically) (1.2) 
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The curves which result for the various particles are plotted on the figure and 

facilities of successively higher energies are indicated. It can be seen that electrons 

are almost always relativistic while protons (not to mention heavier ions) almost never 

are. It is for this reason that proton and electron accelerators tend to be described in 

different terms. 
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2. Some Historical Milestones 

The history of linear accelerators is briefly described by J. Blewett in the book L.A. 

A technical discussion of some early projects is contained in the “Linear Accelerator 

I+sue” of the Review of Scientific Instruments (February 1955). 

Here we have chosen to enumerate only some of the important milestones. The 

choice has led them to be spread more or less uniformly-in time, emphasizing the 

remarkable--continuity of progress over a period of more than half a century which 

promises to continue into the future. This uniform spread results perhaps in the 

slighting of some of the early work when parallel progress was being made at many 

laboratories. 

- 

The history of linacs can be viewed as a sequence of attempts to fool charged 

particles so that they see cumulatively acting voltages across linear arrays of gaps. A 

chronology follows. References can be traced through L.A. 

A theoretical paper by G. Ising, Stockholm, describes a method for accelerating 1924 

positive ions (canal rays) by applying the electrical wavefront from a spark discharge 

to an array of drift tubes via transmission lines of successively greater lengths. 

IQ28 An experimental paper (including the theory of the betatron) by R. Wideroe, 

Switzerland, describes the successful acceleration of potassium ions to 50 kV. Figure 

2 indicates schematically the setup in which the ions pass successively through three 

drift tubes: the first and last are grounded, the center one is attached to a 1 MHz 

oscillator with a voltage of 25 kV. The distance d between gaps is adjusted so that 

-=-or d=P.!! d 1 
v 2f 2 

where j is the frequency and X0 the free space wavelength at that frequency. The 

potassium ions travel from one gap to the next in one-half an RF period. Since higher 

frequency oscillators did not exist at the time, lighter particles traveling faster could 

not be accelerated. 
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Fig. 2. The Widerije linac. 

1931-35 K. Kingdon (G.E.), L. Snoddy (U niv. of Virginia) et al., accelerate electrons 

from 28 keV to 2.5 MeV by applying progressive wavefronts to a drift tube array. 

1931-34 E. Lawrence, D. Sloan et al., (U.C. at Berkeley) build a Wider&type linac 

(i.e., d = /3X0/2) with 30 drift tubes, oscillating to 42 kV, driven by 7 MHz oscillators. 

Mercury ions are accelerated to 1.26 MeV. Oscillators of high enough frequency for 

protons are still not available. Similar work continues at Cornell, in Japan and in 

England. 

1937-45 W. Hansen and the Varian brothers invent the klystron (at first a low 

power device) at Stanford. Subsequently, the high power magnetron (2 MW pulsed) is 

developed in Great Britain for radar purposes as part of the war effort. 

1945-47 L. Alvarez, W. Panofsky et al. (U. C. Berkeley) build a 32 MeV proton drift 

tube linac (Fig. 3) three-feet in diameter, forty feet long, powered by 200 MHz war 

surplus radar equipment. As indicated, the Alvarez structure difers from the Wideriie 

structure in that all tubes are contained in one large cylindrical tank and are powered 

at the same phase: the distance between drift tubes is arranged so that the particles 

are shielded from the fields when they are in the decelerating phase. Adequate beam 

acceptance required that the accelerating field not have much variation with radius, 

thus precluding operation at higher frequency. As will be explained later, longitudinal 

phase stability turned out to be satisfactory but transverse focusing was problematical. 



4 MeV 

Proton 
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Fig. 3. An Alvarez linac. 

1947-48 At Stanford, W. Hansen, E. Ginzton, W. Kennedy et al., build the Mark I 

disk-loaded linac yielding 4.5 MeV electrons in a nine-foot structure powered to 1 h4W 

at 2856 MHz. It is the first of a series: Mark II (40 MeV); Mark III (1.2 GeV); and 

SLAC (30 GeV). Parallel efforts take place in Great Britain, France and the USSR, 

and at M.I.T. and Yale in the U.S.A. 

J. Blewett at BNL shows that alternating-gradient focusing works with quadru- 1952 

pole coils inserted in the drift tubes, solving the transverse focusing problem for 

protons. The Alvarez linac (with some modifications) from then on serves as the 

model for most subsequent proton and ion linacs (up to 200 MeV). 

1965-66 P. Wilson, A. Schwettman et al., at HEPL, Stanford, report the first suc- 

cessful operation of a superconducting linac producing 500 keV electrons with three 

lead-coated cells. 

1967-69 V. Sarantsev et al., at Dubna, USSR, build a linear induction accelerator, 

as do D. Keefe et al., at LBL, shortly thereafter, both groups with the intent of 

accelerating electron rings. 

R. Koontz, G. Loew, and R. Miller at SLAC for the first time accelerate a single 1971 

electron bunch through the 3-km linac and show experimentally that beam loading is 

energy independent. 

1972 D. Nagle, E. Knapp et al., at LASL, Los AIamos, successfully operate their 

800-MHz side-coupled cavity linac, LAMPF, and produce 800 MeV protons. 
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1973 P. Wilson, D. Farkas and H. Hogg at SLAC invent the rf energy compression 

scheme called SLED which in the next five subsequent years gets installed on the 3-km 

linac, boosting its energy up to 30 GeV. 

R. Stokes et al., at LASL, successfully test RF quadrupoles (up to 2 MeV) 1980 

following a 1970 suggestion of I. Kapchinskii and V. Teplyakov, ITEP, Moscow. 

1982 H. Grunder, F. Selph, et al., at-LBL, use the HILACand Bevatron to accelerate 

U238 with charge state - 69. 
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3. Proton Linear Accelerators 

3.1 GENERALFEATURES 

As was mentioned previously, the early linear accelerators were restricted to pro- 

tons and heavier particles. Vacuum tubes with inferior high frequency characteristics 

and various discharge devices were the only RF power sources available. In a single cy- 

cle of a 1 MHz oscillator, a highly relativistic particle travels 3(Hhn - a length hard to - 

cunceivefor--a piece of apparatus in the early days of accelerator physics. A frequency 

more typical of modern proton accelerators is 200 MHz. The corresponding free space 

wavelength X0 is 

)q = c 
f 

= 1.5 m . 

If the input velocity of a proton is such that 

(34 

21 
.- = 0.05 
C 

corresponding to a kinetic energy 

EK = 1.17 MeV , 

then the distance it travels in one cycle is 

d=c o 5 = 7.5 cm . 

If we use drift tubes to shield the proton from decelerating forces, their length must 

be at least half this distance. Precise parameters for the FNAL 200 MeV proton 

linac injector are given in Table 1. It can be seen that, even at the output end, 

the particles are not highly relativistic. This means that the much higher frequency 

periodic structures typical of electron accelerators are not yet appropriate (for reasons 

of inefficiency and radial effects to which we will return). 

3.2 TRANSIT TIME FACTOR 

Consider a proton passing through a pill-box cavity as shown in Fig. 4, in which the 

maximum potential difference is VO. If the gap length is g and the instantaneous electric 

fieTd Ez in the gap is independent of the longitudinal coordinate z, the maximum 

electric field is given by 
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Table 1. FNAL 2OCkMeV Linear Acceicrhor Specifications 

Output energy 200.30 MeV 
Output momentum spread, 2.7 x 1O-3 

total for 90% of beam 
Peak Beam current loomA 
Emittance at 200 MeV 1.5 - 3.0 m&-cm 

(each transverse mode) 
Beam pulse icr:! h 100 psec 
Pulse repetition 1 ate 15 PPS 
Cavity resonant frequency 201.25 MHz 
RF pulse length, variable to 409 psec 
RF duty factor, maximum .006 c - s 

- Synchronous phase angle, -32’ 
from rf peak 

Cavity number 1 2 3 4 5 6 7 8 9 
Proton in (MeV) 0.75 10.42 energy 37.54 66.2 92.6 116.5 139.0 160.5 181.0 
Proton energy out (MeV) 10.42 37.54 66.18 92.60 116.5 139.0 160.5 181.0 200.3 
Cavity length (m) 7.44 19.02 16.53 16.68 15.58 15.54 15.83 15.88 15.73 
Cavity diameter (cm) 94 90 88 88 84 84 84 84 84 
Drift-tube diameter (cm) 18 16 16 16 16 16 1 16 16 
Bore-hole diameter (cm) 2.0 3.0 3.0 3.0 4.0 4.0 4.0 4.0 4.0 

2.5 
Cell length L 

(first cell) (cm) 6.04 22.2 41.1 53.3 61.8 68.2 73.3 77.6 81.3 
(last cell) (cm) 21.8 40.8 53.8 61.5 67.9 73.1 77.4 81.1 84.3 

Gap length C 
(first cell) (cm) 1.30 4.4 12.2 19.5 22.6 27.1 30.9 34.3 37.3 
(last cell) (cm) 6.70 12.7 19.3 25.1 26.9 30.8 34.2 37.1 39.7 

- GIL 
(first cell) 0.21 0.20 0.30 0.37 0.37 0.40 0.42 0.44 0.46 
(last cell) 0.31 0.31 0.36 0.41 0.40 0.42 0.44 0.46 0.47 

Axial transit-time factor 
. (first cell) 0.64 0.86 0.82 0.75 0.73 0.68 0.64 0.61 0.58 

(last cell) 0.81 0.81 0.75 0.69 0.69 0.65 0.61 0.58 0.55 
Effective shunt impedance 

(first cell) (Mt2/m) 27.0 53.5 44.6 35.0 39.6 24.8 21.5 18.9 16.7 
. . _ (last cell) (MfI/m) 47.97 44.8 35.2 28.5 25.0 21.7 19.0 16. 8 14.9 

Drift space following cavity (m) 0.22 0.6 0.75 1.0 1.0 1.0 1.0 1.0 - 
Number of full drift tube 55 59 34 28 23 21 20 19 18 
Average axial field (MV/m) 1.60 2.0 2.6 2.6 2.56 2.56 2.56 2.!6 2.56 

2.31 
Average gap field 

(first cell) (MV/m) 7.62 10.0 8.7 7.03 6.9 6.4 6.1 5.8 5.6 
(last cell) (W/m) 7.45 6.45 7.2 6.3 6.4 6.1 5.8 5.6 5.4 

Peak surface field 
(first cell) (MV/m) 8.9 12.6 13.1 12.9 14.0 14.1 14.2 14.3 14.5 
(last ceil) (MV/m) 10.2 9.7 12.0 13.2 14.1 14.2 14.3 14.5 14.8 

Cavity excitation power (MW) 0.61 1.38 2.245 2.48 2.49 2.33 2.65. 2.7. 2.75. 
Total per cavity for 100 mA (W) 1.58 4.09 power 5.11 5.12 4.88 4.58 4.81 4.75 4.68 

Total accumulated length 144.8 m  
Total number of unit ceils 286.0 
Total number of full drift tubes 277.0 
Total cavity excitation power 19.6 IdW 
Total iinac rf power for 100 mA 39.6 M W  

*Estimated 
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and the field varies as 

E Vo 
20 =- 

9 

RFPOWER 
SOURCE 

Fig. 4. Pill-box resonator accelerating cells. 

(3.2) 

(3.3) 

If the proton has an average velocity v and passes through the center of the cavity 
% _ at t = 0, its coordinate is given by 

zp = ut 

and its kinetic energy gain while passing through the cavity is 

AEK = 

= eV0 
sin wg/2v 

wd2v 

(3.4 

where the familiar sinx/x term is called the transit time factor Tt,. 
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If the proton passes through a series of cavities, each phased so that the field is 

maximum when the particle goes through the center, then cumulative acceleration can 

take place. We see, however, that if each resonator gap g is equal to /3X0/2 where X0 is 

the free space wavelength and /I = v/c, then Tt, is only equal to 0.64 [(sin 7r/2)/(7r/2)], 

appreciably less than unity. To improve upon this situation, for a given Vo or power per 

unit length, it is clearly advantageous to reduce the gap length g: this leads naturally 

to the configurations shown in Fig. 5.. 
c - e 

- 

7&%c- r 
‘J&-pqE- 

CAVITY NOSE CONES 
I I 
t---d4 \ALVAREZ DRIFT TUBE 

Fig. 5. Structures which increase the transit time factor Tt, by decreasing g. 

The cavity nose cone and the length of the gaps between Alvarez drift tubes can 

both be adjusted to bring Tt, closer to unity. Ultimately, reducing g leads to sparking 

due to excessive field gradients. There is little to be gained in Tt,. by reducing g to 

less than, say ,8X0/4. Table 1 shows how the gaps between successive drift tubes in 

the nine FNAL Alvarez tanks have been adjusted to handle these problems. 

3.3 SHUNTIMPEDANCE 

The next question that arises isi How much power do we need to obtain a given 

amount of energy gain ? Power is consumed in basically four areas: the cavity walls, 

the beam, the transmission line between the source and the cavity, and in reflections 

which decrease the power delivered to the cavity. For now, let us neglect all but the 

first. Unless one uses a superconducting cavity, appreciable power is dissipated in the 

walls of a cavity to maintain high fields in it. The power lost in one cell, Piost, is 

proportional to V. . 2 The shunt impedance R of the cavity is defined as: 

vi R=- . 
plost 

(3.7) 

If the cavity is of length d, then for a multi-cavity accelerator it is also customary to 
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define a shunt impedance per unit length r where 

r _ R _ Pb/42 
d PE*,tld 

(3.8) 

For a negligible beam intensity and a lossless matched line between the power source 

and the cavity, one has by definition: 
c - s 

P 8otircf? = P108t (3.9) 

and the achievable value of Vo becomes 

vo= JE (3.10) 

where the peak energy gain, from (3.6) is 

A& = e\/RT,2,P,,, (3.11) 

Referring again to Table 1 for a numerical example, it can be seen that at the injection 

end of the FNAL linac, the first tank containing 55 drift tubes has an average shunt 

impedance 

R = 38 X lo6 X 7.4 = 281.2 Megohms 

and 

Ttr = 0.75 . 

Then with Psoutce = 0.6 MW 

81.2 X (0.75)2 X 0.6 = 9.74 MeV . 

3.4 CAVITY &, r/Q AND FILLING TIME 

To calculate Plo8t it is necessary to know the quality factor Q of the cavity which 

is defined by 

Q=Z (3.12) , 
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where W8t is the maximum stored energy and it is assumed that the only net flow of 

power into the cavity exactly replenishes Plo8t. Combining (3.7) and (3.12) one obtains 

the important ratio 

R vo2 -=- 
Q WW8t 

(3.13) 

or per unit length, c - s 

r (vO/d)2 
- = W(W,t/d) ’ Q 

(3.14) 

Notice that, at a given frequency, this ratio is purely a propert,y of the cavity geometry 

and does not depend on the wall material or condition, or on the quality of welds, joints, 

etc. It can be measured using dielectric beads on threads or rods. On the other hand, 

the separate quantities R, f and Q depend on all these factors. 

We will return later to a discussion of power flow along a chain of resonators, but 

for now let us notice that the natural damping of a free excited single cavity, by (3.12), 

is 

d%t -= -$“,, 
dt 

As a result, the time for the electric field to decay to l/e of its initial value is 

2Q % _ =- tF w (3.1.6) 

3.5 PHASE STABILITY AND ADIABATIC DAMPING 

When a bunch of protons is injected into a linac, it inevitably has a spread of 

velocities. Superficially this suggests that in a sufficiently long accelerator, all protons 

will eventually drop out of step with the accelerating fields. Fortunately, phase stability 

prevents this from occurring. 

The important idea is that a particle whose velocity is somewhat too low gradually 

drops back in the bunch, thereby passing the structure at a phase where the acceler- 

ation is greater, permitting it eventually to catch up and even overtake the center of 

thy bunch. It is presupposed that the drift tubes, gaps and fields are so arranged that 

one can speak of a reference or synchronous particle which is accelerated through the 
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structure without any longitudinal oscillation and defines the bunch center. In prac- 

tice, this is achieved by empirically adjusting the phases of the drive to the successive 

individual sections of the linac. 

It turns out to be simpler to use Z, the distance along the accelerator as the 

independent variable rather than time. In this section we will use capital letters to 

represent the dependent variables for a specific particle. This will permit us to use c - s 
lower-case letters to represent deviations away from the variables of the reference - 
particle. For example, let the particle pass point z at time T. At this time the phase 

of the RF accelerating field is Q, = WT.- The synchronous particle passes the same 

point at time T8 and phase <P8 = wT8. The time and phase differences are 

t=T--T8 

~=+d’8=W(T-?-8)=Wt . 
(3.17) 

Referring back to Eq. (3.3), the rate of increase of energy of the synchronous 

particle is given by 

dEK8 - = q &@0s@8 
dz 

. . _ 

where Ezo represents the average electric field in the vicinity of Z, including the transit 

time correction. For maximum acceleration, 0, should be adjusted to zero but this 

would not yield phase stability as we shall see. For the general particle the rate of 

energy gain is 

dEK ---z 
dz 

q E,()cos@ . 

The energy offset e = EK - EKE satisfies 

e = $ = q &o [co@,, + 4) - COS +8] (3.19a) 

“-q ,!?&)#sin@8 - (3.19b) 

where the dot notation is intended to remind the reader that z enters the equations 

th; way time does in regular mechanics. Note that we are using q for charge to free 

up the symbol e for energy offset. 
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Our intention here (and elsewhere in these lectures) is not to give the most general 

formulation but rather to explain the ideas using formulae that are as simple as possi- 

ble. Hence we will emphasize the linearized equation (3.19b) rather than the general, 

nonlinear equation (319a). For the same reason we will use non-relativistic mechanics 

even though the full relativistic treatment is straightforward (see the article by H. G. 

Hereward in m). As it happens, for the critical early stages of a proton accelerator 
where these ideas are most important,. the non-relativistic appro?imation is very good. 

- - 
Equation (3.19b) shows that there is an energy correction proportional to the phase 

discrepancy 4 but this is only half the story. There is also a phase correction due to 

the energy offset e since a more energetic particle has a greater velocity which allows 

it to gain in phase. T and T8 are given in terms of the velocities V and v8 by 

T= (3.20) 

From these and (3.17) we get b 
- 

“=gzw(;-f) . (3.21) 
8 

It was the simplicity of this relation and the natural occurrence of z in (3.18) which 

motivated the choice of z as an independent variable. 

Velocities and energies are related by 

1 1 
EK=Z~V’; E~~=smVt (3.22) 

and as a result 

e=im(V2-Vf) (3.23~) 

?! d,(v - v8) . (3.238) 

In practice, the energy spreads tend to be very small and the linearized form (3.23b) is 

a satisfactory approximation (more so, for example, than the linearized form (3.19b) 
which won’t quite do in some cases). Combining (3.21) and (3.23b) we obtain 

6=.-+p . (3.24) 

18 



We obtain “Newton’s law” by differentiating (3.24) and substituting from (3.21) 

= -$2&&-J [co@,, + 4) - cos*,] 
8 

(3.25~) 

- 

e 
(3.25b) _ 

c - 

Even the non-linear form (3.25a) has the simple feature that the “force”, “F”, depends 

only on the displacement 4: this motivates one to introduce an “effective potential 

energy function” 

“jr”=- J “F”d$ 

8 

(3.26) 

The effective force is plotted in Fig. 6a and the effective potential is plotted in Fig. 6b. 

Clearly Eq. (3.25b) represents an oscillatory system provided that sin +p, is negative. 

The “frequency” of small oscillations is given by 

2r wq&Isin@8I 
x,= mV83 * (3.27) 

Here, since the independent variable is z, it is the wave number 27r/Xz which ap- 

pears rather than w. X, is the distance along the accelerator for one cycle of longitu- 

dinal oscillation to occur. Note that A, becomes large as v8 increases. Relativistically 

this effect is even more pronounced. The correct relativistic expression differs from 

(3.27) by the replacement v8 + r8v8 where 78 is the usual relativistic factor ( 1-a2)-:. 

As usual with oscillators, it is enlightening to write the equations of motion in 

Hamiltonian form and to discuss the motion in phase space for which the axes are 4 

and e as in Fig. 6~. The Hamiltonian is given by 

H= -q & [sin(+8 + 4) - d cos @8] - & ” (3.28~) 
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Fig. 6. Phase stability graphs. 

and the equations of motion (3.19) and (3.24) are 

aH k=-- 
a4 

i=-!g . 
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For small oscillations, and dropping a constant term, H reduces to 

H = -fq Ed Isin+8~#2-&e2 . 
8 

When a Hamiltonian does not depend on the independent variable, it is a constant of 

the motion. In that case a phase space trajectory is an ellipse with the equation 
c - s 

H(cj, e) = HI (a constant) . (3.31) 

Just as with a pendulum for which the maximum velocity can be calculated if the 

maximum height is known, or vice versa, we can obtain 

(3.32) 

In other words, the aspect ratio of the phase space ellipse is determined by the Hamil- 

tonian 

emaz qE,o - 1 sin @81mv2 
maz W 

(3.33) 

But H is not independent of Z. The very fact that we are discussing an accelerator 

implies that v8 varies with z and the ideas presented here cannot be applied without 

further discussion. If the rate of variation is slow enough, the motion in phase space 

will still follow an almost elliptical path close to one of those shown in Fig. 6~. Slow 

(or adiabatic) in this context means that the fractional variation in v8 should be small 

k the particle travels a distance A,. It is useful to evaluate X, for the data describing 

the FNAL linac and given in Table 1. You should find that the adiabatic condition is 

quite well satisfied. 

But in such an adiabatically varying situation, the value of H($, e) does not remain 

even approximately constant. On the other hand, it is not hard to show (e.g., Landau 

and Lifshitz, Mechanica) that the area of the phase space ellipse is an “adiabatic 

invariant.” In other words, 

emazbm& = constant . 
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Taken together equations (3.33) and (3.34), by fixing both the product and ratio of 

emax and 4maxr fix them individually. It follows that their variation is given by 

t?ma,a[E,o 1 sin 081 &3]1’4 (3.35) 

(3.36) - 

The latter relation shows that the bunch naturally shrinks down and becomes short 

compared to the phase acceptance of the linac sections. Even the energy spectrum 

is, in a manner of speaking, damped since one is normally interested in the fractional 

energy spread emaz/Ek8. 

We have not said much about the motion for large amplitudes where (3.28a) must 

be used. Nor will we, as it is assumed that the reader has already encountered phase 

space plots like Fig. 6c elsewhere. On injection, particles inside the separatrix are 

captured. Those outside are largely lost although even some of them can be captured 

because of adiabatic damping. 

3.6 TRANSVERSE DEFOCUSING 

There is one undesirable consequence of the phase stability considerations of the 

last section. We saw, following Eq. (3.25b), that longitudinal stability requires that 

sin@, be negative. Referring back to Eqs. (3.2) and (3.3) the time rate of change of 

the electric field is 

d& -= -EE,owcoswt 
dt 

which, for the synchronous particle becomes 

(3.37) 

This expression is positive if there is longitudinal stability. Looking at Fig. 7 it can 

be seen that fringe fields in the gap region lead to transverse forces. As the proton 

enters the gap it feels a focusing force and, as it leaves, a defocusing force. There is 

a;et defocusing effect since from (3.37) the magnitude of the field is increasing with 

time. 
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A quick way of seeing the inevitability of this effect is to consider the motion in a 

moving frame of reference in which the synchronous particle-is at rest. In this frame 

there is only a time-independent electric field since the phase velocity of the field is 

equal to the particle velocity. In this frame, Earnshaw’s theorem which applies to DC 

fields and potentials excludes the possibility of a potential minimum, and motion in at 

least one of the three dimensions must be unstable. Since the longitudinal motion has 

been adjusted to be stable, the transverse motion will not be. e 

ELECTRIC FIELD 
/\ 

Fig. 7. Transverse focusing fields in accelerating gaps. 

It is possible to show this effect mathematically. So far we have not explicitly 

given the z-dependence of the accelerating field other than to say that the protons are 

inside drift tubes where there is no field except at times when the field is in the right 

direction. As mentioned above, we can represent this by a traveling wave given by 

E&z, t) = ,!&pcosw t 
(-G) - 

(3.38) 

The argument has been arranged so that a particle of speed v8 stays at a fixed phase 

of the traveling wave. In Sec. 4 we will see how, by Fourier transformation, such a 

traveling wave can be obtained for a general accelerating structure, but for now let us 

accept (3.38) as the dependence on z and t separately, for example near the center of 

one of the accelerating gaps. 

We will now use this expression of the field to find the form of the radial Lorentz 

lo&e equation. Taking r as a transverse radial displacement and 8 as an azimuthal 

angle, we can show that, for small r, the form of (3.38) and Maxwell’s equations fix the 
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other field components. We also assume that Hz vanishes and, assuming rotational 

symmetry, that Ed = Hr = 0. In the absence of free charge, Gauss’s law makes V. fi 

vanish, i.e., 

i -$rE,) =-2 . 

For small r, Er will be proportional to r, and we get 

* 
E’=sa, ’ a (rEt) =-f E,u&sinw t 

By Ampere’s law 

and from this we obtain 

Hd=-T EL0 cnsinw t 
( -L$) - 

(3.39) 

(3.40) 

(3.41) 

(3.42) 

We can now write the radial Lorentz force equation for the synchronous particle 

-$m +) = q(Et - V,lroHe) 

(3.43) 

where it has been recognized that the phase factors in (3.38), (3.40)' and (3.42) are 

the same as in (3.25b), i.e., q8. But since the sign in (3.43) is opposite to that in 

(3.2513) one or the other must lead to unstable motion which is what we set out to 

demonstrate. It should be noticed though, by the presence of the factor 1 - &, that 

the defocusing vanishes in the relativistic limit. 

Space charge forces also tend to enlarge the transverse beam size but the effect 

just described limits operation even at low beam current. Early corrective schemes 

using electrostatic grids were not very satisfactory. It was the discovery of alternating- 

grxdient focusing by Blewett, Courant, Livingston and Snyder and the introduction 

of quadrupole magnets inside the drift tubes which solved the problem. 
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3.7 APPLICATIONSANDSOMEPRACTICALASPECTS 

For high energy physics, the main application of proton and ion linacs is as injectors 

into circular machines, but by themselves they also have numerous applications in 

nuclear research and medicine. Included are meson factories (LAMPF), heavy ion 

research (SUPER HILAC, UNILAC, R&AC) and intense neutron sources. 

A typical layout of a proton linac is shown in Fig, 8., Thesource is generally a 

metal envelope containing a gas (hydrogen or other) which is ionized into a plasma. 

The protons (or ions) are formed into a jet through a cylindrical nozzle. 

200 MHz 200 MHz 800 MHz 

- 

Fig. 8. Typical proton or ion linac layout. 

This system, called a duoplasmatron (DP), floats at a large negative voltage supplied 

by a Cockcroft-Walton supply and emits the protons (or ions) into a high-gradient 

accelerator column (CW). This results in particles with an energy of as much as 1 

MeV (typically 750 keV) but near ground potential. Photographs of the BNL versions 

of these components are shown in Figs. 9 and 10. 

This pulse of protons forms a DC current of perhaps 100 or 200 mA for 100-200 
microseconds. The protons then become bunched in the drift space following the 

low power, velocity-modulating, 200 MHz buncher labelled Br. The second buncher, 

B2, used for longitudinal phase space matching, injects the protons into the Alvarez 

linac where the capture efficiency at a synchronous phase ih8 = -30' is as much as 

80%. Figures 11, 12 and 13 show successively more magnified views of the BNL linac. 

After 150 or 200 m the protons have been accelerated to about 200 MeV with a pulse 

repetition rate of 10 or 15 pps. The parameters of other injectors, such as that at 

FNAL, are similar. At LAMPF this stage is less than half as long and achieves 100 

M~zV with a greater repetition rate (120 pps) and a 500 psec pulse length. 
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Fig. 9. Cockcroft-Walton pre-injector (750 kV) 

(BNL-HAEFELE) 



- 

27 



- 

Fig. 11. BNL Alvarez linac from low-energy end. 
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Fig. 13. First Alvarez drift tubes (notice sparking). 

. . _ 

In all these Alvarez linacs, typical average axial fields are in the range of 1 to 2.5 
MV/m, with gap fields at 6 to 10 MV/m. There are many tanks, each containing 

many drift tubes (refer again to, e.g., Table 1). Each tank is supplied with a peak 

power of several MW, typically - 5 MW. 

To obtain higher efficiency, the remainder of the LAMPF accelerator which goes 

up to 800 MeV utilizes a structure at higher frequency, 800 MHz. This structure uses 

side-coupled cavities. We will defer explanation of this important development until a 

more systematic formalism for periodic structures has been developed in Sec. 4. 

3.8 RECENTDEVELOPMENTS 

One recent invention, first proposed in 1970 by I. M. Kapchinskii and V. A. 

Teplyakov at ITEP in the Soviet Union, is to replace the front end of the linac struc- 

ture by a device in which the RF fields that are used for bunching and acceleration 

can also serve for transverse focusing. In the USA, the structure which can perform 
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these combined functions is called the RFQ (Q for quadrupole). As mentioned in Sec. 
2, RFQ’s have now operated successfully at several laboratories. Table 2 gives param- 

eters for the designs of three such devices. 

Table 2. Design Parameters for Three Different RFQ’s 
Los Alamos CERN BNL2 

Polarized 

Ion H- H+ H- - 
Frequency (MHz) 425 202.56 201.25 

Input energy (MeV) 0.10 0.05 0.02 

Output energy (MeV) 2.00 0.52 0.75 

Nominal current (mA) 100 loo 0.1 

Transmission efficiency (% ) 91.4 93.6 100 

Output emittance” 0.021 0.05 0.011 

Length (cm) 288.6 138.2 123.4 

Peak rf (kW)b power 1020 304 66 

‘RMS normalized area/a in cm mrad units. 

‘Includes power required for the rf manifold and for the beam. 

To understand how the RFQ works, refer to the early model built at ITEP (Fig. 14) 

and the simplified sketch of the vanes which make up the four opposing arrays of poles 

(Fig. 15). 

The fields and currents are said to resonate in a modified TE2ru mode. At any 

particular distance along the resonant structure, the poles are shaped and powered to 

g&e an electric quadrupole field. As the fields vary sinusoidally in time, an alternating 

gradient with net transverse focusing results. However, since the poles are also given 

a sinusoidal-like radial variation, this configuration leads to longitudinal acceleration 

and adiabatic bunching as well. 

One reason for which this device is of such great interest is that in a small space, 

it can replace the very large Cockroft-Walton section of an ordinary injector, as can 

be inferred by noting the typical input and output energies in Table 2. Although the 

pwk RF powers are relatively high, the RFQ’s hold the promise of far better capture 

efficiency and reduced emittance growth at reduced cost. 

31 



Fig. 15. Transverse and longitudinal views of the poles of an RFQ. 
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Schematic drawing of RFQ resonator. 

FMIT Prototype RFQ 

Ion: Deuteron 
Frequency: 80 MHz 
Nominal Current: 100 mA 

- 
Current Limit: 205 mA 
PARMTEQ RESULTS 
Input Current: 106 mA 
Output Current: 100 mA 

:/ 0 Output Input (90%): (90%) : 0 0.070 . 160 
: El Input (RMS): 0.017 

Output @MS): 0.036 

W(MeV) 

E* ON/m) 
m 

a (cm) 
r. (cm) 

es (de%) 
EoOfV/d 
VW) 
B 

L(m) 

IIY H s OS H A 

0.075 0.075 0.120 0.80 2.00 
3.01 17.6 17.6 17.6 17.6 
1.00 1.00 1.12 2.13 2.13 
8.31 1.42 1.35 0.89 1.00 
8.31 1.42 1.42 1.42 1.63 
- -90 -72 -30 -30 
0 0 0.40 1.97 1.31 
185 185 185 185 185 

0.20 6.82 6.82 6.82 5.20 

0 6.7 130 274 388 

CELL NUMBER 
4 73 119 135 

GENTLE BUNCHER ACCELERATOR 

G  o- 
62 
a 
Y -3 

2 
-6 - I I I 

100 200 300 388 

VANE LENGTH (CM) 

FMIT prototype RFQ pole-tip shape. 

Fig. 16. Characteristics of RFQ for FMIT linac (LANL). 
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Figure 16 gives detailed design information for the RFQ for the LAN, FMIT 

project to accelerate deuterons. The cavity containing the 3.88 m long vane shows the 

pole profile in the four successive sections of the device: the radial matching section 

(RM), the bunch shaper (S), the gentle buncher (GB) and the accelerator (A). 

Another interesting modern development is the linear induction accelerator men- 

tioned in Sec. 2. The principle of this accelerator is illustrated by the module shown 

in Fig. 17. 

LINEAR INDUCTION ACCELERATOR 

Spark Gap Switch 

Transmission Line 
and Pulse Farming 

H.V. Generator 

Fig. 17. Linear induction accelerator module. 

As stated earlier, the idea of the induction linac is based on Faraday’s law. The 

accelerating action can be described as analogous to a transformer. The primary of the 

transformer is excited by a high voltage source connected to a pulse forming network, 

switch and transmission line. The increasing current flowing through the primary 

when the switch is fired creates a rapidly changing magnetic flux in the toroidal core 

(thin-laminated iron or ferrite) which in turn induces a voltage across the accelerating 

gap. The beam then can be seen as the secondary winding. The accelerator itself 

c&sists of an array of such modules which can be triggered in succession at a rate 

commensurate with the velocity of the-particles, their particular q/m and the mean 
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accelerating field. Accelerating capability, expressed as the product of gap voltage 

times pulse length, is limited by the saturation of the ferromagnetic material, which 

in turn is determined by the amount and type of material present. Typical average 

gradients of 2.5 MV/m can be reached. The technology of the induction linsc seems 

to be well suited for very high beam currents (100 to 10,000 A) with short pulses (10 

to 2000 nsec) at repetition rates up to 100 Hz. 
F- - s 

_ The first version of the induction linac was the Astron injector designed and com- 

pleted by N. Christofilos at LLNL in 1963. More advanced versions were built in 1971 

at LBL and Dubna for their respective electron-ring accelerator (ERA) projects. The 

idea of the ERA was to form and accelerate rings of electrons and to embed protons 

or ions in the potential well of the electrons circulating in the rings. By accelerating 

the rings to relativistic velocities without “spilling” the protons, it was hoped that 

extremely high-gradient proton machines could be built. Unfortunately, it was discov- 

ered after some time that instabilities would prevent this scheme from being realizable 

at high energy. As a result, the ERA projects lost their momentum although at Dubna 

this type of accelerator is still used at low energy for ions. In the process, however, the 

feasibility of practical induction linacs for very high currents was established. Table 3 

gives the parameters of some induction linacs in existence. All of them happen to be 

for electrons. 

In recent years, the induction linac has been proposed for a new application: heavy 

ion fusion. In this application, the linac which is called the driver is to produce pulses 

of ions such as, for example, Krypton or Thallium (see Fig. 1) on the order of three 

megajoules. This pulsed beam energy, to be achieved by accelerating the ions up to a 

maximum of 20 GeV and currents of 15,000 A, is to be focused simultaneously from 

several directions onto a deuterium-tritium pellet to produce what is called inertial 

confinement fusion. The pulse length of the induction linac modules can be reduced 

along the machine as the energy of the ions increases and the time of passage through 

them decreases. Typically, the pulse length might be 2000 nsec at the front end and 

20 nsec at the output. Progressive beam bunching is obtained by shaping the current 

pulses from the pulse forming networks so as to produce a positive voltage ramp 

wzhin each module. Thus, later particles with higher energies catch up with earlier 

ones at lower energies. Even at an output energy of 20 GeV, the particles are still 
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non-relativistic and final power amplification up to several tera-watts can be obtained 

by longitudinal bunch compression in the transport lines leading to impact on the 

pellet. 

Table 3. Parameters for Typical Induction Accelerators 
Astron Injector ‘ERA Injector NEP 2 Injector ATA 

Accelerator Livermore Berkeley Dubna Livermore 
1963 1971 - I971 - 1983 

- Kinetic energy, 3.7 4.0 30 50 
MeV 

Beam current on 350 900 250 10,000 
target, A 

Pulse duration, 300 2-45 500 50 
ns 

Pulse energy, 0.4 0.1 3.8 25 
kJ 

Rep rate, pps o-60 O-5 50 5 

- Number of 300 17 750 200 
switch modules 

- 
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4. Particle Acceleration by Guided Waves 

We will now present a somewhat more general discussion of particle acceleration 

by guided waves. As we have seen in the previous section, a series of appropriately 

phased accelerating gaps, separated by drift spaces, can be analyzed simply to give 

a satisfactory description of a proton linac. The present discussion will include such 

structures as a special case but will focus on the guided waveitself rather than on _ 

the. details of the structure. In the interest of simplicity we will concentrate mainly 

on particles with speeds near the velocity of light (i.e., electrons) although the same 

formalism applies also to slower particles. Rather than building on our previous dis- 

cussion of proton accelerators, we will begin again and consider the general problem 

of particle acceleration by an electromagnetic wave. 

4.1 MOTIVATION 

As mentioned before, we are concentrating on particles with velocity near c and this 

makes it natural to attempt to use an electromagnetic wave in free space since it travels 

at the same speed and might have a cumulative effect on the particles. Unfortunately, 

such a wave has the property that its E and H-field are orthogonal in space and have 

components only in the transverse plane perpendicular to the direction of propagation. 

Since, in addition, the wave is bound to be of limited transverse extent, only one of 

two outcomes is possible. Either the particles start along a direction exactly collinear 

with the wave, in which case they see no force at all (i.e., the transverse electric and 

magnetic forces cancel exactly); or they start at a slight angle, in which case the 

transverse component of the E-field produces some acceleration along the direction of 

motion of the particles but the effect is not cumulative because the particles soon find 

themselves outside of the field of the wave. 

There are two ways around this difficulty: either one keeps bending the beam back 

into the wave or one reflects the wave back into the beam. The first is the principle of 

the Inverse Free-Electron Laser which is discussed elsewhere in these Proceedings. The 

second one is the principle of all linacs using rf waveguides. An appropriate waveguide 

can redirect the electromagnetic wave to keep it superimposed on the particle trajec- 

tory. At the same time, it can also be such that it has a longitudinal electric field in 

the direction needed to impart energy to the particles. To have a cumulative effect, 
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however, the particles and the wave must be synchronous. As we will now see, it is 

the need for the simultaneity of these conditions which presents the main challenge to 

the accelerator structure designer. 

We will now go through a short review of guided waves to clarify these points. 

4.2 WAVECONFINEDBYPARALLELPLANES 

Figure 18(a) shows two plane waves propagating in-free space at angle 6 on either 

side of the i-axis, and with their E-fields lying in the zz plane (the plane of the paper). 

The lines represent a snapshot of wavefronts of maximum 12 1 at a fixed time. They 

are labelled +, -, +, etc., to indicate whether fi points left or right. The free space 

wavelength Xu is shown. It is given by 

J+ =c2R 0 w - (4.1) 

At a few of the intersections of the wavefronts the vector sums of the fields due to 

the two waves are shown. On the dashed lines the E-field is transverse to the z-axis. 

Along these lines it is permissible to place a mirror (i.e., a conducting plane) without 

affecting the fields. 

Now the two waves can be thought of as bouncing back and forth between the two 

conducting planes. Changing our perception somewhat, we can see in Fig. 18(b) that 

there is a single wave having a longitudinal component of J%’ and propagating in the 

direction of the z-axis. The guide wavelength X, is shown. It is the distance along the 

z-axis after which the pattern repeats and it is given by 

as can be deduced from the geometry of the figure. 

We are now confronted by one of the obstacles which tends to foil our efforts. If we 

wait for a time 27r/w which is one period of oscillation, the pattern will have advanced 

a distance X,. That is, the phase velocity is 

W C C 
vp=xg~=Agxo=- 

co.58 - 
(4.3) 
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Fig,l8. (a) The origin of longitudinal electric fields in guided waves, and (b) their 
configuration between two parallel conducting planes. 
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Since cos 0 is less than 1, the phase velocity is greater than c. Since the particle 

to be accelerated is necessarily traveling at a velocity lower than c, our wave cannot 

yet be used for cumulative acceleration. 

Before addressing this problem, we should discuss some other preliminary questions 

regarding waveguides. The conducting wall could be moved out to any of the other 

planes on which Et vanishes and this introduces the possibility of different waveguide c - w 
modes. Also, it is natural to “close” our waveguide, for example by making it rectan- ~ _ 
gular through the addition of conducting walls parallel to the plane of the paper: this 

makes even more modes possible. In this case it is still possible, although harder, to 

visualize our wave as made up of plane waves reflecting off the walls - four waves must 

be used. Rather than attempting this, we shall withdraw to a more abstract treatment 

based on Maxwell’s equations. The wave we are considering has a transverse Ez and 

a longitudinal Et component but only a transverse Hy magnetic component, which 

makes it a so-called TM wave. All field components can be derived from Et which 

satisfies the wave equation - 

(4.4) 

where we have already built in some assumptions which we will now spell out. We 

have assumed a time dependence of the form egt and a z-dependence e-rZ where 7 is 

complex: . . _ 

7 =cu+jp . P-5) 

Also, for simplicity, we are limiting ourselves to the case of Fig. 18 with no y- 

dependence. By inspection, we guess a solution satisfying (4.4) and the boundary 

conditions at 2 = 0 and z = a, with amplitude C, 

Ez = C sin (7r 3 eBrz . (4.6) 

For now, a is the guide width. Substituting (4.6) into (4.4) we obtain, for this simplest 

possible case, the relation between guide wavelength and frequency 

W2 
- ~2fr2=-Fz . 

0 (4.7) 
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For other modes the first term is changed, but for simplicity we will not generalize 

the notation to cover all cases. The reader should be aware of the fact that some of 

the following formulae, though correct in form, may need appropriate modification for 

other modes. 

If there is no attenuation, CY vanishes and (4.7) yields 

where ,f3 is the wave number corresponding t,o the guide wavelength A,: 

&j . 

(4.8) - 

(4-g) 

This ,f3 (which should really be called pg or kg) must not be confused with the usual 

P r=: v/c used for relativistic particles. Expression (4.8) is called a dispersion relation. 

It can be rewritten in terms of the “cut-off frequency,” a term to be justified shortly, 

g&en by 

w&L 
a 

(4.10) 

whereby it becomes 

p2 = $(w’ - w,“) . (4.11) 

The graph of w versus /3 in this field is called a Brillouin diagra.m. It is easily recognized 

to be a hyperbola (see Fig. 19). When w drops below wc, p becomes.imaginary and 

there is no more propagation. That is why wc is called the cut-off frequency. 

Following the usual analysis of a dispersion relation, the phase velocity is given by 

vp=;=&p (4.12) 

which, as expected, is greater than c, as can also be noted from the slopes shown in 

Fig. 19. 
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Fig. 19. Brillouin diagram for guided waves in an unloaded guide. 

_ It is useful to think about the situation at the extremes of this graph. At high w, 

(4.11) becomes the free space linear relation between frequency and wave number. In 

Fig. 18 this corresponds to wavefronts that are very close together (X, + X0, /3 + w/c) 

and the wave travels freely down the guide, like a flashlight beam in a hollow tube. 

We have already seen that, although the speed up is close to desired, the wave is not 

suitable for acceleration because its E-field is transverse. 

At the low frequency extreme, the lines in Fig. 18(a) are as wide apart as they can 

be while still allowing the picture to be completed; that is, the spacing from + to - 

should be a, 

which agrees with (4.10). The wave number /3 is very small, corresponding to large 

guide wavelength and large phase velocity. In this case the wave bounces back and 

forth at right angles to the guide; it is not useful for acceleration because of the high 

value of up. 

Since accelerator guides are generally circular, perhaps more time than is justified 

has already been devoted to rectangular guides and parallel planes in particular. But 

there are a few more points which can illustrate our ideas in this simple case, free from 
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the intrusion of complicated geometry and mathematics. These have to do with power 

flow and dissipation in the walls. 

The non-vanishing transverse field components between infinite parallel planes cor- 

responding to Ez in (4.6) are given, using Maxwell’s equations, by 

E _ 7a2 a& z- -- ------= -“iaccos(3e-7~ 
79 ax ?r c - s 

(4.13) - 
_ . wqa2 aE, . wqa 

Hy=--3,2~=-3 ?r -Ccos(~)e-7Z . 

The power flow Pt, is obtained by integrating the average Poynting vector over a 

transverse plane 

‘Ptr =f Re/ EzH;dxdy . (4.14) 

Since we are assuming that there is no y-dependence, i.e., the parallel planes are infinite 

in y, we don’t have to satisfy the boundary conditions on any bottom or top plane. 

For a height 6, with 7 = j/3 taken as pure imaginary, we get 
ab 

Ptt = C2 4n2 cowa2P . (4.15) 

The standard method for calculating power loss in the walls (an issue of dominant 

importance in linear accelerators) is to take the fields obtained above for the lossless 

case to calculate the wall currents. In our case, the loss is in the side walls where, by 

Ampere’s law, the longitudinal current Iz per height b is given by 

I z=Hyb . 

Although the model is not conceptually quite correct, one obtains the correct answer 

if one assumes that this current flows uniformly in a skin depth S given by 

l/2 
(4.16) 

where ~0 = 4n X 10e7 henry/m and c is the 

power lost in a short length dz of height 6 of the 

i.e., given by 

conductivity in mhos/m. The average 

two side walls is of the form 2 X; jI12R, 

dPloat IHyb12 w2cga2C2b -=-= 
dz abb a&n2 

(4.17) 
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where (&)-l is the skin resistance Rs. To account for this loss, the propagat,ion 

constant must have a small real part given by 

@lost Id% 1 4~ R, 
ff = ---. 

mr =B;;xoJ-- 
(4.18) 

Essentially the same information can be quantifiedby definbg a Q factor for the 

guide’ _ 

Q w w8t 

= dP108t ldz 

(4.19) 

where w8t is the stored energy per unit length. This quantity can be calculated from 

the maximum electric field, averaged over a wavelength: 

w8t = ? [I&J2 + I&12] ab 

(4.20) 
- 

=2 [(:)2+1] C2ab 

which yields 

& = rXo[($)” + 11 Jli 
8R8U 

(4.21) 

Finally, there is one more relation between these quantities. If the energy travels 

with the group velocity ug, then 

pt, = “0 w8t (4.22) 

where 

dw ptr 
v. =----=---- . 

dP W8t 

(4.23) 

Note that in Fig. 19, the group velocity is the slope of the w - /3 diagram. It is 

equal to zero at cutoff (w = wC) and equal to c when w -+ 00. The reader can verify 

that both definitions of vg are equivalent and that Q and a are related by the equation 

Q = w/2vgQ. 
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For a practical accelerator structure, all of the above quantities would have to be 

calculated. In what follows we will not attempt this as it can become quite complicated. 

Conceptually, however, these calculations are not different from those which have just 

been done. The exact formulae, if they can be obtained in closed form, resemble the 

ohes we have just derived as far as dimensional factors are concerned. The numerical 

factors, of course, depend on the exact geometry. 
c - s 

4.3 CIR_CU~AR WAVEGUIDE 

Most linear accelerator structures have configurations with circular cross sections. 

To simplify matters, let us take the case where there is just one boundary, r = b. If 

we limit ourselves to TM modes with no e-dependence, the wave equation of (4.4) can 

be replaced by 

The other non-vanishing fields are given in terms of Et by - 

H 
e 

where 

k; = r2 + (3’ . 

(4.24) 

(4.25) 

(4.26) 

The simplest solution of (4.24) is the so-called TMul mode where the first subscript 

(0) denotes zero-0 variation and the second (1) d enotes one radial variation. For this 

mode the fields become 

E t =C Jo(k,r)e-7” 
. 

He = ‘7 C Jl(k,t)e-7z 
c (4.28) 

Et = 2 C Jl( kcr)e-7’ 
kc 
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If one compares expressions (4.28) with those of (4.6) and (4.13) one sees that the 

main changes are that Bessel functions have replaced sine and cosine functions. The 

waveguide radius becomes involved because of the requirement that Et vanish at r = 

b, which means that k,b must be the first zero of Jo(k,r): 

k,b = 2.405 . (4.29) 
m 

The guide dispersion relation takes the form of (4.11) if>hecutoff frequency is defined 

by - -. 

wc = k,c = 2.405: 
b - 

(4.30) 

Note that, as claimed earlier, this expression differs from (4.10) only by a dimensionless 

numerical factor, in this case 2.405 instead of A. All the other waveguide properties 

such as Ptr , Pk18t 9 cy, Q can be calculated as for the case described in Sec. 4.3. 

We will not make the effort to do this because the TM01 mode still suffers from the 

shortcoming that the phase velocity, as given by (4.12) is greater than c, making it 

useless for cumulative acceleration. However, having obtained the field expressions for 

the circular waveguide, we can profitably return to our cylindrical resonator originally 

discussed in Sets. 3.2, 3.3 and 3.4. 

4.4 CYLINDRICAL RESONATOR 

In the circular waveguide, the dispersion relation (4.11) determines the longitudinal 

propagation constant as a function of w: 

2 l/2 
p=E 1-s . ( 1 (4.31) 

If however the guide is capped off at both ends by conducting planes as shown in Fig. 

20, a constraint is placed on /3, and w can only assume discrete values corresponding 

to resonances. As in Fig. 18, the boundary conditions at the plane surfaces can be 

satisfied by superimposing two waves of appropriate wavelength, one going left, one 

right. The result is a standing wave. A simple possibility is to take the mode where 

Et = 0 at the plane surfaces and 
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Fig. 20. Cylindrical resonator. 

i.e., 

Using (4.11) and (4.30) this yields for the resonant frequency 

- 
wr ~c[(~~+(~,‘]“2 . (4.32) 

This is the socalled TMull mode which has one variation in the z-coordinate. It 

turns out, however, that in a cylindrical waveguide, there is an even lower mode (the 

one used in Alvarez linacs) in which E,. vanishes not just at the ends, as required by 

the conducting planes, but everywhere. For this mode X0 is infinite, which makes ,0 

zero. The resonant frequency is 

wc = 2.405; (4.33) 

which is independent of d. This mode is called the TM& mode. The expressions for 

the field given by (4.28) are reduced to 

Ez = C Jo(k,y) 

(4.34) 
He = -i 4 J&r) 

where rl = (PO/CO) l/2 = 377 ohms. From these, using the definitions of the shunt 

impedance R (3.7) and Q (3.12) or (4.19), it is possible to show that 

R= 
q2d2 

&rb(d + b) J&b) 
(4.35) 
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and 

2.045 
’ = 2 2( 1+ b/d) 

(4.36) 

where Rs = l/d is as defined previously. It would be instructive for the reader to 

verify these expressions and to get a feeling for the’magnitudes involved by working 

out some numerical examples for R, Q, R/Q and TF at 280 MHz,(d = 8m) and 2856 
MHz (d- 3.5cm). 

- 

Note that for this calculation we have neglected the effect of the holes at the ends 

of the resonator, needed to let the particles pass. As we discussed earlier, a linear 

accelerator can be built by stringing many such cavities together and adjusting their 

phases to the beam to give cumulative energy gain. However, rather than assuming 

that these cavities are independently driven, we will now try to analyze the model 

where they are connected together into a periodic chain of coupled resonators. 

4.5 WAVEPROPAGATION INCOUPLEDRESONATORCHAINS - 

For simplicity we will start with the simplest possible resonator, namely an LC 

circuit. The pillbox resonator in the TMolo mode is indeed little more than an LC 

circuit where C8 is the capacity between the end plates and L is the inductance of 

the toroidal outer region where the magnetic field is predominant. Representing the 

coupling between resonators by a parallel capacitance 2CP, the circuit diagram for the 

chain is shown in Fig. 21. 

Fig. 21. Chai.n of lightly coupled resonators. 

Note that in the limit of large CP, the resonators are uncoupled. For the pillbox 

resonators this would correspond to having no beam hole. To insure that we are close 

48 



to that situation, we will assume that 

cp >> c.9 . (4.37) 

We do not intend to imply that representing the coupling by a capacitance is an obvious 

model for the actual coupling, but it is simple and leads to the same qualitative results 

as more complicated models. w 

_ It was L- Brillouin who first systematized the analysis of such periodic chains, but 

the essential results we require can be derived in a few lines. Applying Kirchoff’s 

current law to the nth loop in Fig. 21 yields 

2 1 
jw2cp + jwc8 

--#-jwL in------- 
) 

in-l) = 0 

or 

in+l - 2 cos(pd)i, + in-1 = 0 (4.38) 

where 

cos(pd) = CP l+c-w2cpL . (4.39) 
8 

From the point of view of the present discussion we have simply introduced a new 

symbol (/?d) h’ h w ic is a certain combination of w and the circuit parameters. But, 

naturally, our choice of symbol anticipates identifying this quantity with the previously 

defined quantities p and d. 

Two solutions of the difference equation (4.38) are 

(n = 0, 1,2,. . .) (4.40) 

as can be checked with standard trigonometric identities. If p as defined by (4.39) is 

real, then (4.40) will represent standing wave solutions which the structure can support. 

Remember that it is implicit in an impedance equation such as (4.38) that the time 

dependence dw” is assumed and the real part is to be taken. By superimposing the 

two solutions (4.40) with proper phase, unattenuated traveling waves going in either 

direction can be formed. The condition for p to be real is that 

-1 <-cos@d < 1 (4.41) 
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which can be re-expressed as a band of propagating frequencies 

wo < w < WTr - (4.42) 

The frequencies wg and wn defining the limits of the band are obtained by combining 

(4.39) and (4.41) to give 

(4.43) - 
_ 

w,z& I,$ . ( ) (4.44) 

Approximation (4.37) was used in obtaining wX. Note that the subscripts on wu and 

We are the corresponding values of the angle @d at the band edges. 

The Brillouin diagram for this structure is shown in Fig. 22 which is a graph of 

(4.39). The band of propagating frequencies includes the resonant frequency I/ m 

of the uncoupled resonators. For weak coupling (Cp much larger than C8) the band is 

narrow, and for strong coupling (Cp closer to C8) it is broad. In fact, we have 

Aw Wn - Wo c, 
-= =- 
wo w CP 

(4.45) 

w 

I 

0 
0 7r/2 VT r8d 

Fig. 22. Brillouin diagram for a chain of coupled LC circuits. 
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Certain features of this Brillouin diagram are important properties of periodic 

structures in general. It is even in ,8d and periodic in /3d with period 2n since these 

are both properties of the function cospd. The dashed extensions in Fig. 23 convey 

this effect. But this extension is superfluous for the system we are discussing since, 

in (4.40) shifting ,8d by 2~ does not alter the solution. This is due to the fact that 

our single cells are fully described by one variable (the loop current) and continuous 

variation of the argument is not defined. On the otherhand, 06 single cell could be 

more complicated. For example, suppose it had a mode of oscillation at some higher 

frequency as well. This would lead to another propagating band as shown in Fig. 23. 

For linear circuits, these modes do not influence each other. For reasons to which we 

will return, we have chosen to emphasize the band --K < ,Bd < 0 as the principal 

band for the higher mode. 

0 

Fig. 23. Brillouin diagram for a chain of cells, each having two modes. 

As usual with dispersion relations, the Brillouin diagram can be used to extract 

phase and group velocities. Taking d as the physical length of one cell and with w/c as 

the vertical axis, the slope of a 45O line, as shown, corresponds to a phase velocity equal 

to c, which is required for an electron accelerator. This condition fixes the operating 

frequency at the intersection point. Another general feature is that the group velocity 

(given by the slope dw/dp) is always less than c and vanishes at wu and at wn. 
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4.6 PERIODICALLYLOADED STRUCTURES 

We now have to face up to the fact that a linear accelerator is more complicated 

than a chain of one-dimensional resonators. The individual cells support not just one, 

but many modes and it may not be justified to treat the coupling as weak. While the 

latter fear is somewhat unfounded, it still makes sense to attack the problem from yet 

another point of view - analyzing the structure as a periodically-loaded waveguide. c - m 
_ This-brings us back to the question which was left open in section 4.2: how do 

we slow down the phase velocity of a waveguide? For the chain of pillbox resonators 

the trick was easy since in the lowest mode the frequency is independent of the length 

d and in the weak coupling limit the resonators can be phased independently. There 

are many other ways of slowing down the phase velocity, some of which are shown in 

Fig. 24. 

Of these structures, the simplest is the iris-loaded or disk-loaded waveguide. This 

is just another name for the pillbox resonator chain which we have been discussing, 

except that now the iris hole radius, a, has become larger. Treating the irises as 

perturbations, we can ask what effect they have on the waveguide modes. If there is a 

wave propagating along the guide in the +Z direction, there will be a reflection at each 

iris. For a band of frequencies, these reflections will interfere destructively because 

of the phase shifts resulting from the spatial separation of the irises. As a result, at 

these frequencies the irises will have only a minor effect on the propagation and the 

dispersion relation will resemble Fig. 19. 

But there are certain frequencies, wnn, for which the reflected wavesfrom successive 
irises are exactly in phase. At such frequencies, unattenuated propagation is impossible 

since reflections necessarily result in comparable amplitudes for forward and backward 

going waves. Standing waves are possible, however. The condition for this “Bragg” 
reflection is 

n = 0, 1,2,. . . (4.46) 

since this makes the phase advance in going ahead to the next iris and then back an 

integral multiple of 2n. This situation is again characterized by a vanishing group 

velocity. 
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FORWARD-WAVE STRUCTURES-- 

I DISK- LOADED STRUCTURE 2. VENTILATED STRUCTURE 

3. CENTIPEDE STRUCTURE 4. RECTANGULAR SLAB 

BACKWARD -WAVE STRUCTURES 

S.‘aUNGLE GYM” 

7. RING 8 BAR STRUCTURE 

6. SLOTTED DISK STRUCTURE . 

8. LOADED EASITRON 

Fig. 24. Some slow-wave structures. 
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We can also anticipate that for frequencies near wnr there will be a strong effect 

of the irises on the dispersion relation between w and p. To investigate this, consider 

Fig. 25 in which we have guessed two standing-wave field configurations of opposite 

symmetry relative to the irises. In the figures, lines and arrows indicate electric fields, 

ahd circles indicate magnetic fields. It can be seen that in case (b), since E,. vanishes 

at the locations of the irises, the presence or absence of the irises does not have much 

effect. For this case then, the relation between w and’-p will bevery similar to that 

for a waveguide without irises. But in case (a) the fields cannot be as drawn since the 

presence of the irises must force Er to vanish there, at least at the radial positions 

occupied by the metal irises. In other words, currents flowing in the irises cause the 

standing wave of wavelength 2d to have a different (actually lower) frequency 

the irises were not there. 

than if 

(a) (b) 

Fig. 25. “Guessed” standing-wave field configurations of opposite symmetry with 

respect to the irises at the stop band. Lines and arrows indicate electric fields, circles 

indicate magnetic fields. 

We now have in hand all the elements required to complete qualitatively the Bril- 

louin diagram for the disk-loaded waveguide (Fig. 26). We can start with Fig. 19 for 

the unloaded guide. As p increases away from zero, w will initially follow the hyperbola 

but will then flatten out and become horizontal at ,8 = n/d where the group velocity 

must vanish. We have just seen that there is another frequency giving this same wave 

number and that, furthermore, it lies on the hyperbola for the unloaded guide. This 

allows us to complete the branch between p = n/d and ,f? = 2n/d. 
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Fig. 26. Brillouin diagram for a disk-loaded waveguide. 
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Similar considerations lead to successively higher branches. Again, for an electron 

accelerator, possible operating points lie on the 45’ line. Clearly, the loading disks are 

capable of lowering the branches to intersect this line as shown. For normal operation, 

the intersection with the lowest branch is chosen. It is indicated by UQ,, @op. 

4.7 SPACEHARMONICS 

A more quantitative understanding and completion of Fig.-26 requires that one 

find a method to calculate the exact dispersion relation and the corresponding electric 

and magnetic field expressions for a given slow-wave structure. To match the periodic 

boundary conditions shown in Fig. 27, it is customary to invoke a theorem ascribed 

to the French mathematician, Floquet. This theorem states that for a given mode 

of propagation at a given steady-state frequency, the fields at one cross section differ 

from those one period away only by a complex constant. 

UI IU ;u - I 2b 20-1 -7 - --- -- 
II 

n7-7-l--I-n- 

Fig. 27. Definition of periodic planes (~1) and (~1 + d) for the application of Floquet’s 

Theorem, and regions I and II for the formulation of the boundary value problem. 

The proof of the theorem lies in the fact that when a structure of infinite length is 

displaced along its axis by one period, it cannot be distinguished from its original self. 

(For a more formal proof, see, e.g., Landau and Lifshitz, Mechanics). 

Suppose we write 

E(r, t, t) = F(r, z) e-jDoz &t (4.47) 

where F(r, Z) is a periodic function of z with period d, Pod 5 X, O-dependence is 

excluded, and propagation is assumed in the positive z-direction. Referring to planes 



(~1) and (zr + d) in Fig. 27, expression (4.47) becomes: 

At z = zl E(r, zl, t) = F(r, q) e-jp@l dwt , 
(4.48) 

at z= zl + d E(r, zl + d, t) = F(r, q + d) e-jgo(‘lfd) e@ . 

But by definition c - 

F(r, q + d) = F(r, q) . (4.49) 

Thus 

E(r, .q + d, t) = E(r, q, t) e-jaod , (4.50) 

quite independently of where z1 is taken, which indicates that the form of (4.47) indeed 

obeys Floquet’s Theorem. Since F(r, z) is periodic, we can expand it in a spatial Fourier 

series of the form: 

n=+w 
F(r, z) = C C a,(r) e-j?’ (4.51) 

n=-w 

where n is an integer which can take all positive and negative values. It can be shown 

that under rotational symmetry, the solution given in (4.47) becomes 

n=+w 
E(r, z, t) = C C a, JO(ktnr) ej(wt-az) 

n=-w 

where 

Pn =ao+T , 

(4.52) 

(4.53) 

kR =k2-& , (4.54) 

C is the usual amplitude factor, and a, is the amplitude of the nth s*called space 

harmonic. 

_ There are several methods of determining the a, amplitudes of these space har- 

monics for a given structure. Before we mention them, we must make a number of 

observations regarding Eqs. (4.51) through (4.54). 
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- The fact that the expansion contains all positive as well as negative integers 

arises from the fact that we have assumed an even structure (with reflection 

symmetry with respect to the origin, z = 0). 

- The wave E,(r, Z, t) which meets the boundary conditions of the periodically 

loaded structure is made up of space harmonic components which each have a 

different propagation constant (4.53). H owever, once /Q(w) is known, all Pn’s c - m 
are known. _ - 

- Each space harmonic has a different phase velocity given by 

For any n < 0, the phase velocity of the space harmonic is negative, i.e., 

a particle would have to travel in the negative direction to remain in phase 

with it. The continuous lines in Fig. 26 all belong to a wave whose energy (or 

“group”) travels in the positive direction, and conversely for the dotted lines. At 

the wnp intercepts, since the w - p curves are simply translations of themselves 

by 2nn/d, all have the same slope corresponding to the same group velocity. 

- In the definition of shunt impedance (3.8) and r/Q (3.14), the values of Vo/d 

that should be used are those of the space harmonic which is synchronized with 

the particle. In most cases, that is the fundamental, i.e., au. 

- From (4.52) and (4.54) it is seen that the terms a,Ju(lc,,r) are not constant as 

a function of radius. If kFn is negative, kr, becomes imaginary and Jo changes 

into IO, which instead of falling off with r, increases. There is one notable 

exception which turns out to be extremely fortunate for the operation of linear 

accelerators. Indeed, when tz = 0 and vp = c, ,!3: = k2 and k,o = 0, which 

makes Jo = 1 and the accelerating field independent of radius. As a result, 

acceleration and energy acquired are independent of the radial position of the 

synchronous particle. 

- The actual variation of w versus PO depends on the relative diameters (2~ and 

2b) of regions I and II in Fig. 27. When 2a << 2b, the passbands are very 

narrow until, when 2a = 0, there is no more passband at all. Conversely, when 

2a + 2b, the passband becomes very wide until finally, we get back to the pure 

TM& circular waveguide mode. 
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- The choice of the phase shift per period for the fundamental is generally made on 

the basis of where the highest shunt impedance per unit-length can be obtained. 

Snapshots of electric field configurations for the cases where Pod = 0, n/2, 

2n/3 and R are shown in Fig. 28. Somewhat loosely, these 0, 7r/2, 2n/3 and ?r 

configurations are also called modes, not to be confused with TM, TE modes 

or superpositions thereof. Note that these field configurations have been chosen 

at such an instant in time that.they can interchangeably’;epresent a traveling 

wave--or the maximum of a standing wave. As will be seen later, for traveling- 

wave accelerators of the disk-loaded type, the optimum choice is Pod = 2?r/3 

(1209. For standing-wave accelerators, it is Pod = ?r or n/2, as shown in Sec. 

4.9). 

Fig. 28. Snapshots of electric field configurations for disk-loaded structures with 

various phase shifts per period (also loosely called “modes”). 

The w - p diagram can be determined exactly, point-by-point, by obtaining the 

resonant frequencies of stacks of n cavities, which have (n + 1) resonances, one for 

each value of Pod. For example, a stack of three cavities can resonate for /3od = 0, 

po”;i = 7r/3, ,Ood = 2n/3 and ,&d = T. The frequencies can be obtained either 

experimentally or by means of computer programs such as SUF’ERFISN or LALA 
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which find the resonances and calculate the fields for standing waves. A conversion 

formula can then be used to obtain the fields for the traveling waves. The fields 

can also be found experimentally by means of bead perturbation techniques in cavity 

structures. An example of a field profile for the Pod = 7r/2 “mode” is shown in Fig. 

29. 

P-u-=-z 
Fig. 29. Example of approximate axial E,-field amplitude for Pod = n/2 u mode.” 

This is a snapshot of a traveling wave at a given time. 

Yet another theoretical approach to obtain the fields is to set up general solutions 

in the two regions (I) and (II) shown in Fig. 27 (sometimes called “tube” and “slot” 

fields) and then to match these solutions along the common boundary. This approach 

was first used successfully in the early days (1948) by W. Walkinshaw, in England, 

long before the advent of the modern field-mapping computer codes. 

_ Once the fields are obtained, a simple Fourier-type analysis can be used to get the 

space harmonic amplitudes. The other structure parameters such as A, Q, vp, vs, r 

and r/Q can then also be calculated from the definitions and by the techniques intro- 

duced in Sec. 4.2. This entire subject is discussed in detail in a later chapter by E. 

Keil. 

Before we leave the subject of space harmonics and Brillouin diagrams, we should 

return briefly to the second passband shown in Figs. 23 and 26. As we hinted earlier, 

this passband has its origin in the second “normal mode” of oscillation of the cells mak- 

ing up the chain. From what we have learned about the lowest passband, the n = 0 

space harmonic of this higher band propagates in the negative direction (dw/dp < 0). 

To call attention to this fact in Fig. 26, we have drawn this branch as a dashed line. 
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Because of this property, this passband is often referred to belonging to a backward 

wave, i.e., the fundamental has its phase velocity and group velocity going in opposite 

direction. 

The existence of this and higher passbands can be responsible for serious insta- 

bilities in the operation of linear accelerators, even though the RF sources driving 

them do not in principle supply power.at these frequen$es.-Wha& happens is that the 

short bunches of relativistic electrons can excite the structure at frequencies at which 

these higher modes are synchronous or quasi-synchronous with the bunches, whereby 

their amplitude can grow, either through feedback or cumulative interaction. This 

interaction can lead to deleterious effects such as beam deflection and ultimate beam 

breakup. Such effects can limit the achievable beam current in multi-bunch beams 

and cause emittance growth in single-bunch beams. These problems are treated in a 

later lecture on instabilities by A. Chao. 

4.8 TRAVELING WAVES OR STANDING WAVES? 

Until now, not much has been said about how the fields are established in the linac 

and where the rf power is fed into the structure. There are basically three ways in 

which this can be done. 

In the first, the structure is of the traveling-wave type, in which case the power 

is fed in at one end, propagates through the structure with some attenuation and the 

balance is absorbed in a load (Fig. 30a). Steady-state is reached when the structure 

is filled with energy after one pass. For a length C, the filling time is TV = e/g,. 

In the second, the structure is of the standing-wave type, in which case there is only 

one coupler, either at one end or in the middle of the structure (Fig. 39b). The fields 

build up through multiple reflections, the number of reflections of any consequence 

being determined by the wall losses. If the structure is long and the wall losses are 

high, the number of reflections that add a.ny significant field is small, and vice versa. 

If the structure is matched to the power source, there is a so-called QL or loa.ded Q 

associated with it which is equal to half the Qo associated with the wall losses. The 

maximum field build-up is attained with an exponential time constant TV = 2&~/w 

or&u/w, as defined in expression (3.16). In three filling times, the fields attain 95% of 

their ultimate value. One of the questions that must inevitably be asked is: aren’t the 
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reflected waves useless since they have their phase velocity in the wrong direction and 

hence do not deliver any net energy to the beam? The answer is that this is indeed true 

for all values of /3od # n. However, when /lad = ?r, the ta = 0 space harmonic of the 

forward wave coalesces with the n = -1 space harmonic of the backward wave and 

both contribute energy to the beam if it is in synchronism. As a result, all standing- 

wave linacs are built in the sclcalled n-mode, or in a variation thereof, as we will see 

in the next section. ,-- - m 

(0) 

(b) ps 

I 
JUuuulFUUul/ 

Fig. 30. Linacs with (a) traveling-wave, (b) standing-wave and (c) traveling-wave with 

feedback structures and source power Pd. 

The third method, shown in Fig. 3Oc, which was proposed in England in 1949 by 

R.-Shersby-Harvie and L. Mullett, is to feed the power left over at the output end of 
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the traveling-wave structure back to the input via a low-loss waveguide. At this point 

this power can be recombined at the correct phase with the--source power by means 

of a bridge. In this scheme, the backward-wave problem is circumvented at the cost 

of considerable complexity. This scheme has few advantages over the standing-wave 

scheme and has been used rarely. 

The question of how one chooses between a traveling-wave structure and a standing- e 
wave structure depends on the desired application and; number of other constraints 

such as the available rf power, energy and length, and the required pulse length and 

duty cycle. 

The following general comments and comparisons can be made: 

1. Since the standing-wave structure is generally built with a fixed coupling, it 

cannot be matched under all conditions. One can show that if the power source 

has a relatively short rf pulse length (measured in a few t~‘s), at best 80% of 

the rf energy can be delivered to the structure during the pulse. The remaining 

20% is reflected to the source. This mismatch can under certain conditions 

be destabilizing to the source, causing frequency pulling, phase oscillations and 

fluctuations in output power. Furthermore, since the fields take several filling 

times (2&~/w) to build up to their final value, the beam will vary in energy 

throughout the rf pulse if it is injected after, say one filling time, and the total 

pulse is only a few filling times long. If the application calls for a precisely 

defined particle energy, this is then an unacceptable disadvantage. Therefore, 

in all such cases, the traveling-wave linac, which reaches steady-state in one 

’ filling time, is favored over its standing-wave counterpart. 

2. On the other hand, standing-wave structures such as the side-coupled or the 

disk-and-washer structure can be designed to have shunt impedances as much 

as 50% higher than traveling-wave structures at the same frequency. This ad- 

vantage also prevails for phase velocities in the range 0.3 < v/c < 0.8 where 

disk-loaded structures are relatively inefficient. If the pulse length is long or in- 

finite, i.e., the machine is CW, whatever energy is wasted during the filling time 

is negligible. Conversely, the traveling-wave structure, for a long pulse, always 

wastes in a load that power which is left at the output end. Thus, long-pulse 

proton linacs like the LAhPF accelerator, and all CW linacs use standing-wave 
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structures. Two examples of CW machines are the room temperature structures 

proposed for microtrons, and the superconducting struetures which reach shunt 

impedances lo4 to lo5 higher than at room temperature. A third example is the 

structure used in all e* storage rings. In this case, the standing-wave structure 

meets the extra requirement that it can accelerate particles of opposite charges 

in opposite directions. 
e 

3. There is one case which falls between those des&ibed above. That is the case - 
where one wants to obtain a high gradient in a short length with a source of 

relatively low power (e.g., a magnetron) and a pulse length of a few filling times. 

Typical applications of this case are the short medical accelerators and special 

sections for injectors and positron sources. The standing-wave structure here is 

at an advantage because the one-way wall losses are low and the large number of 

reflected waves can build up the fields to a high level. Were the reflected energy 

to be dissipated in an external load after a single pass, most of the power wou.ld 

be wasted. The only way to make the traveling-wave structure competitive in 

this situation would be to greatly increase the filling time of the short section 

by lowering its group velocity accordingly. This in turn would increase the 

energy density and the fields. However, to achieve this very low group velocity, 

one would have to reduce the iris diameter considerably. This would lead to 

beam transmission problems and also to difficulty with dimensional tolerances. 

Consequently, in these cases, designers are willing to live with the disadvantages 

of the standing-wave structure discussed earlier in order to achieve the required 

. high energy within a very short length. 

4.9 RESONANT COUPLING 

There is one problem in the above discussion of standing-wave structures that still 

needs to be elaborated because it has led to important innovations. We have seen 

that using the n-mode is indeed the way to make use of both forward and backward 

waves. The problem, however, is that if we resonate a structure of reasonable length, 

say 50 cavities, at wop where ,&,d = r, it will contain 50 half-wavelengths at this 

frequency. Adjacent to it, however, there will be a frequency at which it will contain 

#half-wavelengths or for which /Id = 49/50 r. Since the w - /? curve has zero 

slope at Popn = d, the neighboring resonance at pd = 49/50 ?r will be extremely 
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close to wop, to the point where any small cavity mistuning, frequency modulation or 

beam loading will excite the neighboring mode (or modes). In the jargon, the n-mode 

is said to be very unstable. If, on the other hand, wop were in the middle of the 

pass-band, i.e., at ,Bopd = 7r/2, the slope of the w - /3 curve would be greatest, and 

maximum frequency separation (or mode stability) would be achieved. This line of 

reasoning led E. Knapp at LANL to invent the side-coupled cavity structure in the 

early 1960’s. Figure 31 makes the invention understandable. Figure 31a shows the 

standingwave structure resonating in the Ir/2-mode. Clearly, this configuration is 

inefficient compared to the r-mode since under steady-state conditions, every second 

cavity is unexcited and produces no acceleration. Figure 31b shows a modification 

where the excited cavities have been stretched and the unexcited cavities have been 

shrunk. Every cavity however, short or long, is still tuned to the same frequency. Thus 

the n/2 mode and its inherent stability are preserved. Finally, Fig. 31~ illustrates the 

discontinuous step in the invention: the empty “useless” cavity has been placed on 

the side, off the beam line. From the rf point of view, the mode remains 7r/2 but for 

the beam, it has become r-like. The sidecavities which do the coupling are empty 

but resonant, the feature which is responsible for the name of “resonant coupling.” 
Figure 31d shows the physical embodiment of the idea. The accelerating cavities are 

shaped and provided with nose cones for maximum shunt impedance, and the coupling 

cavities are staggered to reduce asymmetries introduced by the slots. 

. . _ Another way of looking at what has been done is to consider the w - /3 plots which 

accompany Fig. 31a, b and c. The double periodicity (in 31b) would normally lead to 

a break and a stop-band in the w -@ curve at the 7r/2 point: two branches are formed 

as in Fig. 26. However, through the process of resonant coupling, what is called “con- 

fluence” between the two branches is achieved, as shown in Fig. 31c, re-establishing 

the stability of the 7r/2 mode. Thus in conclusion, at the cost of some extra complex- 

ity, the side-coupled cavity chain and a number of other structures based on the same 

principle have yielded the best of two worlds over a wide range of particle velocities: 

good efficiency of the r-mode, and insensitivity to fabrication errors and beam loading 

of the n/2-mode. The resonant posts or slugs used in the Alvarez structure shown 

earlier in Fig. 12 are another example of the same idea at lower frequency. 
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5. Electron Linear Accelerators 

In this last section we will cover in very broad terms a few of the major design 

and operating features specific to electron linacs. A number of references will be made 

to the SLAC linear accelerator as an example. For more details, the reader should 

consult the book on the Stanford Two-Mile Accelerator, R. B. Neal, General Editor, 

W. A. Benjamin Inc., 1968, hereafter .abbreviated S.T.M.A., as-well as L.A. referred _ 

to earlier. -- 

5.1 THE MAIN ELEMENTS 

The main elements of an electron linac are shown in Fig. 32. The electron gun is 

a triode consisting of a thermionic cathode, a wire-mesh control grid and an anode. 

The potential difference between the cathode and the anode is typically 80 kV which 

gives the electrons a velocity of c/2. The grid is normally held at a voltage somewhat 

negative (- 50 V) with respect to the cathode so that the gun is biased off except 

when a beam pulse is needed. To trigger the gun, a positive pulse, typically of a 

few hundred volts, is applied for the desired length of time. Fast transistor pulse 

circuitry has improved in the last few years to the point where beam pulses as short as 

one or two nanoseconds are now achievable. Most electron linacs operate with beam 

pulses in the l-10 psec range at repetition rates up to 500 and even 1000 pps. The 

continuous stream of electrons out of the gun first passes through a prebuncher. This 

is a single low-Q reentrant cavity supplied with typically - 2 kW of rf power at the 

fundamental frequency. The function of this prebuncher is to velocity-modulate the 

electrons with peak gap voltages up to 10-15 kV so that early particles are slowed down 

and late particles are speeded up. As a result of this process, longitudinal compression 

or bunching results. 

At a distance of 30 cm downstream, one can get on the order of 70% of the electrons 

into a phase interval of 70 electrical degrees. At this point, a refinement which is not 

shown in the figure is sometimes used to discard a large fraction of the bunches. This 

is a transverse electric field rf beam chopper which can act as an additional gate (say 

for single bunches every 12.5 nsec if the chopper frequency is 40 MHz) by deflecting all 

bunches except the ones that go through at zero-crossing. Yet another variation is to 

combine the prebuncher and the chopper into one rf cavity at a subharmonic frequency 
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of the accelerator. This scheme then produces a train of more widely spaced and longer 

bunches with a potential of packing more charge into each of them. Combined with 

a fast grid pulser, it can generate a single bunch. This scheme is being used for the 

SLAC Linear Collider (SLC) injector. 

HIGH VOLTAGE 
MODULATOR 

f -LOAD 

VELOCITY 
MODULATING 
PREBUNCHER IN OUT 

A+=-70” w30° N5O 

Fig. 32. An electron linac (or the beginning of one!) 

The next element in Fig. 32 is the buncher. At SLAC this is a 4cell-long, 27r/3- 

mode, traveling-wave section with a constant phase velocity of 0.75 c and a maximum 

power input of 2 Mw . The bunches emerge from it with a kinetic energy of about 250 

keV in a phase interval of 30’. Bunching takes phase here because on the average the 

entering bunches are made to ride -ahead of the crest and early electrons at first get 

slowed down while later ones get accelerated. Being slower than the wave when they 

enter the section, they then all rise towards the crest and gain energy. In addition 

to this average motion, they perform approximately one quarter-wave oscillation with 

respect to the central electron: the buncher acts like a quarter-wave impedance match- 

ing transformer in the e - 9 space of Fig. 6, between the prebuncher on the one side 

and the accelerator section on the other. The accelerator section is a traveling-wave 

structure with phase velocity c. In the SLAC case, as will be described later, it is an 

S-Band, constant-gradient, 2r/%mode, bmeter long structure. The 30’ long bunches 

ar; caused to enter it around the field null ahead of crest, and they asymptotically 

approach the crest of the wave as they are accelerated. Unlike the protons at lower 
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velocities, they do this monotonically without oscillations. A simple expression for this 

asymptotic motion will be given in sub-section 5.3. At the output of the first accelera- 

tor section, the electron bunches are 5’ long and their energy is typically on the order 

of 30 MeV for an rf power input P of 16 MW. This power is typically supplied by a 

high power klystron which in turn is pulsed by a high voltage modulator. RF power 

is also supplied to the buncher and to the prebuncher. 
T - e 

In addition to these accelerating and bunching fields, the electrons are acted upon 

by their own space charge forces, radial rf fields from the structures, stray magnetic 

fields, and in case of very high currents, wakefields which they themselves induce and 

leave behind. For all these reasons, steering, degaussing and focusing devices, not 

shown in Fig. 32, are also incorporated into the design of the linear accelerator. As 

an example, in the SLAC injector, there are two thin magnetic lenses to focus the 

beam. The first lens is located downstream of the gun, and the prebuncher gap is 

placed at the beam waist formed by this first lens. The second lens is located after the 

prebuncher and produces a second waist at the entrance of the buncher. These waists, 

i.e., points of minimum beam diameter, are created at those points where one wants 

to minimize the effects of radial fields which generally grow linearly with radius. 

Along the buncher and the accelerator section there is almost always a solenoidal 

DC magnet field of a few kilogauss. The required focusing action of the axial magnetic 

field is obtained because there are radial DC fields where the beam enters the solenoid. 

This produces an azimuthal force causing the beam to begin to spiral. The azimuthal 

velocity and the axial field produce the desired inward force. 

The linear accelerator which has been described so far either ends at this point, in 
which case the beam is extracted for whatever use it is destined; or it just constitutes 

the injector or beginning of a longer, multisection machine such as the Orsay, Saclay, 

Kharkov, KKK, MIT, NIKHEF, SLAC and many other linacs in the world. The design 

that has been described is fairly standard. The only major variance is in the buncher 

which in a number of short accelerators is designed with a tapered phase velocity which 

gently forms and “escorts” the bunches up to the velocity of light. The buncher and 

the accelerator in this case are constructed in one section powered at the upstream 

end. In the low energy (46 MeV) medical linacs, the rf source is a 2MW magnetron 

and the structure, as discussed in Set: 4.8, is generally of the standing-wave type, 
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under one meter of length. Solenoidal focusing can sometimes be avoided by using the 

alternating-gradient focusing effect of the r-mode radial fields in each cavity. 

Referring back to Fig. 1, it should be noted that in all these machines, when 

the electrons have acquired a kinetic energy of 3 MeV, they have already reached a 

velocity of 0.99 c, i.e., they are totally relativistic. Hence, the beam dynamics “drama” 

described earlier for protons in Sets. 3.5 and 3.6, which takes place over hundreds of F- - w 
meters in a machine such as LAMPF, is played in an electron linac in the first meter! 

The longer, higher energy electron linacs simply use many separately powered 

sections. The trade-off between rf power and length is generally resolved on the basis 
of economics, technological factors, the availability of land and the cost of AC power 

to operate the machine over a number of years. In a.ddition to the rf structures, 

klystrons and modulators, these longer machines use periodic focusing systems in the 

form of FODO arrays, quadrupole doublets or triplets. Of course they also have their 

associated vacuum, mechanical support, cooling, instrumentation and control, and 

--other support systems. For positron operation, they generally have a tungsten target 

which is inserted at a point where the electrons have achieved a few hundred MeV, 

or at SLAC 5-10 GeV. The positrons are generated in a wide forward cone which 

must be focused by a high field solenoid so that the beam can be contained within the 

transverse admittance of the subsequent accelerator sections. 

All these subjects are described in much greater detail in L.A. and S.T.M.A. 

5.2 STRUCTUREDESIGN,CHOICEOFPARAMETERSANDENERGY GAIN 

Having described the main elements of a “generic” electron linac, we will now re- 

turn once more to the structure and to some of the pra.ctical choices involved in its 

design. The first choice is to select the general type of structure. In what follows we 

will concentrate on the simple traveling-wave disk-loaded structure. Only a few com- 

ments will be made on standing-wave structures for the sake of comparison. The most 

critical parameters to be chosen are the frequency, the phase-shift per cell, and the 

attenuation per section. On the attenuation, there is in addition a sub-choice between 

two possibilities. Either the attenuation is kept constant as a function of length in the 

section and the structure is uniform, in which case the power decays exponentially: the 

structure is called “constant impedance.” Or the attenuation is increased as a func- 
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tion of length by tapering the dimensions of the structure so that the power decays 

linearly and the field is kept constant: the structure is called. “constant gradient.” To - 
understand the effect of these parameters, it is best to calculate the electron energy 

gain in terms of the shunt impedance per unit length, redefined once more as 

E2 
r = -dP/dz (5.1) 

r  -  e  

where E is. now the electric field amplitude of the fundamental, synchronous space 

harmonic. 

The other quantities of interest defined earlier are: 

;= E2 
&J w,t 

Q w w,t 
= -dP/dz 

-dP/dz 
Q= 2P 

P =vg w,t 

from which one can get the relation 

W 

a=iiqj - 

(5.2) 

(5.3) 

(5.4 

(5.5) 

(5.6) 

For a section of length j!, the kinetic energy gain per section for a synchronous electron 

riding on the wave crest is then 

‘E(z) dz . 

For the constant-impedance case, cr is not a function of z and from (5.1) we get 

E2(z) = Bar P(z) 

whereby the integration of (5.7) leads to 

(5.7) 

(5.8) 

(5-Q) 
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where PO is the input power to the section and 

7 =a! . (5.10) 

For the constant-gradient case, the form of (Y(Z) that leads to a constant E(z) must 

be determined. To do this in closed form, we will assume that we can neglect the 

variations of r and Q that occur if the structure dimensions are .modified to adjust 

o(z), and that, in fact, the only quantity that changes rapidly is the group velocity in 

(5.6). Since from (5.1) 

_ 

(5.11) 

if one wants to make E(z) constant, dP(z)/dz must be kept constant. Then redefining 

(5.10) as 

I 
e 

7 = 
0 +w 7 

the linear decaying profile of P(z) must be given by 

P(Z) = Po[l - I(1 - eB2’)] 

whereby 

1 - es2? 
a(z) = 2e[ 1 - $ (1 - e-2’)] 

and 

wt [l - f( 1 - ew2’)] 
v&J = G p _ e-q * 

(5.12) 

(5.13) 

(5.14) 

(5.15) 

We can see that to get a constant-gradient profile, we must let the group velocity 

decrease linearly with the same slope as the power. This is obvious if we refer to (5.5) 

since then wSt is also constant. We can now obtain the kinetic energy gain for the 

constant-gradient section. Expression (5.7) is simply AEK = e Et and since, from 
(5.13) 

dP 
dz- 

- -:(l- ey2r) , (5.16) 
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using (5.11) we obtain 

AEK = e(l-e -2y2(Po r @I2 . (5.17) 

Using expressions (5.9) and (5.17), we can now draw some very general conclusions. 

Both expressions depend on the factor (PO r 4!)lj2. The trade-off between PO and t c - m 
mentioned earlier is immediately apparent. For maximum energy gain, one wants to _ 
maximize r and the factors of r. From Fig. 33, we see the behavior of r as a function 

of the number n of disks per wavelength. The solid curves are calculated for an array 

L 

1” ,-a--,- 
6^ /5- -o-w, --a 

J” 

--1 

’ Experimental .N 
( 20 =0.822’: disk ’ b 

\ U*o~p< 
>.>“-;,,A 

edges rounded) \, - 

c 
vp/c=l 

30 f=2856 MHz 

04 
2 3 4 5 

n 
Fig. 33. Shunt impedance per unit length versus number n of 

for various thicknesses t. 

disks ‘per wavelength 

of pillboxes of diameter 2b with zero-iris diameter (2~ = 0). For this reason, they are 

somewhat higher than the experimental values shown by the dashed curves. Both sets 

are taken for three values of disk-thickness t, vP/c = 1 and f = 2856 MHz. It is 

seen that a broad maximum is obtained for n = 3 disks/Au, i.e., for the 2n/3-mode 

discussed earlier. For this reason, this mode was selected for the SLAC linac. The 

thicker value of t (0.23d') was selected for greater mechanical strength and because 

it-permits a greater radius of curvature on the disk edge, which decreases the risk of 

electrical breakdown. 
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The factors of T in Eqs. (5.9) and (5.17) are compared in Fig. 34. It is seen that for 

small r, they are about equal and that for r - 1, they are close to 0.9. The value of 

r = 0.57 was selected for the SLAC linac as a broad compromise between maximizing 

energy and minimizing the effect of beam loading (see next sub-section) and the filling 

time (TV = 2&r/w). The constant-gradient design was selected because of a number of 

advantages such as lower ratio of peak-to-average field and uniform power dissipation 

per unit length. It also turned out ez-post-facto that tlie cijnst&-gradient structure, 

due to its non-modular construction, is less susceptible to cumulative beam breakup 

because the effective interaction length with the synchronous transverse deflecting 

mode is foreshortened. 

- 

1.0 

0.8 

0.6 Impedance - Impedance - 
Structure Structure 

0’ 
0 0.2 0.4 0.6 0.8 1.0 

Fig. 34. Normalized eneigy gain versus 7. 

= The choice of rf frequency is also made on the basis of a broad set of criteria. Table 

4, which is taken from S.T.M.A., shows the frequency dependence of some of the key 

parameters. The single most important quantity is the shunt impedance r which varies 

as f1j2. Since & falls as f-‘i2, w/Q w ic h’ h is a measure of E2/w,t varies as f2. This 

is obviously correct since the volume per unit length of structure varies as fm2, all 

transverse dimensions varying as f -l. Thus, any linac design for which one wants 

to maximize the beam energy and in which the stored energy is discarded after each 

pulse, will be favored by high frequency. On the other hand, the frequency cannot be 

increased indefinitely because the decreased iris diameter (2~) eventually becomes a 

li%tation, both from the point of view of beam interception and transverse wakefields 

which scale roughly as (2~2)~~. Also, at lower frequency, the larger energy stored makes 
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the structure less sensitive to beam loading. Finally, there are factors which, although 

not as fundamental, can be just as important such as the availability of high power 

rf sources as a function of frequency, and the absolute machining tolerances. For all 

these reasons the SLAC frequency was set at 2856 MHz or 10.5 cm wavelength. Most 

other linacs in the world are built at the same frequency or nearby, in the vicinity of 

3000 MHz. The final dimensions of the SLAC sections are shown in Fig. 35, together 

with the linear profile of the normalized group velocity(vgTc) an”d’the resulting shunt 

impedance.~ As we see, r(z) has an average value of 57 MO/m and it varies slowly with 

t, which makes our original assumptions acceptable. Figure 36 is a photograph of the 

final 3.05 meter-long SLAC constant-gradient section with its input and output 
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Fig. 35. Variations of 2b, 2a, vs/c and the shunt impedance r (corrected for the 

fundamental space harmonic) as a function of cavity number along SLAC 3.05 meter 

constant-gradient section for t = 0.230 in. 
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Table 4. 

Frequency Dependence of Principal Linear Acceler+or Parameters 

f arameter 

Frequent y 
preference 

Frequent y - -- 
dependence fit&3 - LOG’ Notes 

Shunt impedance per unit length (r) 
RF loss factor (Q) 
Filling time (tr) 

. Total RF peak power 
RF feed interval (I) 
No. of RF feeds 
RF peak power per feed 
RF energy stored in accelerator 
Beam loading (-dV/di) 

-Peak beam current at maximum 
conversion efficiency 

Diameter of beam aperture 
Maximum RF power available from 

single source 
Maximum permissible electric field 

strength 
Relative frequency and dimen- 

sional tolerances 
Absolute wavelength and dimen- 

slonal tolerances 
Power dissipation capability of 

accelerator structure 

f 111 
f - 112 
f - 311 
f - l/Z 
f - IIt 
f 112 

f -2 
f -2 

f 112 

f - 112 

f --I 

I -2 

f 112 

f 111 

.f -l/Z 

f 
-I 

X a 
X a 

X a, b 
X a. b. c 

X a, b 
X a, b, d 

X a, b, c 
X a, b, c 

X a, b, d 

X 

X 

X 
X 

X 

X 

X 

a, b, c, f 
a 

e 

9 

a. b 

a. b 

a, b;d 

Notes: 
a. For direct scaling of modular dimensions of accelerator structure. 
b. For same RF attenuation in accelerator section between feeds. 
c. For fixed electron energy and total length. 
d. For fixed total length. 
e. When limited by cathode emission. 
1. When limited by beam loading. 
g. Approximate ; empirical. 
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9-83 46WAY 

,Fig. 36. SLAC 3.05 meter-long constant-gradient acceler 

couplers. Using IZq. (5.17), the reader should verify that the 

section, taking into account - 10% feed losses, is approximately 

*ator section. 

energy obtained per 

AEK = 10e d=MeV . (5.18) 

If the power of a 36 MW klystron is split four ways, as it is at SLAC,, then 

AEK = 30 MeV/section 

or 120 MeV/klystron. 

In comparison, a matched standing-wave structure yields a steady-state energy of 

AEK = e (P@)‘/2 (5.19) 

wm values of r that can be 50% higher. Thus, in principle, energies that are 25% 

higher could be obtained for the same values of PO and 4Y. In actual fact, because of all 
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the difficulties listed under Sets. 4.8 and 4.9, such standing-wave structures are only 

built for the special applications discussed earlier. 

5.3 BEAMCURRENT,EMITTANCE,BUNCHLENGTH ANDBEAMLOADING 

In the preceding sub-section, not much has been said about the beam itself, its 

characteristics, its behavior and its effect on the structure. The subject of beam 

dynamics in an electron linac is again so vast that we eanaot hope to do it justice in 

the space allotted here. Thus only a few aspects of the problem will be touched upon. 

- 

A bunch of electrons can generally be characterized by the total number of particles 

contained in it, the transverse emittance, the bunch length and the energy spectrum. 

In addition, the beam, which is generally made of a train of bunches, has a pulse 

length and a repetition rate (unless it is CW), and the notion of beam power can be 

associated with it. We will now discuss these various properties, illustrating them with 

some practical examples. 

- Total number of particles per bunch. Typically, in an electron linac, the total num- 

ber of electrons per bunch is in the range lo7 - 101’. For example, the SLAC linac, 

when it accelerates a beam of 50 mA peak current within a 1.6 psec pulse, produces a 

train of - 5000 bunches and a total of 5 X 1O’l electrons per pulse. Thus, the number 

of electrons per bunch in this case is lo8 and the beam energy per pulse at 25 GeV is 

2000 joules, or 720 kilowatts at 360 pulses/set, i.e., close to one megawatt! The goal 

of the SLC project at SLAC is to obtain single bunches of electrons and positrons of 

5 X lOlo particles, i.e., of 500 times greater intensity. Such single bunches with - 8 

nanocoulombs of charge at 50 GeVwill carry an energy of 400 joules,,or 72 kilowatts 

at 180 pulses/set. 

By contrast, a medical linac at 5 MeV, 200 mA peak current and a duty cycle of 

10v3 can deliver to its x-ray target a power of one kilowatt. 

Transverse emittance. Assuming a bunch of Gaussian or other not too unreasonable 

shape, one can define transverse emittances dZdZ and ~~c$~, where a, and by are 

the rms transverse dimensions of the bunch and d! and U; are the corresponding 

rms angular dimensions; for a single particle d = pz/pz = pz/~/3moc and d = 

PiJPz = pz/qpmoc. The pz and py’s refer to transverse momenta and 7 is the usual 

(1 - p2)-lj2. Often, the above quantities are defined as P~~,u’,~ and @OCR,&, or simply 
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y~,d! and 7gYc$ when ,!3 -+ 1. These quantities have the advantage of being invariant 

with energy. They are measured in many different units of which some typical ones 

are mgc - cm or (MeV/c) cm. Since the second unit is twice as big as the first, the 

emittance measured in (MeV/c) cm is half that in mgc . cm. In the 2, px and y, py 

phase-space planes, Gaussian beam envelopes are represented by ellipses and one often 

quotes the above quantities multiplied by ?r to denote emittance areas (see Fig. 37). 

According to Liouville’s Theorem, these areas are inva’rian’ proTided that only non- 

dissipati;e forces act on the particles. 

x-oxis (0) 

Fig. 37. (a) Logarithmic orbit due to 

initial deflection 80 at zo showing 

-contracted length L; (b) Rotation of 

transverse phasespace ellipse from 

injector to accelerat,or output. PX (b) 
Initial Erect 

(XO)mor Xmox X 

Linoc (40GeV) 

As an example, a recent transverse emittance measurement for a single bunch of 

5 X 10” electrons out of the proposed 40 MeV SLC injector gave - 7.5 x 10m3 7r 

(MeV/c) cm. This means that if this beam is focused to a waist of 0.75 cm radius, its 

angular divergence is 0.25 mrad. If there were no transverse emittance growth along 

the accelerator, at say 40 GeV, the angular divergence would shrink to 0.25 prad for 

the same 0.75 cm waist (see proof below). Even though the above emittance from 

th;injector is quite small, the SLC requires that the emittance at the final focus be 

no greater than 1.5 X 10s3 ?r (MeV/ c cm or five times smaller. This explains why )- 
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damping rings to “cool” the beams downstream of the injector had to be added in the 

SLC design. 

The transverse beam dynamics in the injector of a linear accelerator are compli- 

cated by the presence of space charge forces and radial defocusing forces due to waves 

and particles which are not yet moving at the velocity of light. We have seen earlier 

from Eq. (3.43) that as /3s +-1, the magnetic and electric forces-from a synchronous 

wave cancel- each other. Thus, leaving out all other spurious forces, the transverse 

equation of motion of an electron in the z- (or y)-plane past the injector is given by 

dPZ .---co 
dt 

but since dz = c dt, we can rewrite this equation as 

$7$=-o. 
( > 

Integrating, we obtain 

dx 
7iG 

= const 

which confirms the correctness of the assumption we made above. 

(5.20) 

(5.21) 

(5.22) 

Since under these conditions the quantity 7 dx/dz is conserved along the length of 

the linac, we can make it equal to 70 80 at zu, say at the output of the injector. Then 

a second integration leads to 

(5.23) 

and if we assume that the energy grows linearly as 7 = ‘y’z where 7’ is constant, then 

X- x,=? e&z 
r’ ZO 

or 

(5.24) 

X- 20 = e. 20 ffn t . (5.25) 

Looking at Fig. 37a, we see that an electron starting at zu with energy 70 (where 

- actually zo is defined as 70/7’), x = x0 and angle 00, will end up at z with transverse 
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displacement x0 + Buzo 4% Z/Q. It is as if the length z - zo has been contracted to 

L = zu tn Z/Q. Thus if zu = 3 m, z = 3000 m, f = 2666/m, the 2997 m length 

looks like it has been contracted to 20.7 m. The orbits instead of being linear are 

logarithmic. 

It is instructive to follow the evolution of the phase-spa.ce ellipse from its waist 

at the output of the injector (40 MeV) to its final configuration at the output of the 

accelerator (40 GeV). Since pz- cannot grow beyond (pg)& and the’ two (20)~~~ points _ 
represent rays which are parallel to the z-axis and therefore cannot be deflected by 

an increase in energy, the ellipse has no choice but to get elongated between the two 

(~0)~~~ horizontal lines while remaining fixed at the two (20)~~~ points. It can be 

shown that as the ellipse gets elongated, the (x)~~~ coordinate is given by 

X2 ma2 = (xo)Lax + (C%0 En -f-)2 (5.26) 

wh&e 00 = (PO)maz/PtO. In the example we chose, x0 = 0.75 cm, 80 = 0.25 mrad, 

zi4n z/z0 = 20.7 m, we find that xpnaz = 0.91 cm. We see that the radius of the beam, 

in the absence of any transverse emittaace growth, would barely need any focusing to 

stay within the aperture of the accelerator irises. In actual fact, however, emittance 

growth does take place because of the effects discussed earlier, and a FODO array or 

other quadrupole focusing system is indeed required. The description of these systems 

is beyond the scope of these lectures. 

Bunch length. In sub-section 5.1, we have described qualitatively how the bunches 
. are’formed in thk injector of a linear accelerator. Following the electrons from the gun 

through a prebuncher and a buncher is a complicated problem which is best done by 

a computer. However, when the particles finally enter the up = c constant-gradient 

accelerator section, there is a fairly simple expression for the asymptotic phase &, of 

an electron of velocity vu = /3uc entering with phase 40 relative to the wave: 

27r l-/3() U2 
cos&!Q = cos&-J-- ~ 

( > Q 1+po * 
(5.27) 
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Unlike for protons, the phase origin is taken at the field null, 90’ ahead of crest 

(Fig. 38) and o = e EXo/moc2. * When the factor 2n/(r--[( 1 - &-J/(1 + ,Bo)]~/~ is 

made equal to 1 through the proper choice of Q (Q = 3.63 if ,f30 = l/2, or Q = 2.37 

if PO = 3/4), then an electron, entering the accelerator at 40 = 0, asymptotically 

approaches the crest, #oo = -n/2. For small phase extents fnu around 40 = 0, it 

can be shown that 
r- - - 

- 

i.e., all other electrons end up behind the crest. For example, if -l/4 5 40 < l/4 

radian, then -[7r/2 + l/32] < #oo < -7r/2 radian, i.e., a 30’ bunch ends up in less - 
than a 2’ bunch. Typically, at SLAC, bunches over a wide range of charge have 

been measured to contain most of their charge within 5’. The asymptotic charge 

distribution is not quite Gaussian, even if that of the entering bunch is (which is 

generally not the case either). For the SLC, it is planned to have most of the 5 x 10” 

electrons within 20’. 

Asymptotic Bunch 

Fig. 38. Asymptotic bunching process in 

wP = c constant-gradient accelerator 

section with value of o optimized 

for entrance conditions. 

Energy spectrum due to bunch length and beam loading. The last beam property of 
great interest to linac builders and users which we will consider is the energy spectrum, 

namely, how monochromatic is the beam? Typically, one wants to have all the electrons 

within an energy spectrum width of 1% or less. There are two effects inherent to how 

an electron linac works which bear on the spectrum. The first one is the bunch length 

which by its very nature implies that all electrons within it do not receive the same 

epergy, either because they are not on the same part of the wave or because of their 

* Not to be confused with the attenuation/unit length cy defined earlier! 
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own wakefields. The second one is beam loading from bunch to bunch due to energy 

removal from the structure by each bunch: this effect can reach steady-state after a 

certain number of bunches. In addition to these two inherent effects, there are a number 

of other technological effects which can be detrimental to the spectrum width such as 

poor injection conditions, phase and frequency modulation in the master oscillator, 

poor amplitude and phase stability of the rf sources, poor accelerator temperature c- - - 
control and many others. We will not examine these. 

In a multi-section linac with individually phase controllable klystrons, it is possible 

to phase each tube so that a bunch of phase length A# is centered on the crest. Then 

it is easy to show that 

S AEK 

AEK 
= 1 - cosnd x tad2 

2 8 
(5.28) 

or - 0.12% for A$J = l/10 radian. The reader can convince himself that this is the 

best that can be done for a low current bunch in which wakefields do not play a role. 

Itideed, this effect results from the sha.pe of the cosine wave and nothing can be done 

about it, not even rocking the bunch from one side of the crest to the other, which 

is sometimes suggested! This would only work if the top of the wave were a triangle 

instead of a curve. On the other hand, if the bunch is highly charged as in the SLC, the 

energy decrease due to the wakefield effect of the head on the tail can be compensated 

for by locating the bunch ahead of crest at the proper phase, which to first order can 

cancel the decrease if the slopes can be matched. 

. : Coming back to the low current case, it is often asked what the effect of misphasing 

individual klystrons is on the beam. The answer is that to first order, misphasing 

-- individual klystrons only decreases the maximum reachable energy but does not affect 

the spectrum. Indeed, it can easily be shown that the (A4)2/8 rule still applies as long 

as on average, the bunch travels centered on crest. 

The beam loading effect, which has been referred to several times earlier, comes 

about because the rf energy stored in the linac structure is reduced as successive 

bunches get accelerated and extract energy from it. The effect goes through a tran- 

sient phase until a new lower equilibrium energy level is attained. In a traveling-wave 

structure, it can be seen intuitively that each bunch that traverses it sets up instanta- 

neous rf field “packets” in each cavity at the veldcity of light (except in the buncher). 
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These packets then travel down the structure in phase at the group velocity. If the 

train of bunches continues, there is a build-up of fields versus z, even though the pack- 

ets get attenuated with distance. Steady-state is reached when the packet generated 

in the first cavity reaches the last. As it happens, this is exactly the definition of the 

filling time tF. Thus if we inject a train of bunches after one filling time, i.e., when 

the section if filled, it takes an additional filling time before steady-state is reached. 
F- - - 

We will give a short derivation of the steady-state case and let the transient case _ - 
be understood intuitively. If a peak current of intensity i is assumed, our power loss 

equation (5.4) must ‘be written as 

(5.29) 

assuming that the electrons are synchronous and ride on the crest. Then, differentiat- 

ing the expression 

E2=2crrP (5.30) 

with respect to z, we get 

EdE da dP 
dz 

=rP-+ar- . 
dz dz 

(5.31) 

Substituting (5.29) for dP/dz in (5.31), -E2/r for (dP/dz),,ll and E2/2ar for P, we 

obtain the general differential equation 

-ari . 

It follows that for the constant-impedance case 

dE 
- -aE - Cyri 

-z-- 

(5.32) 

and for the constant-gradient case, replacing da/d% by its value given by (5.14), 

(5.33) 

dE . 
da=-ar’ * (5.34) 

The solutions are: 
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Constant-Impedance 

E = Egewaz - ri(l - eea”) 

where Eo = (2arPo)1/2, 

Constant-Gradient 

- E= Eo+F tn [l-: (l-es2’)] 

where 

EO = (2oOr Po)lj2 = 7 (1 - eB2T)]1’2 . 

The energy equations are then obtained by simple integration, as in (5.7): 

Constant-Impedance 

AEK = e(Po t?r)‘/2 (27)li2 ’ -,” -rBe~f$(l-l-~-T) 

Constant-Gradient 

AEK = e(Po .tr)‘/2 (1 - ew2’)l12 --cql - ;ye;q . 

(5.35) 

(5.36) 

(5.37) 

(5.38) 

(5.39) 

We can see that when i = 0, expressions (5.38) and (5.39) collapse back to (5.9) and 

(5.17) respectively. The reader can verify that for the SLAC conditions used for (5.18) 

and i = 50 mA, r = 0.57, the energy reduction per section due to beam loading 

under steady-state conditions is 2 MeV out of 30 MeV or 6.7%. The steady-state field 

profiles along a section given by (5.35) and (5.36) are sketched in Fig. 39a. The shaded 

areas show the reduction due to beam loading. The energies are the integrals under 
the respective curves. Figure 39b gives the evolution of energy as a function of time. 

The interval between 0 and tF shows the energy increase as the section is filling, the 

second interval between tF and 2tF shows the transient decrease due to injection of 

the beam at t = tF, and the third interval (t > tF) shows the steady-state energy. 

-The beam loading effect, as can be seen, is inherent to the operation of the linac. 

Once steady-state is reached, it has no effect on the spectrum width, unless the current 
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itself fluctuates. If the beam pulse length itself is only on the order of 2tF, which is 

the case at SL_4C, half the beam pulse is in the transient St-ate. The remedy which 

is often used to reduce this overall spectrum broadening effect is to inject the beam 

somewhat earlier than at time tF so that the first bunches see their energy reduced 

as well. With a large enough number of klystrons, it is possible to stagger the onset 

of the rf in successive sections so that the two effects cancel each other, down to less 

than 1% (Fig. 39c). Thus, the steady-state reduction tinriot beavoided but at least 

its effect-on the spectrum can be minimized. 

I I I 1 

I 2 c = 
Constont -1mpedonce Constant -Gradient 

(0) 

Beom Looding 
1 Energy Reduction 

tF ztF stF t 

Beam Injecti on t (b) 

Smoothed Beam Loading 

t 
1, 

Beam Injection 

I 
I I 
I I 
I 
I 1 
I I 

2tF 3tF t 

(cl 

Fiz 39. Effect of beam loading: (a) on E-field profiles in sections, (b) on energy AEK 

delivered versus time, (c) on energy AEK if beam is injected before t = tF. 
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In standing-wave accelerators, beam loading is of course also present. However, 

since the beam-induced waves are caused to bounce back and forth just like the ex- 

ternally supplied waves, the reduced field profile takes several filling times to reach 

steady-state. 

5.4 RECENTDEVELOPMENTSANDFUTURECHALLENGES 

During the past few years, progress in the design af linear?lectron accelerators 

has been made on a broad front. Industrial manufacturers have specialized in the 

production of a large number of medical and radiographic linacs. Their contribution 

has been strong in the areas high rf-to-beam energy conversion efficiency, high shunt 

impedance standing-wave structures, minimum external focusing, good packaging, and 

in some specialized machines excellent emittance characteristics through the design of 

very high voltage electron guns (up to - 400 kV). In some cases, linacs have been 
built to produce beam pulses in the 10-20 nsec range with currents up to 20 A. In 

the-universities, the accent at laboratories such as MIT, ALS (Saclay) and NIKHEF 

-(Amsterdam) has b een on linacs with duty cycles up to 10%. The challenge there 

has been to obtain reasonable currents ( - 20 mA) for long pulses (10-40 ysec) with 
excellent emittances and without the onset of beam breakup. 

At laboratories in the U.S. such as HEPL and SLAC (Stanford), University of 

Illinois and Cornell, in Germany at Karlsruhe and Wuppertal, in Switzerland at CERN, 

and in Japan at KEK, considerable effort has gone into investigating superconducting 

structures for linacs, microtrons and storage rings. The hope to build CW linacs 

with accelerating gradients up to the theoretical limit of 30 MV/m in niobium has 

not been realized so far. On the other hand, much progress has been made towards 

understanding and overcoming some of the major obstacles in the field such as the onset 

of multipactoring and thermo-magnetic breakdown due to impurities in the niobium. 

Thus, with a few tens of watts of power, several laboratories have been able to obtain 

gradients of 2-4 MV/m fairly routinely under CW conditions. The entire subject of rf 

superconductivity in its application to accelerators is dealt by M. Tigner, elsewhere in 

this book. 

-Other institutions have built or used a variety of dedicated low duty-cycle linacs 

for injection of electrons (and positrons) into storage rings. This category includes 

several laboratories such as Cornell, Fra.scati, Or&y, DESY, Novosibirsk, the Photon 
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Factory at KEK, and in the future the LEP injector at CERN and two injector linacs 

being planned in the P.R.C. (Beijing and Hefei). A large 4 GeV linac, with 200 mA 

peak current and high repetition rate (1000 pps) is presently being designed as an 

injector to a stretcher ring for the National Electron Accelerator Laboratory (NEAL) 

at Newport News (Virginia). 

Another area where innovation has taken place is inthe-field_of, rf energy compres- 

sion. The attempt here has been to gain electron energy without increasing average 

or even klystron peak power. The basic scheme, invented at SLAC by P. Wilson, D. 

Farkas and H. Hogg, has been called SLED, an acronym for SLAC Energy Develop 

ment. (For a general reference, see for example, Z. D. Farkas, H. A. Hogg, G. A. Loew 

and P. E. Wilson, Proceedings of the IXth International Conference on High Energy 

Accelerators, SLAC (1974), page 576). The principle is illustrated in Figs. 40 and 41. 

LINAC WITHOUT SLED 
R- 

LINAC WITH SLED CAVITIES 

Fig. 40. The SLED principle. 

Referring to the top of Fig. 40, we see that under normal non-SLED operation, the rf 

drive pulse which is amplified by the klystron is directly transmitted to the linac. The 

SLED system, which is shown at the bottom of Fig. 40, has two major components: 

a T80" fast phase shifter on the drive side of the klystron and two high-& (&o = 

100,000) cavities on the output side of the tube- withy a 3 db coupler connected as 
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shown. During the first part of the pulse, the phase of the rf drive signal is reversed 

and the rf cavities fill up with energy with that phase. Because of the 3 db coupler, no 

energy is reflected to the klystron. The fields emitted by the cavities add algebraically 

with the fields reflected by the cavity coupling irises, and the power flows toward the 

accelerator. Exactly one linac filling time (- 0.8 psec) before the end of the pulse, the 

phase of the drive signal is flipped back by 180’: as a result both cavities discharge 

their energy into the accelerator. The discharging pulsea.rnplitu& is increased by the 

fact that the klystron pulse adds to it. The output pulse length is tailored exactly to 

fill the accelerator sections at one instant of time. 

SLED OPTIONS 

I II 

PULSELENGTH 2.5~s 5PS 

EFFECTIVE POWER 2 3.15 
GAIN 
ENERGY GAIN 1.4 I .78 

REPETITION RATE 360 pps 180 pps 

I SLED 11 

SLED I 

I 
I’ 2 3 4 5 

. 

I 460&Y 
Fig. 41. Comparison of two rf pulse length options for SLED showing how a longer 

charging time increases the output pulse amplitude. 

It can be seen intuitively that the longer the time to charge the cavities, the more 

energy there is available at the time of the discharge. On the other hand, there is a 

limit to this process because of the copper losses in the cavities. Figure 41 shows two 

rf pulse length options in what is obviously a continuum. Much beyond 5 psec, one 

reaches a point of diminishing returns. The two cases of 2.5 and 5 psec with their 

respective energy gains and pulse shapes are given because the first one equals the 

pulse length that was initially available on the SLAC accelerator and the second, in 
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conjunction with a 50 MW klystron, would satisfy the 50 GeV energy requirements of 

the SLC. The two repetition rates in combination with the corresponding pulse lengths 

require the same AC power. 

Note that while the SLED system is indeed a form of energy compression, it is 
not perfect because the cavities start out by rejecting the energy, then absorb some 

of it themselves, and finally do not emit nice rectangular pulses. Thus, for example, r- - e 
the power gain in the 5 psec case, instead of being 5 psec/0.8 psec, i.e., 6.25, is only _ 
3.15. The idea in itself, however, has been applied with considerable success and other 

laboratories such as CERN and the High Energy Institute at Beijing are adopting it 

for their linac designs. 

In the preceding pages, we have referred a number of times to the SLC or Linear 

Collider project at SLAC. Of all the known applications of electron and positron 

linacs, this is probably the most challenging because it puts to a test and stretches to a 

maximum the capabilities of these accelerators. For the SLC to become operational, we 

must improve our understanding and control of beam generation, injection, emittance, 

beam centering and focusing to keep the emittance from growing, energy spectrum, 

phase and amplitude stability of the klystrons, positron generation and many others. 

These problems are discussed elsewhere in this book by R. Stiening. 

The SLC will be the first test-bed for these ideas. Beyond this first 50 GeV-on-50 

GeV e* linear collider, it is now being asked whether machines of this type could be 

built in the l-2 TeV range. This question will of course be much easier to answer after 

. som.e experience has been obtained.,with the SLC. However, one problem can already 

be focused on now. This is the problem of energy consumption. We will end these 

lectures with a simple example which might stimulate the reader to think further. 

It is not clear at this point where the ultimate limits of accelerating gradient will 

be nor what factors will determine the length of the accelerator. Suppose we want to 

build a 1 TeV-on-l TeV e* collider. Say we have two choices of gradient: 20 h4V/m 

(conservative, attainable now) or 100 MV/ m (1 ess conservative, yet to be tested). The 

respective lengths would be 50 km and 10 km/linac. Returning once more to Eq. (5.2) 

and rewriting it as 
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E2 
W& = -- 

wrl& ’ 
(5.40) 

we see that even if we are able to bring the energy onto the axis of the accelerator 

at 100% efficiency, it will take a large number of joules to establish the fields. Table 

5 summarizes the results, assuming that r/Q = 5000~/m at 2856 MHz. The power - 
requirements are worked out for an example where the two linacs are pulsed 200 times _ - 
per second to reach the overall desired luminosity. Each pulse is used to accelerate n 
bunches (4 5 n 5 10) which will at most remove 20% of the stored energy. Unless 

something very ingenious is done, the remaining 80% energy will be wasted. Note 

further that the real power consumption will be at least twice the rf power consumption 

because of all the inefficiencies involved in converting AC to rf. In a few years, at 

$O.lO/kW-h, l/2 GW of power will cost $5O,OOO/hr. It is quickly seen that there will 

be a strong incentive to improve upon the numbers in this table. Two avenues suggest 

themselves. One is to increase the frequency since wr/Q scales as w2. The other is to 

invent a method of recovering the energy for some useful purpose. The challenge is 

yours! 

Table 5. 

rf Energy and Power Needs for a 1 TeV-on-l TeV e* Linear 

Collider Assuming No Losses in Establishing Fields 

Gradient @V/m) .. 20 100 

Length/linac (km) 50 10 

rf Frequency (MHz) 2856 2856 

w,t (Joules/m) 4.47 111.73 

Total energy stored/linac/pulse (MJ) 0.223 1.117 

rf Power/2 linacs/200 pps (MW) 89.36 446.8 
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