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ABSTRACT 

A treatment of transition radiation between two dielectric media is presented which 

is based on the exact expressions for the fields of the particle in the two media. Ex- 

*- pressions for the spectral distribution of the energy emitted foreward and for that 

emitted backward are derived. The results are in accord with experimental findings 

for ultra-relativistic particles. It is indicated how the treatment can be extended to 

_ the case of a plate and to that of a wave-guide, as well as to emission by a monopole. 

The case of the simultaneous emission of transition radiation and Cerenkov radiation 

is considered and the relationship between them is clarified. It is also found that the 

Cerenkov wave emitted by the particle in the backward medium will be partially re- 

flected, and partially refracted into the foreward medium, after the particle crosses the 

boundary between the two media. The linear energy density for the refracted wave is 

calculated and it is shown that under certain feasible conditions this is amenable to 

experimental verification. 
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1. Introduction 

The existence of transition radiation was first suggested by Frank and Ginzburg 

in 1945 (‘). They argued that a uniformly moving charged particle must emit ra- 

diation when it crosses the boundary between two media. They gave it the name 

transition radiation and they derived its angular distribution for the case when a 

charged particle moves from vacuum into an ideal conductor. Their method was 

to consider the radiation to result essentially from the annihilation of the charge 

with its image in the conductor. 

The calculation of transition radiation for the case of two dielectric media 
was first carried out by Beck (2). His approach was to use the method of images 

for finding the field of the particle in the two media and then to introduce the 

transition radiation field in order to satisfy a continuity condition on the field 

with time. 

This same case was subsequently treated by Garibian (3) who looked, from the 

a- start, for wave solutions in the radiation zone. He then solved a boundary value 

problem with the fields expanded in plane incoming and outgoing waves. Similar 

treatments were given also by Ginzburg and Tsytovich (4). Garibian’s method was 

later used by Dooher (5) to calculate transition radiation from magnetic monopoles. 

This same case has also been treated more recently by Frank (“). 

Other aspects of transition radiation have also been considered in the litera- 

ture. Pafomov (7) and Garibian and Chalikian (8) treated the case of transition 

radiation in a plate. The case of emission from a stack of foils was first treated 

by Garibian (‘) and has recently been given an exhaustive treatment by Artru, 

Yodh and Mennessier (lo). The case of oblique incidence of the particle on the in- 

terface between the two media was treated by Pafomov (l’). Transition radiation 

in wave-guides wa.:: discussed by Barsukov (12). X-ray production by transition 

radiation in a slab was treated by Garibian (13), while Alikhanian and Chechin (14) 

have developed an eikonal approximation to treat this case. The relation between 

transition radiation and Cerenkov radiation has been investigated by Zrelov and 

RuiiEka (15). Ramsay and McKee (16) have recently studied the contribution of 

transition radiation to x-ray production by protons. 

Experimental study of transition radiation has been quite extensive (4pL7~18). 

In recent years great experimental interest has been generated by the possibility of 

using transition radiation as a means for the detection of ultra-relativistic particles. 
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Frank (lg) has always emphasized the feasibility of utilizing transition radiation 

to this end. It is now envisaged to use transition radiation detectors in energy 

ranges not covered by other types of detectors or where they may possess higher 

efficiency (20). Other uses have also been suggested for transition radiation in the 

literature. A significant recent suggestion has been made by Chu et al., (21) to 

employ transition radiation emitters as sources of soft x-rays. 

In the present article we undertake a treatment of transition radiation which 

attempts to complement the derivations which we referred to above. In particular, 

the method of Beck seems to suffer from the ad hoc fashion in which he introduces 

the radiation field. Furthermore, as we shall see later on, his particle fields do not 

possess the proper boundary conditions. 

The method of Garibian does not suffer from any such limitations. But it 

is supposed to apply to the radiation zone and, in particular, away from the 

trajectory of the particle ( gr18). It thus does not hold for the region of small angles 

about the particle’s path. But as Garibian (g) asserts, this region especially in 

a- the foreward direction becomes very important in the case of relativistic particles. 

These are the particles to which most of the experimental effort is now directed (22). 

Another aspect of Garibian’s method must be noted. His treatment consists in 

- setting up the problem as a stationary scattering problem with incoming particle 

and free fields at t = --oo and outgoing such fields at t = co. This tends to obscure 

the transitional nature of the phenomenon. But what is of more significance, the 

resulting expressions for the radiated energy will represent not only transition 

radiation but also Cerenkov radiation, whenever this latter can take place. Since 

for the high velocities we are considering, Cerenkov emission is quite certain to 

occur, this limitation of Garibian’s formulas could be significant. Attention has 

been drawn to this point by Pafomov and Frank (=) 

In our treatment we start from Frank’s assertion (17) that the theory of tran- 

sition radiation must be a consequence of Maxwell’s equations. With this spirit 

we base our considerations on the exact solutions for the electromagnetic field of 

a charged particle moving in a homogeneous medium (24~25). To obtain transition 

radiation we make use of the basic idea due to Frank and Ginzburg, which has 

been emphasized by many authors (26); namely, field readjustment. According to 

this idea, as the particle crosses from one medium into the other, the fields which 

it has established in each medium will now have to change. This brings about a 

re-adjustment of the fields which causes the appearance of transition radiation. 
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But since in our treatment we use the exact fields, we expect that our solution 

will give a good description of transition radiation close to the trajectory of the 

particle. This is the important region at high energies. Our treatment can thus 

be viewed as complementary to the treatment of Garibian which is supposed to 

hold at large angles. 

We also treat the case when Cerenkov radiation can occur. We find that 

although transition radiation and Cerenkov radiation could occur simultaneously, 

they will not show mutual interference. This is because they occur for different 

frequency ranges. An interesting finding results from our analysis of the Cerenkov 

wave in one medium after the particle crosses into the other medium. We find that 

depending on the relative magnitudes of the susceptibilities of the two media, this 

wave would either suffer total reflection at the boundary or be partially reflected 

and partially refracted. In our opinion, this result merits experimental verification. 

Our treatment also has the advantage that it can be readily generalized to 

the case of monopoles, dyons, and electric dipoles. This should prove useful for 

a- the experimental efforts directed at detecting them. It also constitutes a suitable 

framework for the treatment of transition radiation in wave-guides. Finally, since 

the fields we use apply to the case of media which show dispersion as well as 

dissipation (25), the present treatment can be generalized to include the presence 
._ of dissipation. However, we will not do this here. Since transition radiation must 

exist even in the absence of dissipation, we feel that adding this may cloud the 

issue and not add to our understanding of the phenomenon. 

The arrangement of material is as follows. In section 2 we derive the field 

solutions which hold in the geometry we are using. We use these in section 3 in 

order to derive the spectrum of the total energy radiated in the foreward direction 

as well as that radiated in the backward direction. In section 4 we indicate how our 
” 

method can be extended to other situations. The case when Cerenkov radiation 

can also be emitted we treat in section 5. We present our conclusions in section 6. 

2. Transition Radiation at an Interface 

2.1 THESOLUTIONS FOR THEELECTROMAGNETICFIELDS 

We consider two semi-infinite homogeneous dispersive media with interface 

coinciding with the zy-plane. We will refer to the medium below the zy-plane as 

region 1 a.nd that above it as region 2. They possess electromagnetic susceptibilities 
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which we designate, respectively, as cl(w), PI(U) and Ed, plq(w), where w is the 

frequency of the electromagnetic radiation in the medium. Since, as we mentioned 

in the introduction, we are neglecting dissipation, the susceptibilities will be real 

and will satisfy the relations: 

ci(w) = Ci(-W) 

7 
Pi(w) = Pitsw) 

i= 1,2 (2.1) 

A particle of charge e and velocity v is incident along the z-axis from -oo so 

that it passes the origin at t = 0. We assume that the particle’s velocity is large 

enough not to suffer appreciable change over the particle’s trajectory. However, 

we will not assume it so large as to give rise to cerenkov radiation. We will discuss 

the case when cerenkov radiation can also be emitted in section 5, below. 

The fields of the particle in the two media must fulfill two conditions. They 

must be solutions of the appropriate Maxwell’s equations and they must satisfy 

the proper boundary conditions. We will meet the first condition by basing our 
a- 

treatment on the exact solutions for the fields of a charged particle in an infinite 
medium. We will then find the proper combinations of these fields which will 

satisfy the boundary conditions. 

These fields and all relations relevant to them we take from our reference (25). 

However, to avoid excessive repetition we will dispense with any further mention 

of this source in the sequel. It will then be understood that any relations for the 

fields which we introduce without demonstration come from this reference. 

In order to establish our notation, we start with the case of a particle moving 

in an infinite homogeneous medium with susceptibilities given by E(W), p(w). The 

vector potential of the particle will have the following form: 

A(ZJ) = ii dw A(p,z,t, w) + C.C. (2.2) 

where i is the unit vector along the z-axis, (p, z) are the spatial cylindrical coor- 

dinates and K:(w) is defined in th following equation. The spectral function of 

the vector potential, namely A(p, z, t, w) is given as follows: 
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(2.3) 

p’= v-=2!- 
cl +cl c ‘(4 

K2(w) = 44 P(W) 

where Ku is the modified Bessel function of the third kind of order zero, c is 

the velocity of light in vacuum, and C.C. stands for the complex conjugate. The 

spectral function for the scalar potential, namely cp(p, Z, t, w) , is obtained from 

that for the vector potential via the gauge condition: 

a.;i(,,z,t,w) -i &j dPJ,b4 =o - (2.4 

a- The electric and magnetic fields are obtained from these potentials via their usual 

definitions 

In the present case we have to differentiate between two physically different 

- situations depending on whether t is smaller, or larger, than zero. For t < 0 the 

particle is incident on the boundary from region 1, whereas for t > 0 it is going 

out away from the boundary in region 2. We will designate the fields for these two 

cases respectively with the superscript i for incident and o for outgoing. 

2.2 THECASEFOR~CO 

Since the particle is in region 1 now, we must have there an incoming particle 

field. But since this field will be reflected at the boundary, we must also have 
there a free reflected field. In region 1, then, the spectral function for the vector 

potential will have the following form: 

eiw + A(;‘)(w) e-iw ( ‘I % + t (2.5) 
(4 where A, (w) is an arbitrary parameter which will be determined by satisfying the 

boundary conditions at the interface 

In region 2 we can only have a free-field solution. This can be viewed as that 

part of the particle field in region 1 which is refracted into region 2. It must then 

correspond to an outgoing field and will be given by: 
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eiw (2.6) 

where the arbitrary parameter At)(w) will again be determined by satisfying the 

boundary conditions at the interface. The parameter q is introduced so as to make 

the above potential a free-field solution in region 2. That this is not automatically 

so is dictated by the fact that in order to satisfy the boundary conditions at the 

interface, we must use 7: in place of 74 in the argument of the Bessel function. 

We use the boundary conditions in their standard form (26); namely, that the 

tangential components of & and fl- and the normal components of b and 3 must 

be continuous across the interface. We may also point out that, in our present case, 

the potential and, by virtue of eq. (2.4) the divergence of the vector potential 

are continuous across the boundary. However, this condition contains no new 

information since it is not independent of that imposed on the fields. By applying 

the boundary conditions to the fields then, we obtain: 
a- 

q=&qG-g 

Af) = ‘2 - ‘It7 
62 + Clrl P-7) 

At) = 2E2 
r2 + Clrl 

It will be seen from this result that the resulting solutions show the proper 

behaviour when ~1 = ~2; i.e., when the two media become identical. The reflected 

field then vanishes and the remaining fields in region 1 and region 2 become iden- 

tical. 

Finally, we must note the following. Since the Bessel functions in either 

medium have the same argument, all the spectral integrals for the potentials 

and fields will be restricted to the same domain of frequencies irrespective of 

the medium; namely, 

(2.8) 
This means that the particle activates the same set of frequencies in either medium. 

2.2 THECASEFOR~ > 0 

In this case we have an outgoing particle in region 2. We must then have an 

outgoing particle field in this region. In region 1, we will have a free incident field, 
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which is required by the way the particle is moving in region 2. Rut then this field 

will be reflected at the interface giving rise to a reflected field in region 1. We 

summarize this situation as follows: 

+ At)(w) e 

&)(/J,Z t W) =Tp2 eiw ( ) tBt > , 
?TC 

Ko y 
( ) W 

Again we note that the Bessel functions have the same argument in either medium. 

But this is different from that in the preceding case by having 74 replace 7[. The 
(4 parameter p7’ is chosen now so as to make A, a freefield solution in region 1. 

(4 (4f The parameters A, (w) and A, (w) are then chosen so as to satisfy the boundary 

conditions at the interface. The result is as follows: 

*- q’= \/1+/3p-p;2 

(2.10) 

Af)’ = ‘2ri’ - ‘1 
2c2rl’ 

As to the frequency domain of the spectral integrals in this case, it will be given 

by: 

(2.11) 

Comparison of this with eq. (2.8) h s ows that the set of frequencies activated by 

the particle for the outgoing case is different from that for the incoming one. 

Finally, we are now in a position to explain our comment in the introduction 

regarding Beek’s solution (2). For the solution corresponding to our outgoing- 

solution, eq. (2.9), Beek assumes in region 2 a reflected incoming solution in 

addition to the particle solution. But in our view this choice is physically untenable 

since it would assume a source for this solution situated at z = 00. Such a source 

does not exist in the geometry of the problem contemplated. 



3. The Spectrum for Transition Radiation 

In the preceding section we have seen that for t < 0, when the particle is in 

region 1, it sets up fields in the two media with spectral range given by inequal- 

ity (2.8). We will represent these fields by E (*f), B(1)), (J!?!’ , gg)), in either 

medium. When the particle makes the transition from medium 1 into medium 2 

at t = 0, it will establish a new set of fields in either medium. We represent these 
by 

( 
j$), @ ’ , 

>( 
&I, fit) 

> 7 for medium 1 and medium 2, respectively. What 

is significant now is that the spectral range for these new fields is different from 

that of the fields already established in the media. It is given by inequality (2.11) 

instead of (2.8). But since the only fields which the medium can sustain under 

the influence of the particle are these new fields, those already established there 

must undergo a m-arrangement so as to make a transition into the new fields. 

In particular, the frequencies activated in the medium must now subscribe to in- 

equality (2.11). Those unsustainable degrees of freedom of the fields which are 

included in (2.8) and not in (2.11) must now disappear from the fields sustained 

r- by the particle. Since we are not allowing for the existence of dissipation, the only 

mode in which they can disappear is in the form of radiation, or more specifically, 

transition radiation. 

If we then form the difference fields in each medium: 

q. = j$i) - $ (0) 
.I 

jzl,2 (3.1) 

then they will be the ones which have to disappear. These would correspond to 

the fields of the particle and the virtual charge in the treatment of Frank (17). 

From them we must then obtain the energy flux. That these are the fields which 
we must use is borne out by the fact that they vanish for two identical media. 

Since our main interest is centered on the derivation of the radiated energy, the 

sign of the above fields is immaterial. 

As to the range of validity of the resulting flux, we expect it to be in, or close 

to, the foreward direction. This follows from the following argument. We expect 

the use of the exact form of the fields t,o be important at high velocities. But by 

investigating the form of the fields in our case, say in region 2, we find that they 

are the sum of plane waves propagating parallel to the z-axis with their amplitude 

modified by a falling exponential coming from the Bessel function Ko[wp/(7{v)]. 
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For very high velocities, 7: >> 1, and so the amplitude will fall off very gradually, 

which permits some of these virtual waves to materialize into plane waves travelling 

foreward. This then justifies our assertion that our results should be considered 

complementary to those obtained by Garibian’s scattering solution. 

We calculate the energy flux in the standard fashion. For either medium we 

form the Poynting vector: 

f j=l,2 (3-2) 

The time integral of this from t = 0 to 00 is then the total energy flux radiated 

in the medium. The details of the calculation are standard and we give an outline 

of them in Appendix A. We will only present here the results in order to discuss 

them. 

3.1 THE ENERGY FLUX IN REGION 2 

We start with this region because it represents the foreward direction which 

is of main interest in particle detection. The energy flux in this case is given by 

*- eq. (A6) in the Appendix. It has the following form: 

x K1 (g) K1 (g) COS(‘~ -:‘““) ]) 
(3.3) 

In the above Jr is the unit radial cylindrical vector and B is the step function. 

The first remark we have about this result is to note that the radial component 

is of order l/7 compared with the foreward component. This means that for very 
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high velocities transition radiation is concentrated in the foreward direction in a 

cone with angle cp - l/7. This result has been derived theoretically by many 

authors(4) and it has also been verified experimentally by many investigators(22) 

Second, it will be seen that both components of the energy flux show Z- 

dependence. This is natural considering that we are dealing with exact solutions 

which retain the short-distance behaviour of the field. At any rate, the important 

such term for our purposes is that occurring in the foreward component. This 

term has its maximum value when the two media coincide. It will then cancel 

the two other terms as it should. However, as the two media start to differ, this 

term will start to decrease because of the shrinking brought about in its domain 

of integration by the two different step functions occurring in it. From this we 

expect that transition radiation will be the stronger the more the properties of 

the two media differ. This property has been noted by Frank who finds that the 

maximum intensity occurs between vacuum and a conductor.(1g) In what follows 

we will assume that we are dealing with two quite distinct media. 

,r- 3.2 ENERGYFLUXIN THEFOREWARDDIRECTION 

This is given by the following integral, 

12=,1 ( [s2 dt) . z 2npdp . 

For Pmin we take the distance shorter than which our macroscopic description 

of electromagnetic phenomena would break down. A good choice for this is the 

plasma wave-length of the medium d(p (%). Putting this in the above integral, we 

then evaluate the resulting integrals using the standard tables(n). 

We first consider the term showing z-dependence. This integrates to the fol- 

lowing: 

where Q is the fine-structure constant, g is Planck’s constant, wp is the plasma 

frequency in region 2 and v = [w/(/37iwp)]. We have just shown that to optimize 

transition radiation we must consider two quite different media. If pi > ,B{ then 
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(q-l) 2 1 and [(q-l)(z/&)] 2 1. S’ mce 74 >> 1, and all the terms multiplying the 

cosine function are smooth functions of u, this function will oscillate so much for 

small changes in u as to make the value of the whole integral zero. If ,&$ > & 

then (q - 1) could become very small. But then for sufficiently high velocities 

the product (7$8 - l)(z/ d(,) ) will become very large and our reasoning again 

holds. This means that for two quite different media and for particles of very high 

velocities we can neglect the contribution of the z-dependent term to the energy 

flux in the foreward direction. 

The remaining two terms in 12 integrate to give us the following final result 

for the energy flux in the foreward direction: 

where f(u) is the following dimensionless function: 

fW = 2 [ uKo(4 W4 - ; ( K&l - K&d ) ] . (3.4a) 

Since the terms in the curved brackets in eq. (3.4) are functions of w, we indicate 

the substitution for each in terms of u. 

The first remark we make about eq. (3.4) is that since at high frequencies the 

dielectric constant goes to unity, the high frequency behaviour of the spectrum is 

determined by the function f(u). This is a familiar function in physics. 

It occurs in the semiclassical treatment of bremsstrahlung.(26) We plot it in figure 

1 on a log-log scale so as to exhibit its high frequency behaviour. We see from 

this figure that even at u = 2.5 this function has still the value 0.01. Since this is 

multiplied by 7{,2 we see that even at this frequency its contribution to the spectral 

integral is still appreciable. Now for substances with densities of order unity(%) 

gives wP x 3 X 1016 see-‘. For 7 - 1000 this would give for the frequency 

w % 7.5 X 101’ set-‘. This shows then that the spectrum of transition radiation 

extends well into the x-ray region for ultra-relativistic velocities of the particle. 

This is a result which is well-established by experiment.(22) 
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Next, for the ultra-relativistic particles we are considering we can replace 7: 

and7Jby (El 7nc2) where E is the energy of the particle and nac2 is its rest 

energy. By taking this factor outside the integral sign, since it is a constant within 

the context of our assumptions, we show that the total energy radiated is propor- 

tional to the energy of the particle. This result was first proved independently by 

Garibian(28) and Barsukov(12). It is amply verified by experiment.(29) 

In the high frequency limit where we can take c + 1, we can evaluate eq. (3.4) 

to obtain an estimate for the total radiated energy. The result is as follows: 

I2 x 2~ w$~w~) . 

From eq. (3.4) we obtain for the total number of photons emitted in the 

foreward direction the following expression: 

.- where-g(u) = f(v)/v, 

g(u) = 2 [ Ko(4 G(u) - f ( K&4 - K&4 ) ] - P-6) 

In figure 1 we give a plot of this function which, as we can see, still extends into 

the x-ray region. 

From our estimate for 12 we obtain the value 27r(u for the number of x-ray 

photons produced. 

3.3 ENERGY FLUX IN THEBACKWARDDIRECTION 

We give the full expression for the Poynting vector in Appendix A. We will 

reproduce here only the z-component since we are mainly concerned with it: 
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co 

/ 
i.5 dt= dw w2 

0 cl(7:7;)2 

x {cos(~p:-~~ }- e($-Kf)e(j&-K;) (3.7) 

_ q’+l [E2--qfl][~2rl’--11 cos w--I)wz 
( > 2 [c2 + WI 62rl’ { V 011 * 

Since it is experimentally established(17) that transition radiation is emitted back- 
c- 

wards in region 1, the above expression must be negative. This would indeed be 

the case except for the presence of the z-dependent term in each of the first two 

terms. At z = 0 they cause each term to become positive. However, in this case 

.- we must take the third mixed term into account and it will compensate for the 

z-dependent terms in the first two terms leaving the whole result negative. 

This will be seen most readily for media close in their properties. 

Alternatively, for media of quite different properties, we can apply the argu- 

ment which we used with eq. (3.3) b a ove. For any finite z the z-dependent terms 

would oscillate so much as to cause the integrals in which they occur to vanish. 

This shows that for any finite z the above result is negative. Then by continuity 

it must be negative at z = 0 also. The above flux then has the correct sign. 

By a similar procedure to that applied to the foreward flux, we find for the 

total energy emitted backward the following expression: 

I2=;4~4 /mdu (~(+4 (~‘,r3”7:], = 7;pw 
0 P 

u 

(3.8) 

+ [$+I) (e2;c;;:1 )2 n’7:lw = 7BPw u f(4) * 
P 
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This result shows the same general spectral behaviour as the foreward one. 

Likewise it is seen to be proportional to the energy of the particle. Nevertheless 

they differ in two important respects. First, this result is smaller than that for 

the foreward case. A rough estimate would be to say that backward to foreward 

emission goes as (~2 - c~)~/cz. Furthermore, since 6 -+ 1 for high frequencies, the 

occurrence of the terms in the difference of the dielectric constants above sup- 

presses high frequencies. This would indicate that the spectrum for the backward 

radiation does not extend to high frequencies. These results agree with the findings 

of Frank(17) and of Ginzburg and Tsytovich(4). 

4. Other Applications 

4.1 THE CASE OF APLATE 

We consider a plate of thickness d and two infinite faces parallel to the 

zy-plane and with the lower face coinciding with this plane. Region 1 is the 

medium outside the plate and region 2 is that within the plate. 

c- The problem now is to satisfy the boundary conditions not only at z = 0 but 

also at z = d. By inspecting our solutions we see that they have oscillatory terms 

of the form eiwZIV, eivwZIV, and ei”“wZlu. Th e only way we can make them all 

match- at z = d is if q and q’ were each equal to unity. We must then investigate 

under what conditions we can have 

This can be the case if we have two similar media. But this is not interesting 

since then transition radiation will be weak. The other case is the much more 

interesting case of ultra-relativistic energies. We have seen that in this case the 

high frequency part of the spectra is enhanced. But at high velocities ~2 x rr m 

1, and the above equality will hold. Hence, for high velocities we can expect to 

satisfy the boundary conditions for the plate to a high degree of accuracy with 

the following fields. 

4.2 CASEY: t<O OR t> d/v 

This is the case when the particle is outside of the plate either incident or 

outgoing. The vector potentials are given as follows: 
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c- 

Ad’7 t, = d n=l !t? 2 cll(wn) K. (!f) e;wn(: - t, 

A2(‘, t, = d n=l zea E (P2bd Ko @J 

llz  
X [ 

gz 
Elq+E2 

2qq e 
iwn u-t ( > + 

clq-fz2 

2w e 

-iwn 7-t ( )I1  7 

where 

9  n  = 1, 2, 3, . . . . 

3.1 CASE 2: 0  < t < d/v 

This is the case when the particle is within the plate. The vector potentials 

have the following form: 

2e/3 O” 
A#, t) =- c  

2w1 w,p 

d  n=l cl+e2v’ 
Ko __ ( > 74v 

2ep c0 
A2(3 7 4 =J- n=l c P2Ko g ( > (4.3) 

iw, z-t ( 1  Xe V I 
+ 

q-c2q’ e-iwn z-t 
Cl + ret?’ ( )I . 

W ithin this approximation we can then give an explanation for the highly 

coherent interference observed in transition radiation at very high energies.(20) 

3.2 TRANSITION RADIATION IN A WAVE-GUIDE 

Barsukov( 12) has treated the case of transition radiation in a  cylindrical wave- 

guide. He assumes the cylinder to have a perfectly conduct ing wall and to be 

filled with two different dielectrics with boundary at the zy-plane. Assuming the 

radius of the cylinder to be a, the fields for this case will be obtained from the 

fields which we gave in section 2, via the substitution: 

-- 
Kg(z) + [Ko($$) - 3 +$] (4’4) ’ f 

71.2” --..a, 
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where 10 is the modified Bessel function of the first kind of order zero. With the 

fields which result from this transformation, transition radiation can be calculated 

by the procedure which we have followed above. 

3.3 THE CASE OF DISSIPATION 

In all our considerations so far we have neglected dissipation. But in all media 

dissipation exists to one degree or the other. In the general case then we must 

consider C(U) and p(w) as complex quantities satisfying the usual conditions: 

c(w) x*(-w) 

44 =P*(--w) ? 
(4.5) 

where the asterisk stands for complex conjugation. However, as we have shown 

elsewhere,(25) the fields now will still retain the same form as we have used so 

far. However, provision must now be made for the fact that the susceptibilities 

are complex quantities. In particular the domain of integration over the frequency 

will now be given through Re - K2(~) < l/p2. 
*- 

3.4 THECASEOF AMAGNETICMONOPOLE 

Dooher(5) has suggested the use of transition radiation in the search for monopoles. 

Our present results carry over readily to this case via the usual transformation. 
_ . Expressed in terms of the spectral functions for the fields, this transformation has 

the following form: 

(4.6) 

where et stands for the magnetic charge. The effect of this transformation on the 

energy flux is to multiply the spectral function by etE2/ep2 for foreward emission 

and by e’el/epr for backward emission. Thus the total foreward emitted energy 

for a monopole would be given by the following expression: 

] w = p7; wp v 
(4.7) 
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Because of the extra factor of (~2/~2) in the integrand we expect that the spectrum 

for monopoles would show variation from that for electrons at low frequencies. 

FOF very high frequencies there should not be much difference due to the fact that 

c2 ---+ 1. 

FOF dyons the radiation will be the sum of the contributions coming from 

each type of charge on it independent of the other. This is guaranteed by the 

transformation (4.6). 

In the standard fashion the fields of an electric (magnetic) dipole are obtained 

from those for an electric (magnetic) charge by operating on them with 

(l/e) 3.9 [(l/e’) 3 - a] where 9 (a) is the electric (magnetic) dipole. Consequently, 

the present method can be readily extended to treat transition radiation from 

dipoles. 

3.5 ~ERENKOV RADIATION AND TRANSITION RADIATION 

Transition radiation is a high velocity phenomenon. But at high enough ve- 

locities, cerenkov radiation will occur. we illustrate this in figure 2, where we 

a-~ give a sketch of the dielectric constant based on the one-oscillator model. The 

notation is clarified in Appendix B. We see that for p > PPnin there will always 

be cerenkov emission. FOF such velocities we must write the field of the particle 

_ in the-following form: _ - 

A(p, z, t) = 

(5.1) 

where Ht’ is the first Hankel function of order zero. The first term in the above 

expression is just the field which we have handled so far. It is responsible for 

transition radiation. The second term gives rise to cerenkov radiation. It does not 

enter into the field rearrangement process and so it cannot contribute to transition 

radiation. In either of the above two terms, 7’ is properly defined so as to be real. 

Furthermore, due to the different spectral composition of both fields, there can 

be no interference between cerenkov radiation and transition radiation. In figure ‘-..s, 
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2 we take a general value for ,L3 which gives rise to cerenkov radiation. Then 

we see that the cerenkov spectrum is restricted to the interval (WI, w2), whereas 

the transition spectrum covers the rest. In particular, it can extend to quite high 

frequencies. 

We now turn to the treatment of a particle moving from region 1 into region 2 
as in section 2 above. If the particle can emit cerenkov radiation in region 1, 

then for t < 0, only the first term in the field given by eq. (5.1) need satisfy 

the boundary conditions. The second term trails behind the particle and does not 

reach the boundary until the particle arrives there. What would be of interest to 

us is the behaviour of this term after the particle crosses the boundary. There are 

two cases to distinguish now depending on whether the particle could, OF could 

not, emit cerenkov radiation in region 2. We will now turn to the treatment of 

each of these two cases. 

3.6 CASE 1: & < 1 

The particle now cannot emit any Cerenkov radiation in region 2. However, 

a-~ the cerenkov signal emitted by the particle for t < 0 will now hit the boundary, 

where it will suffer reflection and refraction. This can be readily deduced from the 

potentials which now have the following spectral form: 

, fOF Z < 0 
Ab,.~, t, 4 = 

fOF Z > 0 , 

(5.2) 

where all the symbols have the same meaning as before. In particular, since 

/3: > 1 now, 7: is written as follows: 

Our main interest is in the refracted wave in region 2. This will have different 

forms depending on the sign of q2. From its definition, eq. (2.7), we have: 

q2= l-(p{Qp) . 

Since ,8{” > 1, the value of q2 could be positive, negative OF zero, depending on 

’ 2 the relative magnitudes of /3:” and p2 . In figure 3 we indicate the three ranges of 
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values of p{” and p2 r2 which correspond to these three possibilities for the values 

of $. These ranges all lie to the right of the line &” = 1 and below the line 

,f3i2 = 1. We will now turn to the discussion of the form of the refracted wave for 

these three possibilities. 

a) q2 > 0 In region 1, there will now be the original incident wave plus a reflected 

Cerenkov wave with apex at z = -vt. In region 2, the refracted wave will be 

represented by dispersed Cerenkov waves with vertices at Z(W) = &/q(w). These 

waves are polarized along 22 (w) and their wave-fronts propagate with velocity 

c;(w) along 22(w), where: 

72(w)-97: ib-7E - 
Pi 7: 

9 

(5.3) 

We give the corresponding vectors for the other two waves as well as the fields for 

all three waves in Appendix C, and we give a schematic representation of these 
c- 

waves in figure 4. 

FOF the refracted wave, the quantity of significance from the experimental point 

of view is the energy carried by the wave per unit length of the z-axis. To this 

- _ - end we use the fields given in Appendix C in order to calculate the time-integral 

of the Poynting flux for this wave. The result is as follows: 

co 

/ 
s2 (p, z, t, w) dt = 

0 

We give the corresponding result for the incident and the reflected waves in 

Appendix C. It will be seen from them that the conservation of energy is satisfied. 

In calculating the radiated energy density from eq. (5.4), we must be careful to 

use the same normalization in region 2 as in region 1. To this effect we recall that 

in the usual case of a particle emitting Cerenkov radiation, the energy radiated 

is that expended by the particle against the reaction force of the medium. By 

examining eq. (5.2) we see that the refracted wave can be construed as the sum 

of Cerenkov waves from charges e[Eg&(elq + 62)] moving with velocity v/(q(w). 

Now in time dt a particle moving with velocity v will have the energy dissipated by 

it spread over a distance dz = vdt. The above virtual charge will have it spread 
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over dz’ = (v/q)dt = dz/q. Hence, if we want to calculate the energy spread 

over dz we must use not s(w) but q(w) 3 (w), where ,!? refers to the integrand 

in eq. (5.4). With this, we have for the radiated energy density in region 2, the 

following expression: 

where, 

Ii 
uo = - 

iy ’ 

In the above, wp is the plasma frequency in region 1, and uu is the natural unit to 

use for the energy density in the present problem. Again, by comparing the above 
a-~ result with the COFFeSpOnding results for the incident and the reflected waves, 

which we give in Appendix C, we see that energy conservation is satisfied. 

To give an idea about the magnitude of this result we estimate it for the case 

_ of two purely dielectric media which are not too distinct from each other. We 

then consider the following choice for the relevant quantities: 

Pl = P2 = 1 

/3{” = 14-s 
(5.7) 

g2= l-6 

This choice corresponds to a point close to the upper left-hand corner in range 1 

in figure 3. To lowest nonvanishing OFdeF in powers of 6, eq. (5.5) acquires the 

following form: 

d&t uo -=czG / 1 d( (1-T) i+$) 7 
dz (5.8) 

K12 > -p 

Comparing this with eq. (A3.3) we see that it differs by terms of order b2 from the 

energy radiated in the form of Cerenkov radiation by a moving charge in region 1. 
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Hence, under the present assumptions, it should be quite feasible to detect the 

refracted wave in region 2. 

b) q2 = 0 By inspection of figure 4, we see that in the present case, the vertex 

of the refracted wave receeds to infinity and the conical wave front turns into a 

cylindrical one. However, either by calculating the time integral of the Poynting 

flux for this wave from its fields, OF by the use of eq. (5.5), we show that the wave 

carries no energy. FOF media represented by the straight segment in Fig. 3, the 

incident wave in region 1 will be totally reflected. This is reminiscent of the case 

of total reflection of light within the denser of two media in optics. 

c) q2 < 0 In this case the parameter q will be pure imaginary: q = $1. This 

affects the refracted wave in two ways: (1) this will now be a purely cylindrical 

wave spreading away from the z-axis, and (2) it will suffer damping along this 

axis. We obtain for the time-integral of the Poynting flux the following expression: 

co 

J 
i?, (p, z, i, w) dt = j+ ?- e 

2 “1’1k 

0 7rp 2 
dw ev2T 

1 
a-~ K12 > p 

In order to obtain the energy density from this, we cannot now make use of 

_ the argument which we used in case (a), above. However, since our result must 

vanish with vanishing q, we must again introduce a factor of Iql just as we did in 

that case. The result then is as follows: 

dU2 -=a?.40 
dz 

This gives the following result for the total energy which is transmitted from 

region 1 into region 2: 

u2 = e@WP) / 

Kf > t 

f-y 21;;;‘; 2) Pl(1 - $2) * 
El c2 

(5.11) 

P2 

Prom this result we see that the more the two media differ from each other, the 
less energy is transferred from region 1 into region 2. 

The result (5.10) will prove to be more difficult to measure than result (5.5). 

This is not only due to the presense of the damping factor, but also because of 
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the two factors of 1~1: one in the exponent and the other in the integrand. These 

two factors act in opposite senses. If we choose two media which are not too 

dissimilar, t,hen lql will be very small. This decreases the exponent which is a 

desirable result. However, it also decreases the value of the integrand. The other 

choice of two quite dissimilar media would have the opposite effect. The net result 
is that the integrand will always be multiplied by a small factor in comparison 

with that resulting from  eq. (5.5). 

We illustrate this with the case of two purely dielectric media which are not 

too dissimilar from  each other. This would mean that their susceptibilities would 

lie close to the upper left-hand corner in range 2 of figure 3. We can then make 

the following choice for the relevant parameters: 

s2 
p:2=2+T ’ 

where, 0 < 6 << 1. To lowest order in 6, eq. (5.10) becomes: 

(5.12) 

(5.13) 

This result is of order S  compared to the energy radiated by the incident particle 

in region 1. 

3.7 THE CAUSALITY CONDITION 

In deriving the fields to be used for the present case from  those which we give 

in Appendix C, we must take care not to violate the causality principle. The reason 

for this is that for 7 real and positive the fields satisfy causality automatically so 

long as we do not extend them  beyond the Cerenkov cone. But in the present 

case the wave fronts are cylinders which extend from  z = 0 to infinity. Hence, in 

deriving the fields for this case from  those given in Appendix C, we must multiply 

the spectral integrand by the step function @ (z - ci(w)t). This will guarantee that 

causality is properly taken care of. We have used these causal fields in deriving 

eq. (5.9). 
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3.8 CASE 2: pi > 1 

In this case the particle will be able to emit Cerenkov radiation in region 2 as 

well. FOF t < 0 there will only be a Cerenkov wave in region 1. After the particle 

crosses the boundary between the two regions, this wave will suffer reflection and 

refraction in the manner which we have discussed in the preceding case. As to the 

signal which the particle starts to radiate in region 2, this will travel as a normal 

Cerenkov wave characteristic of this region. It will be polarized along 2; and will 

propagate along 24, where these orthonormal vectors are given as follows: 

(5.14) 

Causality restricts this wave to lie entirely within the foreward cone defined by 5id 

at the origin. Since the energy travels in the foreward direction, the fields from 

-~-~ this wave which are refracted backwards at the boundary can transmit no energy 

into region 1 and so need not be considered by us. 

As to the refracted wave, its behaviour is similar to that which we discussed 

_ for the corresponding wave in case 1, above. The allowed ranges of ,8i2 and ,f3i2 
_ - 

are indicated in figure 5. They all lie to the right of the line /3{2 = 1 and above 

the line p2 ’ 2 = 1 In particular, the range of values which allows a nonattenuated . 

wave is quite extensive now. It splits into a domain with q2 > 1 and another with 

q2 < 1 as we show on the same figure. Thus the refracted wave and the signal 

from the particle each has its apex travelling at a different velocity from the other. 

FOF this case, then, we expect to see two Cerenkov signals which travel one behind 

the other. These will differ in the magnitude of their intensity as well as in their 

spectral distribution. In figure 6 we give a schematic representation of all four 

waves for the case when the refracted wave precedes the particle. As to the fields 

and the radiated energy density, they can all be deduced from the results which 

we have presented in case 1, above. 

There is no need for us to reproduce them here. 

4. Conclusions 
.w 

Our treatment of transition radiation based on the idea of field rearrangement 

suggested by Frank is confirmed by the comparisons which we have made with 
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both theoretical and experimental results. We have seen that our results agree 

with all findings for highly energetic particles. This prompts us to suggest that 

experimental efforts be undertaken to verify the spectral distributions which we 

obtain for the energy emitted in either the foreward OF the backward direction. 

We would also like to draw attention to the case of the refracted Cerenkov 

wave in the foreward medium. When the particle does not emit Cerenkov radiation 

there, this may be mistaken for part of transition radiation. The same may also 

happen with the reflected cerenkov wave in the backward medium. At any rate, 

we feel that an experimental effort needs to be made in order to verify our results 

for the refracted wave in the foreward medium. 

Finally, we point out that the treatment which we have presented above holds 
for media which show dispersion (and also dissipation) in both c and p. This 

should make it applicable to a wide range of media. 

2.- 
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APPENDIX A 

A.1 The Explicit Expressions for the Fields 

CASE 1: t < 0 

We express the potentials and the fields as spectral integrals over the shown 

domain of frequencies which we illustrate for the electric field in region 1: 

lp(p, z, t, w) = dw l$)(p, z, t, w) + C.C. . (Al) 
1 

K&J) < p 

With this notation the respective spectral functions for the fields have the following 

form: 

a-- 
-iw f+t 

e ( ‘I V +ihrD-h g e ( )[ iw 5-t ( ) E2 - Clrl 
v -sq+E19 e 

-iw ;+t 

( ‘I) 
9 

1 

E”)(p, z, t, w) = 4 22 2 
r(b) 7; (E2 + WI 

Pe 262112 
f$)(p,z,t,w) = gy-p -~ 

WP 
iw !!.f-t 

r(b) 7: E2 + Elrl 
Kl - 

( ) 7:fJ 
( 1. e V 

W) 

CASE 2: t > 0 

. . In this case the potentials and fields are still defined as in (Al) except that 

now the domain of integration over frequency is given by: 
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The spectral functions for the fields have the following form: 

Ep(p .% t w) = e -f- l 1 
7w2 7i2 2w2rl’ 

x ;Iak Ko( 
.- 

+ k2rl- 4 e 

-iw ti+t ( ‘I V 

+ $1 ri'7'Kl (w'+4e 
jw d!!-t 

( 1 
-iw fI5j-t 

v - k2t7’ - 4 e ( ‘II V , 

*- Ef)(p, 2, t, w) = e -+iix,(g) + ,,,:,,(3].ii(%--I) , 
‘@c)2 ‘27i 2 

.- BD)(p&w) =a pe F---&P, KI 
@) 72 

A.2 The Energy Flux 

We now form the difference fields from those given above as indicated in the 

text. Since we are integrating over time for t = 0 to 00, we must use the step 

function in order to convert this to an integral from -oo to 03. To this end we 

must also convert the integral over frequency to the limits -co to 00. We write 

the fields as follows: 

. 
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a-- 

From Et, Et, Hz, we define three functions F2, G2, LQ, respectively such that 

each satisfies the relation F;(w) = FQ(-w). Thus from 

- t’(K;-+) --&Ko(~) eiuz’v] 

we define: 

W ) 

W ith the above definitions the Poynting flux takes on the following form: 

“=/3~(~~(~~)~)? /“/” dwdw’[~G2-ir,.F’2]L2(wt)e-i(w+w’)t . 
-moo 

By use of the integral representation for the step function in time, we obtain 

the following result for the time integral: 

00 
J g dt = PC qpc)2 ( e ,‘/“/“dwdw’ [ z G2(4 - i-5 f'2(4 I Lzb~') 

0 -W-CO i(w + w' - it) 
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We integrate this in the complex w’-plane and then express the result in the 

components of the field to obtain: 

h?Zt-J1 El) H*+c.c.] . 

From this we obtain the final result 

- la dw +:-$) fl(@-$) 71$(c2+LL9) +1)w2 

0 

x K~(~)Kl(~)cos((n--:)~~)]] - 

FOF the case of the energy radiated in region 1 we follow the same procedure 

and we obtain the following result: 
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co 
-31 dw 

/ w2 
0 dr:r;, a-- 

7aKo(fp1(~)4~) 
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APPENDIX B 

B.l The Dielectric Constant 

We make use of the standard expression for the dielectric constant given by 
the single-oscillator model. We write this as follows: 

w 

where wo is the natural frequency of the oscillator, ~0 is the static dielectric con- 

stant and [ = (p/we), 2p being the coefficient of the dissipative force. The function 

which we plot in figure 2 is given by: 

= 1+ (60 - 1) 
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APPENDIX C 

Results for the cerenkov Waves in both Media 

The spectral functions for the asymptotic fields of the incident and the reflected 

waves, respectively, in region 1 are given as follows: 

=&i- 1w P’ 
61 r: J 

- ei[w(ff- t) -;] 

a- 

&(p,z, t, w) = --) pe Clt7 - c2 
-y/~CI’1+~2 pr ;J: e 

\i” jw(T- t)-;] 

(Cl) 

The two sets of orthonormal vectors occurring above are defined as follows: 

The respective time-integrals for the Poynting flux of these waves are given by the 

following expressions: 

co 

/ 

1 
& (p, z, t, w) dt = - 

e2 aiw 

0 
27rp (Bc)2 / 1 dw fh E1’Y: ’ 

K?<p 

00 
J 

1 
$(p,z,t,w) dt =- 

e2 

0 
27rp (8c)2 
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The interference terms between the incident and the reflected waves all vanish. 

The spectral functions for the asymptotic fields of the cerenkov wave refracted 
into region 2 have the following forms: 

32 (P, z, t, 4 = > 

where &, a2 are given by eq. (5.3). 

a- 
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c 

Figure Captions 

Figure 1. A plot of the dimensionless spectral functions f(v) and g(y). 

. 

Figure 3. The ranges of a{“, pi” corresponding to the three possible ranges of 
values of q2 for the case /3{2 > 1, ,Bi2 < 1. 

Figure 4. Schematic representation of the incident and the reflected cerenkov 

waves in region 1 and of the refracted cerenkov wave in region 2. 

Figure 5. The ranges of pi2, Pi2 corresponding to the three possible ranges of 

values of q2 for the case ,8i2 > 1, pi2 > 1. 

Figure 6. Schematic representation of the incident, the reflected and the refracted 

Cerenkov waves and of the cerenkov wave emitted by the particle in 

region 1. 
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