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ABSTRACT 

The quantum fluctuations about a uniform chromoelectric field confined to a cylin- 

“drical region are computed. The effective Lagrangian determined from this procedure 

yields the following interesting results: (1) The chromoelectrie flux contained in this 
region must be less than a calculable critical value to preclude the existence of un- 

-stable fluctuation modes which would render the calculation ill-defined. (2) At a flux 

below this critical value, the fluctuations tend to make it energetically favorable for 

the flux tube to collapse upon itself. (3) Making analogies between this chromoelectric 

flux tube model and physical hadronic strings, we estimate that the string of flux in 

a physical Q& hadronic system is well within the region of stability. However, if the 

quark charges are increased by a factor of roughly three, the string would become 

unstable by the above mechanism. This is given as an argument against the existence 

of certain exotic quark states. 
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1. Introduction 

The string picture of hadrons within the framework of quantum chromodynamics 

(QCD) consists of quarks connected by tubes of chromoelectric flux.l The simplest 

hadron in this picture is a meson made up of a quark-antiquark pair connected by a 

single tube of conserved chromoelectric flux. The dynamics which constrain the fields 

to form tubes rather than spreading out in the usual electric dipole pattern of classical 

electrodynamics are supplied by the vacuum fields of QCD,2 which exert an inward 

pressure on the flux tube. A stable radius for the tube is attained as a balance is 

reached between the outward pressure of the confined chromoelectric fields and the 

inward pressure of the vacum fields. To be more specific, consider a segment of flux 

tube as illustrated in Fig. 1. If a negative energy density, -B, is attributed to the 

. *vacuum as in standard bag models, 3 the classical radius of the tube is obtained by 

minimizing the energy e: 

. 6 = (;I g, 12)rR2L+(B)rrR2L . 

The first term is the classical energy of the flux fields (assumed uniform) and the 

second term is minus the energy of the displaced vacuum fields. The chromoelectric 

field strength, 1 E-, 1, is determined from the magnitude of the flux generated by the 

quark-antiquark pair. For a fixed flux, 40, 1 E, 1 = &/lrR2. Minimizing the energy 

of Eq. (1.1) gives a stable radius of 

R= (1.2) 

Thus, a stable configuration can be found for arbitrary chromoelectric flux in this 

classical picture. In this work, it will be shown how these naive classical expectations 

are changed when the quantum fluctuations about the uniform chromoelectric fields 
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contained in the flux tube are incorporated. The specific model investigated is in the 

configuration of Fig. 1 where the uniform flux field is in the abelianized form 

where Fpv corresponds to a constant chromoelectric field along the tube axis. The 

effective Lagrangian (and thus the energy density) for the region inside the tube will 

be computed to one loop in the quantum fluctuations. This calculation is similar to 

previous computations of the fluctuations about uniform fields in QCD,4 but the dif- 

ference here is that the fluctuations must also satisfy the boundary condition that they 

vanish beyond the interior of the tube. The determination of this effective Lagrangian 

yields the following interesting results: 

a- 1. The chromoelectric flux must be less than a calculable critical value, +c, to 

preclude the existence of unstable fluctuation modes which would render the 

calculation meaningless. 

2. At a flux below this critical value there is an interesting phenomenon. The 

quantum fluctuations tend to make it energetically favorable for the flux tube 

to collapse upon itself, eliminating the existence of a stable finite radius. 

3. Using the linear potential inferred from heavy quarkonium spectroscopy,5 esti- 

mates of the flux contained in a physical quark-antiquark string can be made. 

This flux strength is well within the stability region of this calculation, however 

if the quark charges were increased by a factor of - 3 our estimates would 

imply flux tube collapse. This may be an argument against the existence of 

some exotic multi-quark states. 

In Section 2 of this paper, we compute the unrenormalized effective Lagrangian for 

the region inside the flux tube. The expression obtained is renormalized and simplified 

in Section 3, and the implications for tube stability are given in Section 4. In Section 

.--.m 
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5, some physical estimates are made. Finally, Section 6 contains a discussion of the 

results and approximations made, as well as concluding remarks. 

2. Effective Lagrangian Inside the Flux Tube 

To compute the effective Lagrangian for the region inside the flux tube, the quan- 

tum gluon fluctuations about the uniform chromoelectric field in the tube interior must 

be calculated. For simplicity we will restrict ourselves to the gauge theory of SU(2), 

and we perform the analysis of the fluctuations in Euclidean space using the fact that 

the Euclidean functional integral is a legitimate representation of physical amplitudes 

defined in Minkowski space. 6 The explicit connection between the effective Lagrangian, 

Lgf, and the functional integral is 

. a- 

& = N / [DA] ezp(/ d4z LE) z N’ ezp(/ 611: @) , (2.1) 

I where N and N’ are normalization constants. The Lagrangian for the pure SU(2) 

theory is given by 

with 

Fa w = a,A; - 8” A; - gcabc A; A; . 

(2.2a) 

(2.2b) 

The configuration we will study is an abelianized uniform chromoelectric field inside 

the tube of Fig. 1, with spatial direction parallel to the tube axis. The form of the 

field is explicitly given by 

-a 
A/J 

=-- 4 E,, xy ba3 (2.3~) 

.-&.aa 
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for the region inside the tube. The constant matrix E,, has components 

EoII =E , all other E,, = 0 , (2.3b) 

where the index “II” denotes the spatial direction parallel to the tube axis, and E is 

the magnitude of the chromoelectric field. 

The functional integral will be analyzed in the region of the field configuration of 

Eq. (2.3), At. The fields will be parameterized as 

A;(z) = ;1-; (2) + b;(z) , (2.4 

and the Lagrangian can be expanded in powers of the fluctuations bi. With this pa- 

,rameterization for the fields, and introducing a background gauge fixing term7 with 

the associated Fadeev-Popov determinant Am, the Euclidean functional integral be- 

comes 

ZE =N [Db]Am exp 
/ (1 [ 

d4z -i I$ EQ,” + f bE( Spv(Do D)a)ac 

P-5) 
- (i5p &)a, - 2gcadc E:,)b; + ; b;(& &,)” b; + O(b”)]} , 

where “barred” terms depend only upon the “background” chromoelectric field, and 
- ac 

D, = pea, - gpb a;. Choosing the gauge parameter to be Q = 1, and rewriting 

the appropriate Fadeev-Popov term yields 

ZE = N/ [Db] ezp(/ d4x[-i Efv Eiv +a bt e; bE+en Det(-~gD,)+O(b3)]} 

(2.6~) 

with 

- ac 8 pv = &&7 Do)ac - 2g@ P%” . (2.6b) 

---.el 
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The one loop approximation will be used in computing the effective Lagrangian from 

Eq. (2.6). This corresponds to retaining only the terms quadratic in b, in the exponent. 

Note that in order for the one loop computation to make any sense 

/ 
d4z b;(r) 6;; b;(z) < 0 , (2.7) 

where the integral extends over the cylinder of Fig. 1. 

Formally, the Gaussian integration over the bt fields of Eq. (2.6) can be done, 

yielding for the effective Lagrangian defined in Eq. (2.1): 

The traces can be most easily evaluated by determining the eigenvalues of the operators 

- erV and - D, D, subject to the cylindrical boundary conditions, and summing. The 

eigenvalue equation to solve is 
I a- 

6;; b;=Xb; (2.9) 

with the constraint that bi( ) 2 -+ 0 at the surface of the cylinder. From the explicit form 

of Ai from Eq. (2.3), it follows that the eigenvalue equation for bi does not depend 

upon the chromoelectric field and decouples from the problem after renormalization 

(see Section 3). The eigenvalue equations for the eigenmodes in the color directions 

orthogonal to the 3-direction are 

v2 - g2E2(x$ + xi) 
4 7 igxa pa, 8, 

> 
T 2igEpv 

> 
b; = Xbz (2.10) 

where bg = bE&ibi. The equation is further diagonalized by considering the following 

linear combinations of Lorentz indices: Basil, = b,&ibi, and kI where “1” signifies 

the two spatial directions orthogonal to the tube axis. This yields 

g2E2(s; + ~a) v2- 4 + igx* E,, d, 
> 

El = x E1 (2.114 

(2.11b) 

‘--.W 



+ Complex conjugate equations exist for b, . These equations can be easily solved by the 

following procedure. Define the operators 

Q u,,=~,+~Ex, , al G --a, + 5 Ex, (2.12u) 
Y 

and form the linear combinations 

c+ +J+iq 

which satisfy the commutation relation 

Y 

[C, C+] = 2gE . 

The eigenvalue equations can be rewritten as 

y;-C+C-gE EI=X& 
1 

551 -C+C - gE T 2gE b&,, = Lb&.,, . 

(2.12b) 

(2.12c) 

(2.136) 

The commutation relation of Eq. (2.12~) quickly determines the eigenvalue spectrum 

of the c+c term to be 

+I = 2gEe ) e=o,1,2 ,... . (2.14) 

What remains to be computed is the contribution from the term El. Writing this 

two-dimensional D’Alembertian in cylindrical coordinates, and recalling the boundary 

conditions on the quantum fluctuations implied by the flux tube boundaries, yields 

vi-, 6(/h 4) = -Xf +b? 4) 9 @=R,4)=0 - (2.15) 



The eigenfunctions for these transverse dimensions are clearly proportional to Bessel 

functions of integer order, J*(pl~-), with the eigenvalue Xl fixed by the Bessel func- 

tion zeros, Jm(RAl) = 0.8 Thus, for the transverse dimensions, the eigenvalue spec- 

trum is 

Cmn XlSXmn=-jp- , 
m = 0, 1,2,. . . 
n = 1,2,3,. . . 

(2.16) 

where cmn is the value of the argument of the nth zero of Jm(z).’ The full eigenvalue 

spectrum is now straightforward: 

bf. 
2 

I' - 2gEt - gE 

bf 2 
O&-II 

: -2gEt+gE (2.17) 

bf 
2 

OFill : -2gEG3gE . 

Identical analysis goes through for the operator DOD, with the eigenvalue equation 

(D&7)ac q!f = A$” ) (2.184 

yielding the spectrum 

t+l+ : A=- F 2-2gEe-gE 
( > 

. (2.18b) 

Now, knowledge of the normal mode spectrum allows the evaluation of L gJ from 

Eq. (2.8) using the identity 

ha=- 
J 

00 ds - e-3 . 
0 s 

Ignoring constant terms that do not depend upon E, 

(2.19) 

Le/l = 
E 

-a qv qv + c c 1," ;{exp[+gEe- SE + $)] 
m,n,e 

(2.20) 
2 

2gEe + 3gE + 9 
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where c is determined from the eigenmode normalization when taking the trace, and 

is easily shown to be c = (gE/2n2R2). Using the simple identity 

5 1 XL 
=& ’ 

for 2 < 1 
e=o 

LE eff becomes 

00 ds cosh(2sgE) - 
o 8 sinh(sgE) exp 

(2.21) 

(2.22) 

This expression appears divergent for s -+ 0, but this is the normal ultraviolet sin- 

gularity removed by standard renormalization as will be shown in the next section. 

However, there potentially exists a serious infra-red divergence at .Y -+ 00 in Eq. (2.22) 

for certain values of E and R. More specifically, for large s, the integrand of Eq. (2.22) 
a- 

becomes 

(integrand) + exp [-& - gE)] . (2.23~) 

This means the integral is divergent [corresponding to unstable modes with eigenvalues 

which violate Eq. (2.7)] un ess the chromoelectric flux satisfies the condition 1 

(2.23b) 

where 4 z g(rR2)E. Condition (2.23b) is just the point made in the introduction that 

the flux must be less than a critical value for the fluctuation calculation to be well 

defined. Here we see that the critical flux is given by 

4 < tic = r& , (2.23~) 

and 4 must always satisfy this condition. 
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3. Renormalization and Simplifkation 

The expression for L, eff, Eq. (2.22) contains the normal ultraviolet (8 -+ 0) sin- 

gularities encountered in one loop computations. It can be renormalized in the usual 

way, and we choose the following physical renormalization conditions for the quantum 

corrections, L (11, 

L(l) IEsO = 0 (3.14 - 

L(l) IRcO = 0 . (3.lb) 

The condition (3.la) merely corresponds to demanding that the energy density in the 

absence of the chromoelectric field is zero. Condition (3.lb) states that as the volume 

“of the flux tube vanishes, so does the contribution to the energy density from the 

quantum fluctuations. In Appendix A we show that these renormalization conditions 

are exactly equivalent to the usual Coleman-Weinberg conditions,g and thus have a 

field theoretic basis. 

Imposing the renormalization conditions on the effective Lagrangian of Eq. (2.22) 

yields the finite expression 

L E2 gE =- 
2+5Z@ m,n c 1,” f (2sinh(sgE) + e.$8gE) - $) exP(- +) 

2sinh(sgE) + sinh;sgE) - $ )exp(-$) 

(3.2) 
with the implicit limit R -+ 0. The integrals over s can be done quite easily. First 

note that although the entire integrand is finite as s + 0, each of the individual terms 

is not. This can be remedied by multiplying the integrands by se, integrating each 

-- term individually, then taking the finite r-independent result from the limit 6 + 0. 
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The result for L after the 6 --+ 0 and R + 0 limits islo 

+ 2en r(i (I+ A,.)) + Am, - en(z*)} - $!$& C f 
m,n mn 

where Xm, s 2 cmn/gER2. Noting that the entire calculation is restricted to gER2 < 

C& (or X mn > 1) from Eq. (2.23c), we can simplify our expression by using a convenient 

asymptotic expansion for I+(z) :l” 

r(z) = z’--B eBz 1 
1+-+1,- 

122 288% 
%>l. (34 

The expression for L can then be rewritten as 

L=-$+& C {e,(:~:+_:)+x,,e,(l+~)-l-~ 
m,n mn mn 

P-5) a- 
1 1 

1+6(1+X,n)‘72(1+Xmn)2-“’ * 
In this form, it is easily seen that the ultraviolet singularities have been removed by 

--the renormalization conditions of Eq. (3.1). It is explicitly shown in Appendix B that 

the sum over m and n has been rendered finite. 

Equation (3.5) is the exact expression for the one loop effective Lagrangian of a 

cylinder of radius R containing a uniform chromoelectric field of strength E. In Section 

5, this expression will be used to investigate the dynamical properties of a flux tube. 

First it is necessary to change to more physical variables. The effective Lagrangian 

above is written as a function of E and R. However, the relevant physical variables 

are the (conserved) flux generated by the (conserved) sources, 4 = gE(lm2), and the 

tube radius, R. Written in terms of these variables, Eq. (3.5) becomes 

+ 2en 
1 1 

’ + 6( 1 + Xmn) •t 72( 1 + Xrnn)’ - *. * 

--.:* 
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where Xm, = m&,/q5. In th’ f 1s orm, the dynamical implications are more easily 

accessible. 

4. Flux Xhbe Stability 

The expression for the one loop effective Lagrangian gives the energy density of the 

flux tube configuration via the simple Euclidean space relation, 6 = - L. If in addition 

a negative energy density, -B, is attributed to the vacuum as in the introduction, the 

total energy per unit length of the flux tube configuration takes the form 

6 ‘2 {l-ad C .fmn(4)}+B~R2 =2ag2R2 m,* 
(4.la) 

with 
a- 

fmn(4) =%{en(~~~+:>+x,ne,(l+~)-i-~ 

(4.lb) 
1 1 

1+6(1+Xmn)‘72(1+Xm~)2-“’ . 

The first term in Eq. (4.la) corresponds to the self-energy of the uniform chromoelec- 

tric field. It contains the classical term plus the contribution proportional to 0, due 

to the quantum fluctuations. The last term in Eq. (4.18) corresponds to minus the 

energy of the displaced vacuum fields. If the quantum fluctuations are ignored, for a 

given flux we have a simple energy minimization problem where the outward pressure 

of the classical chromoelectric fields is balanced by the inward pressure of the vacuum 

fields, giving a finite stable radius. However, we will now investigate how this simple 

picture changes when the quantum fluctuations are included. 

The contribution from the quantum fluctuations is proportional to the sum over m 

and n of ,fmn(d). W e recall from Appendix B that the series is rapidly convergent, and 

-m thus can perhaps be approximated by the first one or two terms. This is verified in 
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Fig. 2 where fol, fll, f21 are plotted over the allowable (calculable) range of 4 [recall 

Eq. (2.23c)]. The full sum is well approximated by the first term, fur, to within 10% 

over the entire range of 4, and even better for the interesting region of 4 -+ nc&. The 

important characteristics of f&(4) to note are the following: (i) ful(d) is a positive 

quantity over the entire range of 4, (ii) f&(4) monotonically increases with 4, (iii) 

ful($) increases like a logarithmic singularity as 6 approaches the critical value, 4 = 

The physical implications of the quantum fluctuations as embodied in Eq. (4.la) 

can now be understood. Characteristic (i) points to the fact that the quantum fluc- 

tuations tend to decrease the coefficient of the classical self-energy term. Physically, 

this corresponds to a decrease of the classical outward pressure of the uniform chro- 

*moelectric field. Characteristic (ii) implies that this decrease in the outward pressure 

becomes more pronounced for stronger chromoelectric flux fields. Finally, character- 

istic (iii) states that for a chromoelectric flux with magnitude sufficiently close to the 

r critical value of 7rc&, the coefficient of the flux self-energy term flips sign. The naive 

interpretation of this phenomenon is that the outward pressure which was necessary 

to sustain a finite radius, becomes an inward pressure forcing the flux tube to collapse 

upon itself for sufficiently strong chromoelectric flux fields. This interpretation will be 

discussed more in Section 6. 

5. Physical Estimates 

In the last section it was shown that if the magnitude of the chromoelectric flux 

contained in a cylindrical region comes sufficiently close to a critical value, the flux 

tube will collapse due to the effects of its quantum fluctuations. In this section, it 

will be assumed that ordinary heavy quark-antiquark (Q&) states can be described as 

flux tubes (see Fig. 3), and the tube parameters estimated from relevant data. These 
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tube parameters will then be employed in the formalism of the previous sections, and 

interpreted where possible. 

The linear potential determined from heavy quarkonium spectroscopy has the 

form5 

V(r) = tcr , (54 

where K is determined to be roughly .15 GeV2. If it is assumed that the linear potential 

is generated by a tube of conserved chromoelectric flux between the QQ pair, the 

potential would have the form 

V(r) = (T) (7ra2)r , (5.2) 

--where (E2/2) is the energy density of the physical chromoelectric flux field, (~a~) is 

the tube cross-sectional area, and r is the tube length. Comparison of Eq. (5.1) and 

Eq. (5.2) yields 

2K 112 E= &I ( 1 (5.3) 

for the chromoelectric field strength in a physical flux tube (meson). With this relation, 

to completely specify all the parameters in a meson flux tube, the tube radius must 

be estimated. For this we use the typical hadronic scale of .5 fermi. This yields the 

parameters for a physical meson flux tube 

E = .12GeV2 , $J = 6.46 . (5.4 

The magnitude of fur can be determined from Fig. 2 for this value of $ (4 = .367x&). 

It is interesting to note that fol at this value is - .02, which implies that the one 

loop quantum fluctuations change the outward pressure of this physical flux tube by 

-- a term - .02a, compared to the leading order of one. It appears in this crude model 
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of meson flux tubes that the quantum fluctuations are very small for the physically 

implied parameters. 

Another interesting feature of this analysis is that although the quantum correc- 

tions to the physical Q & flux tube are extremely small, if the flux (quark charge) were 

increased by a factor of less than 3, the critical flux strength would be approached, 

giving extremely large destabilizing quantum corrections. This is the origin of the 

argument that perhaps some exotic quark states could be ruled out in this picture. 

More specifically, if instead of a Q& state, the analysis was performed for a (3&)(3$) 

state where the charges are additive, the conserved flux would be increased toward 

the C$ - 1 (7~;~) region. In this situation, the quantum fluctuations as given by fol 

become large, and the flux tube would collapse as described in the last section. 

.?- It is important to note that these physical estimates were made for the gauge 

group SU(2) rather than the physical group W(3). However, this has no effect on the 

qualitative conclusions, and very little effect on the numerical results. This can be 

‘easily seen by expanding the degrees of freedom in Eq. (2.10) to those of SU(3). This 

yields additional terms from fluctuations outside the SU(2) subgroup which couple 

more weakly to the chromoelectric field due to the magnitudes of the SU(3) structure 

constants. In Fig. 4 we plot the magnitude of these corrections to f&(4) that come 

from expanding the gauge group to SU(3). Th e corrections are small over the entire 

allowable region of 4. 

6. Summary and Conclusions 

In this work, the one loop effective Lagrangian for a tube of uniform chromoelectric 

flux has been analyzed. It was first noted that the calculation could only be performed 

for a flux magnitude, 4, less than a critical value due to the existence of ill-defined 

-- unstable modes. However, within this well-behaved region there exist some interesting 
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implications. We found that for small 4 the quantum fluctuation corrections are 

small, but increase rapidly and become very large as the critical flux magnitude is 

approached. The physical manifestation of these large fluctuations is that the classical 

outward pressure of a confined flux of chromoelectric field strength changes sign for 

sufficiently large flux field strength, causing the tube to tend to collapse on itself. It is 

then shown that when this model is applied to physical Q& meson states, the meson 

states are well within the region where the quantum fluctuations are small. However, 

if the physical meson states had their color charge increased by a factor of - 3, the 

flux tube states would tend to collapse on themselves via the above mechanism. This 

is used as an argument against the existence of certain exotic multiquark states. 

It must be remembered that there are two major caveats in the above picture: (1) 

,The restriction to one loop in the quantum fluctuations is not justified in the region 

4 -+ tic where the fluctuations are becoming extremely large. The only rigorous state- 

ment that can be made is that as the tube flux becomes larger, the outward pressure 

_ -:is very rapidly decreasing (going against one’s classical intuition). However, the one 

loop approximation is perhaps not adequate to prove that the sign of the pressure 

changes. (2) The computation is precise for a confined tube of uniform abelianized 

chromoelectric flux, but this is at best a crude model of physical mesons. The bound- 

ary conditions imposed are similar to those of a rigid bag model, and no attempt is 

made to incorporate boundary fluctuations. 

Even with these reservations, the qualitative behavior of this idealized cylinder of 

chromoelectric flux may lend some insight into the physics of hadronic strings. 
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Appendix A 

Here it will be shown that the renormalization conditions used in Section 3, Eq. 

(3.1) are equivalent to the usual Coleman-Weinberg renormalization conditions,g and 

thus have a field theoretic interpretation. As a first step, we recall that renormalization 

is relatively simple in background gauge. 7 In these gauges the gluon wave function 

and vertex function renormalizations are equal and cancelling, leading to a simple 

over-all renormalization of the action. The counterterm has the universal form of 

ZS~~~i,,l, with 2 being independent of the choice of gauge function. As a result, the 

renormalization conditions can be expressed by means of the function L only. Indeed, 

the renormalization conditions of Coleman and Weinberg are just 

Lly=o=o (A.la) 

&- - aL = 
33 7=/s/2 

-1 (A.16) 

where 3= ’ Fa Fa - a pv W’ and 3 = E2/2 for this calculation. Condition (A.la) merely 

._ specifies the zero of the energy density, and condition (A.lb) is the usual coupling 

constant renormalization. 

The conditions of Eq. (A.l) when applied to the unrenormalized Lagrangian L, 

yield the renormalized expression L: 

L = L - f. IE=O -E2[&]E2Bp2 - $ - - (A.24 

Application of our renormalization conditions, Eq. (3.1), yields for the renormalized 

Lagrangian 

L=L-&O-&+0-$ . (A.2b) 

Thus, the problem of showing the equivalence of the two sets of renormalization condi- 

tions has been reduced to showing the equivalence of the counterterms ~?!$~(aL/aE~]~2,,2 

-M and [f.]~+. 
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From the unrenormalized Lagrangian of Eq. (2.22) we find 

[L&~-J = lim R+O & C 1,” f (2sinh(sgE) + sinh;sgb) - &) 
m,n 

(A.31 

X exp(-*) . 

In the limit R -+ 0, the exponential factor strongly damps the integrand for finite s. 

Thus, expanding the rest of the integrand about s = 0, integrating, and taking the 

R --+ 0 limit yields 

From the unrenormalized Lagrangian of Eq. (2.22) we also find 

e”, C 1 mda(l+~)(2sinh(sg~)+sinh;sg)r)-~) 
R /J m,n 0 8 

X exp(-*) . 

In the limit p + 0, Eq. (A.5) reduces to 

A comparison of Eq. (A.4) and Eq. (A.6) h s ows that our physical renormalization con- 

ditions, Eq. (3.1) are equivalent to the Coleman-Weinberg renormalization conditions 

in the limit of the arbitrary renormalization scale going to zero. 
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Appendix B 

Here it will be verified that the sum over m and 92 for the effective Lagrangian of 

Eq. (3.5) has been made convergent by the renormalization prescription of Eq. (3.1). 

The expression for L is 

L E2 =- T+~& ,C, {en(:~~+:>+x,nen(l+~)-l 
, 

+2en I + 
1 

6(1+hmn)+“’ 

where Xmn = 2 cmn/gER2. We begin by investigating the asymptotic behavior of cmn, 

the Bessel function zeros. The mth order Bessel function has the asymptotic behavior8 

(B.1) 
1 

c- x m,n mn 

c- 

This means the large order zeros occur for 

X G Cmn =yfns+; . VW 

For large m and n, cmn and thus X mn in Eq. (B.l) become large. Expanding Eq. (B.1) 

asymptotically in (I/X,,) yields 

L E2 127gE =-- 
2+ 360+R2 

The leading order term in the sum has the form 

For m and n large, we can use Eq. (B.3) to rewrite the sum as 

c 
1 

6 ’ m,n y+na+~ 

VW 

(B-6) 

-- which is a well behaved, rapidly convergent sum. 
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Figure Captions 

1. Segment of chromoelectric flux tube of length L and radius R. The negative 

energy density of ihe vacuum is denoted by -B. 

2. The terms fmn($), where 4 is in units of RC&. 

3. Chromoelectric flux tube generated by a quark-antiquark pair. 

4. The upper curve is ful computed for SU(2) as before. The lower curve is the 

contribution to fur from the additional degrees of freedom when the gauge 

group is expanded to SU(3). 
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