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ABSTRACT 

We point out that neither a softly broken Peccei-Quinn symmetry nor a softly 

broken supersymmetry per se suffices to insure the finiteness of 6~~0 renormalization. 

This is due to a logarithmic divergence that in general occurs in the higher loop 

corrections to the gluino mass. 
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1. THE PROBLEM 

The “Strong CP Problem” is a theorist’s problem. Nevertheless it is important to 

consider this problem seriously; its solution could have powerful constraints on model 

building. Briefly stated, to account for the non-trivial topological structure of the 

QCD ground state one uses an effective Lagrangian [l] 

(1.1) 

The second term in eq. (l.l), which violates P and T invariance, is expected to 

contribute to the electric dipole moment of the neutron. Prom the experimental upper 

bound on that quantity one infers [Z] 

&zp s o(1o-Q) (14 a- 
which is a very small number. A priori there is no reason why 0 should be so small - 

this is the first part of the strong CP problem. 

In principle one could just choose 6 = 0, but then one has to raise the question 

whether such a choice is stable under quantum corrections [3]. This will however not 

be the case in general because of the necessary presence of CP violation in the weak 

interactions. A fermion mass matrix which can be made real and diagonal at the 

classical level will not remain so under renormalization due to quantum corrections; 

a rediagonalization will become necessary. With the unitary transformations UL and 

UR diagonalizing the mass matrix M 

MDiag = Ui M UL (1.3) 

one finds that the physically relevant parameters is 8 expressed as follows [3] 

B=e+argdetU$ UL (1.4 
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When the dynamics contain other sources of CP violation besides the F. p term, 

as it is the case in the standard Kobayashi-Maskawa ansatz, then the second term 

in eq. (1.4) will not vanish. CP violation residing in “hard”, i.e. dimension d = 4 

operators will lead to infinite mass renormalization at some order. Therefore the 

choice 0 = 0 does not imply that 8 vanishes; in general 3 can be infinite! Of course 

8 can be renormalized to zero in such a case; however this would require a large re- 

dialing of parameters at each order of perturbation theory and is therefore considered 

to be “unnatural.” This constitutes the second part of the strong CP problem: ideally 

quantum corrections should be allowed to shift 8 by only tiny amounts at most. 

2. PARTIAL SOLUTIONS WITHIN SUPERSYMMETRIC MODELS 

a- 
2.1 PECCEI-QUINN TYPE SOLUTIONS 

Supersymmetry (SUSY) can, if not solve, at least alleviate the problem. First of all, 

SUSY offers a natural habitat for Peccei-Quinn type symmetries [4,5]. For example 

consider a minimal supersymmetric SU(2) X U( 1) model which contains two W(2) 

doublets and one singlet Higgs field [6]. In the limit when certain mass parameters 

vanish it exhibits a R-symmetry [6,7] defined by its transformation on the chiral Higgs 

superfields: 

4(2,6) 2 e-2ia/3qb( 2, eiaO) (24 

The corresponding R-current contains a color anomaly; thus R-symmetry acts as 

a Peccei-Quinn symmetry and allows 8 to change by an arbitrary amount: thus $ can 

always be rotated to zero. R-invariance, like SUSY, has to be broken. If it is broken 

spontaneously at a very high energy scale, a superlight and almost invisible axion [8] 



will exist in the spectrum of the theory as the price to be paid for solving the strong 

CP problem. 

2.2 CAVEATS 

It has been suggested [Q] that if SUSY and thus R-invariance are broken by opera- 

tors with dimension d < 4 then 8 stays finite to all orders of perturbation theory and 

may possibly be very small due to the “softness” of the breaking. This argument by 

itself is fallacious as can be seen from the connection between 8 and chiral invariance 

due to a massless quark. Consider a simple quark model where the quark masses occur 

as explicit mass terms (rather than gaining mass through the Higgs mechanism). Now, 

I ,B is defined by the structure of the ground state. However, if one of the quarks, say 

the up quark, were massless, then there would be an extra chiral symmetry in the 

problem so that one could rotate 19 via the anomaly to any arbitrary value, even zero, 

-without-changing the physical content of the theory. However the up quark can obtain 

its mass by a d = 3 (i.e. “soft”) operator in this simplified model. n&CD is then a 

physical parameter and it appears as the coefficient of the d = 4, T-violating operator 

F/w - F/w. Whenever CP or T-invariance is broken by some other d = 4 operator 

(as it is the case in the weak sector of the Kobaysski-Msskawa model [lo]) 3 will in 

general be infinitely renormalized at some order (31. The same thing happens when 

R-invariance or a Peccei-Quinn symmetry is broken “softly”. At the end of sec. 2.3, 

we will give an explicit example of this point. 

An independent argument [ll] notes that 8 renormalization is driven by fermion 

mass renormalization; it then invokes the famous non-renormalization theorems of 

SUSY [12] to conclude that 8 ren < 00. This could solve the second part of the strong 
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CP problem (although not the first one). The argument is certainly correct for unbro- 

ken SUSY (where 60 = 0) and for a spontaneously broken SUSY. In the case of SUSY 

that is broken explicitely by operators of dimension d < 4 a more detailed analysis is 

required. As shown by Girardello and Grisaru [13], certain SUSY breaking operators 

of dimension d = 3 can introduce new quadratic divergences into the unrenormalized 

theory; this happens when one inserts an explicit mass term for the fermionic compo- 

nent of a chiral superfield (such as a quark mass term). Other d = 3 operators such 

as mass terms for the gauginos, or d = 2 operators such as mass terms for the scalar 

components of chiral superfields will still lead to new logarithmic divergences (these 

operators are called “soft supersymmetry breaking terms” in ref. (131). Assuming that 

CP violation resides in d = 4 operators, the imaginary part of fermionic mass terms 

,and thus 68 re,, could in general exhibit such logarithmic divergences. In the next sec- 

tion, we illustrate some ways by which divergent fermion mass terms could arise and 

discuss whether an infinite SB,,, would occur. 

The results of this section suggest that a logarithmically divergent 0 (coefficient of 

a dimension-4 operator) could result from the addition of a soft symmetry-breaking 

d < 4 operator. At first, this seems like a violation of Symanzik’s Theorem [14] (which 

would claim that no new divergences could be introduced with dimension greater than 

that of the symmetry breaking term). The theorem is evaded in this case for a subtle 

reason. The symmetry limit in question does not require 8 = 0, but requires that the 

physics be independent of 8. In fact, $ could be infinite, but in the symmetry limit, 

an “infinite” rotation to B = 0 does not effect the physics. Thus, an infinite 8 in the 

presence of the soft symmetry-breaking term is not a m divergence and Symanzik’s 

Theorem does not apply. 



2.3 INFINITERENORMALIZATIONOFFERMION MASSES DUETOSOFT SUSY BREAKING 

In a theory with exact global SUSY, the fermion masses which appear at tree 

level are unrenormalized to all orders in perturbation theory. This is a consequence 

of the non-renormalization theorem of SUSY [12] (which states that F-terms do not 

get renormalized). Logarithmically divergent renormalization of fermion mass terms 

can be introduced by soft SUSY breaking terms. We present three such examples and 

comment on whether these can result in an infinite renormalization of 8. 

First, let us introduce an explicit mass term for the scalar fields which breaks 

SUSY via d = 2 operators: 

L 12 2 so/t = 2 -P (Al +4 P-2) 

I There A = (Al + iA2)/ fi is the spin zero component field of a chiral multiplet 4. 

Here we use the usual notation for chiral superfields [15] 

4(x, 6) = A(z) + t/i0 $(z) + 02F(z) (2-3) 

where F is a complex auxiliary field. Equation (2.2) can be rewritten as follows [13]: 

L so/t = / d%J&% 

2 2 -2. where U = p 6 8 IS a dimension zero spurion superfield; 0 and 8 are Grassmann 

variables not to be confused with 6~~0. Using this spurion formalism one sees that 

this SUSY breaking is represented by a D-term and thus the mass term p is infinitely 

renormalized. Effectively, what happens is that logarithmically divergent terms will 

be generated by loop corrections. 

Relevant for our discussion here is the fact that eq. (2.4) also generates: 

/ 
d4 eu(D2e+D%+=p2F . (2.5) 

6 ‘-&;a, 



The implication is that the addition of eq. (2.2) to a SUSY theory leads to a generation 

of a term linear in the auxiliary field F. Power counting indicates that the coefficient 

of this term will be logarithmically divergent. 

The term linear in the auxiliary field F can be transformed away by redefining A: 

A(z) + A(z)+c P-6) 

where c is a suitably chosen constant. This shift in the field A leads however to a 

shift in mass which is common to all physical components of the chiral superfield 4, 

including the fermions. Since the coefficient of the linear F-term will in general be 

logarithmically divergent, so will the constant c and thus also mass renormalization 

for the component fermion. However F and therefore 4 have to be charge neutral (i.e., 
a- 

singlets under the gauge group) since otherwise a linear F-term could not appear in 

the Lagrangian. In particular, 4 does not carry any color quantum numbers; therefore 

no infinite 2 renormalization can occur this way. 

Once again, we appear to have a violation of Symanzik’s Theorem. In this case, 

we have added a soft symmetry breaking dimension-2 term and have generated a new 

divergence in a dimension-3 fermion mass term. Actually, what has happened is that 

the introduction of the term in eq. (2.2) has led to the generation of an infinity in a 

dimension-l term linear in A [see eq. (2.6)] which is allowed by Symanzik’s Theorem. 

That is, the A-field has acquired an infinite vacuum expectation value. Because of the 

existence of A 4 + terms in the theory, when the shift in eq. (2.6) is made, a divergent 

fermion mass term results. However, after introducing the symmetry-breaking it is 

sufficient to renormalize only the dimension-l and -2 terms to render the theory finite. 
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Second, an explicit mass term can be given to the gluino, v:hich is the (Majorana) 

spinor component of a vector superfield: 

LL( =p x x (2.7) 

The mass ~1 gets logarithmically renormalized, in general both in its real and its imagi- 

nary parts. It does not affect the quark mass term directly and therefore, at first sight, 

might appear to be irrelevant for the neutron electric dipole moment. However gluinos 

appear in t,he color anomaly of the R-current; massless gluinos therefore allow ?J to be 

rotated to zero. On the other hand, when gluinos are massive, the 8 dependence cannot 

be rotated away anymore and 8 is a physical parameter. A logarithmically divergent 

imaginary part of ~1 can be transformed into a logarithmically divergent F. F term 

I “via the color anomaly of the R current and such a Fe P term (before renormalization) 

will contribute a divergent amount to the electric dipole moment of the neutron. 

Third, it has also been observed that a logarithmically divergent gluino mass is 

generated in certain supergravity theories [16]. Such theories appear at low energies as 

globally supersymmetric theories accompanied by various soft-SUSY-breaking terms 

[17]. Among the soft-SUSY-breaking terms generated is a three-scalar interaction H ij ij 

(involving one Higgs scalar and two scalar quarks). This interaction term also breaks 

the R-invariance of eq. (2.1). Since the R-invariance protects the gluinos from gaining 

a mass, the effect of the Hi g vertex is the generation of a finite gluino mass at one loop. 

In fact, at two loops, the diagram of fig. 1 generates a logarithmically divergent gluino 

mass. The conclusion is then the same as above, namely the 8 parameter contains a 

logarithmically divergent piece which must be renormalized away. Note that this is 

an explicit example where a softly-broken R-invariance fails to prevent 66 from being 

infinite. 
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3. CONCLUSIONS 

Softly broken SUSY, being more flexible that spontaneously broken SUSY, can 

conveniently be employed to construct models for particle physics [18]. The price to 

be paid for such convenience lies in the ad hoc nature of the symmetry breaking. 

Here we have concentrated on a more specific issue, namely the strong CP problem. 

Despite some claims in the literature, we have found that softly broken SUSY does not 

yield a natural solution of the strong CP problem: in general g will be subjected to 

infinite renormalizations. In a more ambitious approach, soft-SUSY breaking terms in 

the low energy theory can be a result of a spontaneously broken supergravity theory 

coupled to matter. In these theories, one can argue that these infinities should be 

cut off at the Planck scale (Mp); however the contributions from the finite one loop 

-term [IQ] and from the two loop term cut off at Mp tend to be too large by orders 

of magnitude than the experimental upper limit 6Jezp & lo-“. Even in a minimal 

version where certain mixing angles are put to zero as much as possible one still finds 

a - lo-’ (201. In th e calculations of ref. [IQ], it was shown that the computed value 

of 8 could be made sufficiently small if the masses of the SUSY partners of the known 

states were much heavier than 1 TeV. However, in this case, it would be very difficult 

to use supersymmetry to explain why rnw 6: Mp (i.e., the hierarchy problem) - the 

very reason why supersymmetry has been so intensely studied in recent years [18]. We 

conclude that in models of softly-broken SUSY, it is difficult to understand why i) is 

smaller than its experimental upper limit. 

Therefore we see three reasonable options to address the strong CP problem in the 

context of SUSY theories: 
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(a) Ignore it since it can be renormalized away. 

(b) Arrange a spontaneously broken global SUSY model in such a way that 8 

is calculable and sufficiently small ill]. 

(c) Insist on having an R-invariance broken spontaneously at some large mass 

scale which would lead to the existence of superlight axions. 
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FIGURE CAPTION 

1. Logarithmically divergent contribution to the gluino mass which occurs in cer- 

tain low energy supergravity theories (see ref 16) . 

a- 

13 



Fig. 1 


