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ADSTRACT 

We describe field theories for which the action is completely independent 

of the metric and connection of the space-time manifold. The metric in our 

approach is no more a fundamental field than a hadron field is a fundamental 

field in &CD. The fundamental fields in the action are O(5) gauge fields and 

combinations of these fields are interpreted as the metric and connection so 

that conventional general relativity is obtained. Remarkably, all renormalizable 

matter actions for scalar, spinor and Yang-Mills gauge fields can be made metric 

independent. Significantly we find a new elementary symmetry of the action 

which implies the cosmological constant must vanish. Finally, we discuss the 

quantum theory resulting from these ideas. 



1. Introduction 

Suppose we consider a four dimensional space-time manifold with a metric 

gPV and connection I’&. On this geometric manifold we define fields with total 

action S, a polynomial in these fields. Our fundamental assumption is that S is 

independent of the metric and the connection. < - - 

- One-the face of it this assumption seems physically absurd. After all, the 

total stress-energy tensor, BPV - a fundamental object in any field theory - is 

defined by the response of the action to a metric variation, 6s = f16&gpV. If 

the action S is independent of the metric how is it possible to include gravity? 

Remarkably, these objections can be circumvented if one adopts a new viewpoint. 

The requirement that the action is polynomial in the fields1 and independent 

of the metric and connection implies it is of the form 

s= I ,WX6L jL”A6d4X (1) 

Here ?x6 is the permutation symbol, a tensor density with c1234 = +l, and 

Lpvh6 is a covariant tensor independent of gPu and I$ and a polynomial in any 

other fields. We show that the action of all conventional renormalizable field 

theories of matter can be reexpressed in this form and that the conventional the- 

ory of gravity is completely recovered. Furthermore, we find an exact symmetry 

of the gravitational action that implies the cosmological constant vanishes. The 

key to our construction procedure is the gravitational gauge field. 

2. Gravitational O(5) Gauge Fields 

We adopt the following conventions: the metric signature is Euclidean (we 

a&me we can rotate back to Minkowski space) and Greek indices p = 1.. .4 
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refer to space-time; upper case latin, A = 1.. . 5 refer to O(5) indices and lower 

case latin a = 1. . .4 to an O(4) subgroup of O(5); we also use the alternating 

notation on indices, [AB] = AB - BA. 

We introduce the ten “gravitational gauge fields” u;;” = -wiA which trans- 

form as the adjoint representation of O(5) and the five fields dA which transform 
- 

as the vector representation. The field $A is assumed to be odd under CP and if 

we assume that the action S, given by (l), is CP even then S must have an odd 

number of tiA fields. 

The most general possible action that satisfies these criteria and exact O(5) 

gauge invariance, is 2 

with 

where the gauge field strength is 

and 

where cABCDE is the O(5) anti-symmetric permutation symbol and the ai are 

polynomials in (4A)2. If we drop the requirement of the discrete CP invariance 

then we may add to the action a term3 (~4@‘~ R$q5BRfqiB which is even in 

tIie 4A field; but we do not do so here. The fact that the action is necessarily 
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restricted to only three terms is a consequence of the requirement that it be 

independent of the geometry of the manifold. The restrictive power of this 

natural condition is apparent. 

Before proceeding we will motivate our approach by remarking that the ten 

components of the O(5) gravitational gauge fields WY will be subsequently iden- 
- 

tified as-the six components of the connection CJJ~* and the four components, w?, 

with the vierbein, e:. Then the terms in the action (2) can be identified as a 

topological invariant, the Hilbert action and the cosmological term. In this way 

the relation to general relativity is established. 

The magnitude of the vector 4A is arbitrary. In the following we will impose 

the gauge invariant constraint 

$A4A = M2 (3) 

which can be implemented as the equation of motion of an additional O(5) scalar, 

a Lagrange multiplier. Alternatively if we left the magnitude arbitrary (3) could 

follow as an equation of motion and then the magnitude fluctuates about this 

minimum. This is a different theory which we do not consider here.4 

Imposing the normalization (3) has as an immediate consequence that tiA 

becomes a gauge artifact. Using the O(5) gauge rotation freedom we have 45 = 

M, 4” = 0. We refer to this gauge choice as the “physical gauge”.5 This does not 

completely fix the full O(5) gauge invariance because we are still free to perform 

arbitrary O(4) gauge rotations. 

A second consequence of the normalization condition (3) is that the oi in the 

action (2) are just constants. We also note that 4”~; = rjADpbA = 0. 

In the physical gauge this theory retains an exact O(4) invariance and it is 

convenient to introduce a few definitions that will aid us in exposing this O(4) 
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gauge structure. We define 

and a new gauge derivative ‘7, which acts as O(5) gauge vectors rA according to 

v,tA A D,<” + &#lADe$B1tB - - (5) 

with obvious generalizations to gauge tensors. One can check that 

WA = 0. (6) 

The Bianchi identity 

implies 

p+4BCDE4AVy j$f =o (8) 

* ab 
It is easily checked that in the physical gauge R,, is just the O(4) field strength, 

A ab 
R PV (9) 

establishing the utility of the definitions. 

In terms of * Pv P the action density L becomes 

with ffT = or, (YH = cq - 4ol/M2, crc = a3 - 2q/M2 + 4al/M4. The first 

Em of (10) is the O(5) topological density and can be used to classify the field 
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configurations by an index n corresponding to a member of the set of integers z 

according to q(O(5)) = z. One finds for its contribution to the action 

ST = 128~r~qMn . (11) 

The other two terms in (10) are not topological densities and require a further 

interpretation. 

3. Geometrical Interpretation 

The metric tensor has two related but distinct roles in physics. First, it 

determines the overall geometry of space-time-the arena of various quantum 

fields. Second, it is a field in its own right. However the metric in conventional 

field theory is unlike any other field in so much as it is necessarily present in 

the action. In our approach this distasteful dualism between the metric and 

other fields is eliminated. The metric is not even present in the action as a fun- 

damental field-it is derived from the gravitational gauge fields. In some ways 

our approach resembles that taken in the strong interaction field theory. Quan- 

tum chromodynamics, the gauge theory of the strong interaction, in principle 

describes the dynamics of the hadrons. Yet hadronic fields do not appear in the 

fundamental action. Hadronic fields are complicated representations in terms of 

the fundamental quark and gauge fields that do appear in the action. From this 

modern viewpoint it was a mistake to ever put hadronic fields in an action. 

The viewpoint we adopt here is similar except that we apply it to gravity 

instead of the strong interaction. The fundamental fields are the gravitational 

gauge fields while the action is independent of the metric and connection. But 

the metric and connection may be related to these gauge fields and we do so by 

making two postulates. These postulates are definitions. 
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First is the tetrad postulate 

which defines the connection I’!,; second is the metric postulate 

(12) 

(13) - 

which defines the metric tensor. The consistency of the tetrad postulate is easily 

checked, 

It follows from these postulates that the covariant derivative of the metric 

vanishes 

so we have a metric space; but the torsion tensor 

(14 

does not in general vanish. 

The torsion tensor has 24 independent components and is a reducible repre- 

sentation under the local O(4) group according to 24 = 4' +qA+ 16. Introducing 

the vector S,, the axial vector A, and the 16 dimensional representation tensor 

G a~v which satisfies 

G CzXv + GWX = 0 

GaXv + GX”a+ G”cYX = 0 

GEv=O 
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one can write the torsion tensor 

(15) 

where we use the metric to raise and lower indices. If one puts matter into 

some geometrical gravity theories which are elementary extensions of Einstein’s 

theory one finds the torsion does not vanish. 6 Scalar fields, through their angular 

momentum, contribute to S,; fermions, through their axial currents contribute 

to Ag; gauge fields contribute to GTv. Torsion will be a part of this gauge theory 

of gravity as well, for requiring it to vanish would imply arbitrarily restricting 

gauge degrees of freedom. 

We note that the metric, connection and torsion are related in the usual way 

for metric spaces. The connection may be written 

where the Christoffel symbol is 

- Our choice of definition for the metric and connection, (12) and (13), is not 

gratuitous. These definitions, if used in the field equations for the gravitational 

gauge fields, imply the metric and connection satisfy the Einstein equations with 

a cosmological term. This is most easily seen if we go to the physical gauge. 

Then k$, (w) is the O(4) field strength given by (9) and 

t; = 0 c; = M2ea = Mua5 CL P (16) 
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where e: is the vierbein. Using e5abcd = cabcd the action density (10) becomes 

The definition of the Riemann tensor is 

Using the vierbein e: and its inverse, cap to raise and lower indices, using the 

tetrad and metric postulates and (16) one can show by a lengthy but direct 

calculation 

k$, (w) = R&,(I’)e~ebr . (19) 

The action density (17) becomes 

fe = M~T(g)-1/2tpvXGtaarR~~~~R7~~~ 
(20) 

- 4M5cuH(g)‘/2R + 24Mgac(g)1/2 

where we have used #uX6$&&~e~ = b 4 2eea eb where e is the determinant of 

the vierbein, e = $@6~abCde~e$$e$ g = e2 and the scalar curvature is R = 

q-l”PR&Ju(q 

The first term in (20) is just the topological density for the Gauss-Bonnet 

integral; the second term is the Hilbert action if we identify the gravitational 

constant K as 

c2 = 8M5cYH 

and the third term is the cosmological term, A@ with 

A = 24Mgac . 

(21) 

(22) 
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The original action has been completely reexpressed in terms of the metric and 

connection and in this way the relation to general relativity in the first order 

formalism is established. Notice, however, that unlike conventional relativity, 

our assumptions on the original O(5) invariant action do not permit dynamical 

R2 type terms in the action. 
< - e 

- Sometimes one encounters statements to the effect that if instead one con- 

siders for the gauge group the Wigner-Inonii contraction of the O(5) group to 

the Poincard group then the cosmological term is absent. Such statements are 

misleading. They generally ignore the full O(5) gauge invariance which implies a 

possible third term in the action (2), a term which upon performing the Wigner- 

Inonii contraction survives and can be identified with the cosmological term. 

Furthermore, for topologically non-trivial field configurations the action is in- 

finite in the contraction limit. The Wigner-Inonii contraction is considered in 

detail in Appendix A and we do not consider it further here. 

4. Equations of Motion 

The equations of motion may be obtained by variation of the action (10) with 
. . 

respect to the ten independent O(5) gauge fields of, w; and the four in’dependent 

components of the vector field 4”. After this variation is carried out we express 

our results in the physical gauge. The result may be expressed in terms of the 

currents T@, Tpij and S’ defined by 

6s = / (Tpi&l + T”“&J; + Sib4i)d4x e 

11 
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We find 

with 

S;” = b,, $1 (25) 

where 0, is the O(4) gauge field derivative and k$“y (w) is the O(4) field strength. 

Equation (25) just defines the torsion; from the tetrad postulate (12) we obtain 

the relation 

2M4S,,, = @;,, . (26) 

The equations of motion, (24) are not all independent. We see directly from 

(24) that the sources are related by 

26; Tuad + M2(b, Tad + Sd) = 0 . (27) 

- ab 
IJse is made of the O(4) Bianchi identity PVxb 0, Rx6 = 0 in proving this result. 

This result implies that if the first two equations of motion are satisfied then 

so is the equation for S’. But this comes as no surprise since we used the O(5) 

gauge freedom to fix the field 4” = 0. Thus its associated equation of motion is 

redundant. 

In the absence of matter the sources all vanish. Then one finds that the 

msion vanishes, S;V = 0. This condition enables us to solve for the connection 
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purely in terms of the metric and the standard source free Einstein equations 

with a cosmological constant are obtained. In the presence- of matter the tor- 
. . 

sion does not in general vanish and the equations for 6: and WY are completely 

independent. 

Next we consider the coupling of matter. Our fundamental criterion is that 
F - e 

the matter- contribution to the action must not only be O(5) gauge invariant 

but also be independent of the metric and connection. Remarkably, all the 

renormalizable matter field theories can satisfy these requirements. 

5. Matter Couplings 

We consider separately scalars, spin one-half fermions and Yang-Mills fields 

and show that their O(5) invariant matter actions, which are independent of the 

geometry, reduce to the conventional field theories in flat space. 

5.1 SCALAR FIELD 

For simplicity we consider a single scalar field a; the generalization to include 

internal symmetries is trivial. The single scalar field is introduced as an O(5) 

vector cA so that u = 4AaA/M. In the physical gauge d = g5. The other four 

components ba, we will see, are identified with the derivatives 4MeEca = apa. 

The action we obtain for the kinetic form of the scalar field will be in the first 

order formalism. We do not consider the most general possible action, it being 

sufficient to show the conventional theory is obtained from at least one action. 

Consider 

s,, = d4,,pvXS@BCDE A B C D E ape” 6x Vp u 

(28) 
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In the physical gauge, introducing the vierbein as in (16) these actions become 

S8, = I d4z 6eM6(aead b, cd - eud8,,c cd) 

S8, = / d4z [6eM6(geod 0, cd + eudc3umd (29) 

- M&ad) + 2eM5ePIcead bp oc~,rrd] . _ 

In the flat space limit e PC = 6Pc, ei = 6p”, 0, = a,, etc. and one finds 

S $1 - s,, = 
/ 

d%6~~(-+~ (rp + 2MaPaP) (30) 

where aP = epaca. This is just the first order form for the scalar field kinetic 

energy. Variations with respect to 6ap implies bp = dpa/4M and we see that 

the conventional kinetic energy term of the scalar field is 

KE 
ss =&5~Ss2 -SsJ = / 

d4r f (8po)2 . 

The potential term for scalar fields may be written 

(31) 

where V(C#~.CT~) is a fourth order polynomial. So the conventional, renormalized 

scalar theory can be cast into the required form. 

5.2 FERMI FIELD 

To include fermions we must consider Sp(4) instead of O(5) and introduce the 

Sp(4) hermitian 4 x 4 matrices 

_ yqa ;, +(; :1) r5=i (; ,‘) (33) 
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where a = 1,2,3 and ua are the Pauli matrices. These five matrices satisfy 

r-P, rB]+ = 2sAB 

and 

transforms like the adjoint representation of O(5). Spinors transform in the fun- 

damental 4 dimensional representation of Sp(4) and their Sp(4) gauge derivative 

is 

which satisfies 

It is useful to introduce the hermitian matrix 76 which is defined by 

M76=3 
i ABCDE4A7B7C7D7E 

-. _ 

satisfying 

W76, -PI+ = WA 

(36) 

(37) 

(38) 

This matrix, in the physical gauge, is 76 = r5. It generates chiral transforma- 

tions according to 

(40) 



The chiral invariant action for the fermi field is now easily written down, 

fn the physical gauge and flat space limit 

SF 
KE = i 

./ d4x1CI+bV (42) < - w 

the conventional result. Yukawa couplings to the scalar field or mass terms may 

be accommodated by writing 

1 
sF'=gj@l / d4x ,~“X6~ABcDEl- &%f&E~+~ (43) 

where I’ can stand for O(5) invariants such as either uA. tiA or mF, the fermion 

mass. The generalization to include internal indices for the fermi field is obvious. 

5.3 YANG-MILLS FIELDS 

Denoting the gauge field transforming as the adjoint representation of G, the 

Yang-Mills group, by A$, (we put a bar over the gauge group index to indicate 

that it is not an O(5) index) the field strength is 

F;lAv = QA$ + C”“A{A$ (44 

where CABc are the Lie structure constants of G. 

In order to include Yang-Mills fields in our formalism we will introduce a 

tensor GABC transforming as the adjoint under G and the adjoint under O(5) 

(+@ = -GB-+@ (45) 

Using tiA we can reduce the number of O(5) components of GAB’ from 10 to 6 

by the construction 

TAB” =GABc+ e$ $fAGBIDcdD (46) 
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so that 

tiATABc = 0. (47) 

Then TABc has the same number of components as the field strength and we 

can apply the first order formalism. 

We find 
< - - 

S YM = 
ddx ,@b,mCDE F,AV(A)T”“%f&” 

’ ~/iRli~Bsft,;~;,f~;@) 
-2M9 

upon reduction becomes 

SYM = 

(48) 

(49) 

A B where T,& = cp cv T ABA. Variation of (49) with respect to bTtv and eliminating 

T2v implies the equivalent action is 

S YM = a/ d4x F$,(A)F$(A) (50) 

the usual Yang-Mills action. 

If the fermions or scalar fields transform as an irreducible representation of 

G they can couple to the Yang-Mills gauge field. This coupling is accomplished 

by changing the covariant derivatives D, and VP to include the gauge coupling 

of the Yang-Mills fields. Abelian gauge fields can have a mass term and still be 

renormalizable and such terms can also be easily written in this formalism. 

We conclude that all renormalizable field theories can be included into this 

formalism. The representations we found satisfy the criteria of metric and con- 

nection independence and O(5) invariance. Upon using the physical gauge and 
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the geometrical interpretation of gravitational gauge fields, we showed that in 

the flat space limit these representations reduced to the familiar ones. These ex- 

pressions are not unique. One can certainly construct actions with matter-fields 
-AB 

including R,, that vanish in the flat space limit. The action for the matter fields 

is more complicated than that with just the gravitational gauge fields for which 
e 

our constructive criteria led to a unique action of only a few terms. It remains 

an unsolved problem if there exist constructive criteria that might limit the form 

of the action for matter fields as was the case for the gravitational gauge fields. 

6. Cosmological Symmetry 

We return to the case of pure gravitational gauge fields without matter. Are 

there any symmetries of the action, given by (lo), other than 0( 5) invariance? 

In order to answer this question we examined field transformations that de- 

pend on an infinitesimal O(5) vector crA(x). We separate aA into longitudinal and 

transverse parts according to 

(51) 

Next we consider all possible variations in the field variables &J? and 64A which 

are proportional to crA, but which do not require the introduction of a metric. 

We may independently consider the longitudinal and transverse variations. 

- Since $A~~A = 0 &PA 7 cannot depend on the longitudinal parameter CY$ and 
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for &AJ~ we can have 

The change in the action is 

6,s = 
/ 

ddx pXG,ABC?E -2&f& * C@$&D~E 
_ 

ABCD E - 4%7(4 - (YL)Q 6” ex 6s d 
> - 

We find no invariance for the longitudinal variations unless a~ = CrH = 0. 

For the transverse variations there are several possibilities 

(53) 

where [ABC] means anti-symmetrization in all three indices. We note that the 

combination 61 + 62 - 63 is just an infinitesimal gauge transform with gauge 

transformation parameters tiAB = q?~ lAc$. It is straightforward to calculate the 

change in the action S due to these variations. The result is 

1 
62s = z&f&l + 3M2aC& 

63s = -2ffHL‘J 

64s = -aCM2L2 + f &HLl 

(55) 
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where 

L1=M4 d‘tx ,pvXG,ABCDE A - Bc j$); 
“TRp* 

L2=M2 d4x~~~~~E~CDE A -BC D E 
&T R/m % E6 

and &H and &C are parameters appearing in S as coefficients of the Hilbert 

action and cosmological term- respectively. It is evidentfrom thGe relations that 
_ 

additional symmetry beyond simple gauge invariance may be present. 

For example we note that (55) implies 

(56) 

This symmetry depends explicitly on the parameters CYH and ac.Symmetries 

that depend explicitly on Lagrangian parameters are not expected to survive 

renormalization; yet as a classical symmetry of the action it might be interesting 

to investigate (56). 

There are symmetries that imply that either the Hilbert action is absent, 

aH=o 

f!@=o 

or the cosmological term is absent, cuc = 0 

bs=(+)s=o 

(57) 

(58) 

or both (leaving only the topological invariant). These are the only interesting 

consequences besides (56) that follow from (55). Since we want to retain the 

Hilbert action but remove the cosmological term, in conformity with its experi- 

mental absence, we will require SS = 0. We refer to this symmetry as “cosmo- 

@ ical symmetry”, since it kills the cosmological term. 
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If we go to the physical gauge in which the action density has the form (17), 

The the effect of the cosmological symmetry in the action is equivalent to 

It is easily checked that SS = 0 implies the cosmological constant a~ = 0. The 
. . 

equation (59) for the 24 variations SW; is not explicit; but (59) is 24 independent 
. . 

equations that can be explicitly solved for SW:. This is done in Appendix B. 

Using the Noether procedure we can find the conservation law on the sources 

implied by cosmological symmetry. Defining 

Tkji = ekpij 
P 

we obtain from Appendix B, (23) and (59) 

If the sources satisfy this equation then the cosmological term vanishes. 

Fundamentally, the Hilbert action and the cosmological term are distin- 
A ab guished by the two tensors R,, and Tab = eke! which w 7 although they have 

A ab the same index symmetries, R,, satisfies the Bianchi identity Yx6 0, &“, = 0 

while T$ does not, Yx6 0, Tfi = 6 pvX6SFAeb$ because of the presence of tor- 

sian. In Riemannian geometry there is no torsion and no way to distinguish the 
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cosmological term from the Hilbert action. But in general, if torsion is present, 

cosmological symmetry is not empty. We note that in the absence of matter the 

equations of motion imply the torsion vanishs. For this reason it is important to 

extend the cosmological symmetry to the matter action as well (something we 

have not done). 

_ The astute reader might note that it is possible to generalize the transforma- 

tion (59) as follows 

(61) 

with r to be determined by the requirement that S’S = 0. One finds I’ = 

-6M2(&c/lr~) and (61) is equivalent to the previous parameter dependent trans- 

formation (56). However, as we remarked before, parameter dependent transfor- 

mations do not survive renormalization. Furthermore, and more to the point 

of arguing for the naturalness of cosmological symmetry, we see that only with 

r = 0 does the transformation (61) satisfy 

(62) 

a consequence of the fact that hab PV but not T,$ satisfies the Bianchi identity. 

We conclude, on the basis of those observations, that cosmological symmetry is 

a natural symmetry although only detailed calculations in the quantum theory 

can ultimately decide the question of the absence of anomalies. 

7. Quantum Theory 

Here we will make a few speculative observations about the quantum theory. 

‘l’%e action for the pure gravitational gauge field is the most general that is 
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consistent with the stated symmetries and metric independence. In order to 

quantize the theory it is first necessary to remove the gauge- degrees of freedom 

(since these are not to be quantized). The gauge fixing can also be done in a 

metric independent fashion. We need ten independent conditions since there are 

ten gauge degrees of freedom. four of these ten are fixed by the physical gauge 

condition $A = 0. The remaining six conditions A’j z zAji G 0 can be of the 

form 

Aij = ,phb,rste ij r 8 t 
w/l ~v~Xf6’1 

e 

where the four vector T,J~ defines this axial gauge or 

in the Lorentz-type gauge. 

In view of the fact that no terms can be added to the action without violating 

metric independence we would conclude that if a metric independent quantiaa- 

tion procedure ezists then the eflective quantum action and the classical action 

are identical, the theory is trivially renormalizable. However such a strong con- 

clusion only follows if the quantization procedure is also metric independent. In 

the canonical formalism, since it is based on the existence of a Hamiltonian, a 

component of the stress-energy tensor, the procedure is explicitly metric depen- 

dent. In the path integral formulation the metric does not explicitly enter. Yet 

the path integral is only rigorously defined on a space-time lattice or Euclidean 

simplex and such a simplex depends on the metric. 

If the path integral for the gravitional gauge fields given by 

z(J) = / d[q$A] d [w~]s(~i)~(Aij)e-(S+I d4zEp”XC~~BJ%) 
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can be rigorously dellned without invoking metric concepts then it can only 

depend upon the topology characterized by some indices. Conceivably it could 

be done exactly. 

Our action S, however, has the characteristic problem of almost all gravity 

theories -- there exist field configurations for which the Euclidean action S is 

unbounded from below. Then the path integral is undefined because the expo- 

nential diverges. In our theory this problem is aggravated by the fact that one 

cannot even add R2 type terms to the action to bound it from below. 

One point of view that might be adopted is that the effective gravitational 

gauge field quantum action is the classical action. That effective action is also 

metric independent and is consistent with our previous remarks. However, once 

one includes matter this can no longer be the case. The constant aH, in the ef- 

fective quantum action now becomes a field dependent function of O(5) invariants 

like #A.~A, TABcTABc arising from the matter sector. Such functions, however, 

are metric independent; hence if they are computed in one metric they are known 

for all metrics. Then one could in principle compute the effective quantum action 

in perturbation theory. One assumes a suitable background metric and uses this 

to determine to some order in perturbation theory the unknown field functions 

appearing in the metric independent effective quantum action. This is analogous 

to calculating a Lorentz invariant quantity in a special frame of reference - one 

has, in fact, done a frame independent calculation. This procedure warrants fur- 

ther investigation; it has the promise of becoming the basis of a renormalizable 

tlGory of gravity. 
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8. Conclusions 

Our fundamental assumption that the action is independent of the metric 

and connection, and O(5) gauge invariant implies a very restrictive form for the 

gravitational gauge field action. The O(5) gauge fields admit of a geometrical 

interpretation consistent with conventional general relativity. All, the renormal- 

i-zable matter theories can be included in this formalism. A simple “cosmological 

symmetry” has been found that requires the cosmological constant to vanish. 

All of the equations we have written down are far more simple in the elegant 

notation of Cartan’s calculus of exterior forms.’ We have avoided this notational 

convenience because most physicists are unfamiliar with it. 

Several important problems which this work raises remain unsolved. The 

cosmological symmetry we found is only a partial solution to the “cosmological 

term problem”8 because we have not yet extended this symmetry to matter fields. 

The matter fields can produce a vacuum energy which adds to the conventional 

cosmological term a constant. Yet the fact that the symmetry exists at all in the 

gravitational gauge fields is encouraging. Simple models including matter ought 

to be examined. 

The cosmological symmetry is local. Does this imply that for a larger gauge 

symmetry than O(5) and its associated gauge field theory the cosmological symme- 

try is automatic - no cosmological term will appear if the larger gauge theory 

is interpreted geometrically ? The cosmological symmetry might have a gauge 

theory interpretation in the context of a larger gauge group. 

A major problem, and an intriguing one, is whether or not a metric indepen- 

dent quantization procedure exists or if this even makes sense. If so, then the 

usual problem of quantum gravity might be circumvented. Trying to quantize 
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gravity is like trying to quantize a spin 2 hadron-it is the wrong problem. We 

made a few speculations about solutions to this problem in the last section. 

A strong virtue of gauge theories of gravity is that they imply that gravity, 

like the strong and electro-weak interactions, is also basically due to gauge fields. 

Gravity is no longer the “odd man out.” This opens the door to total unification 
e 

of all interactions on an equal footing. Metric theories of gravity do not have - 

this property. The simplest group that has O(5) X SU(5) as a subgroup is SU(9) 

and this provides a possible toy model.g One may extend the idea of this paper 

to local supersymmetry by gauging OSp(l,5) and that may lead to yet further 

unification. 

While such ideas are clearly speculative, in light of the current status of 

quantum gravity theory, any new outlook seems worthy of investigation. 
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Appendix A 

Here we consider the Wigner-Inonii contraction of the 075) gauge group as 

applied to our action (2). If the generators of O(5) are LAB = -LEA and the 

parameters t@ - -BBA then the contraction is accomplished by setting 

Pa = ~~~~ ea5 = ~(-p 

Lii =Lij f)ij =eij c - - 

and letting the contraction parameter, X --) 0 with Pa, L’j, oa and flij held fixed. 

This implies we should also redefine our fields according to 

w$i=wy 45+5 

and as X -+ 0 e;, wij, 4’ and d5 are held fixed. These fields are then representa- 

tions of the Poincare group. 

In what follows we will not fix the gauge so that the full ten parameter gauge 

group invariance is maintained. This will be instructive. We may substitute the 

fields with the X contraction parameter into the action (2). We also define the 

constants oi appearing in (2) to be 

a1 = al/X2 , ~2 = 4X2 , (~3 = a3/P 

with ai held fixed as X --, 0. 

The first term of the action (2) requires some care because it is singular in 

the contraction limit and one can lose full gauge invariance if it is not treated 

correctly. In order to treat it correctly one can either write the action in the 

form (10) and carry out the contraction (in which case the gauge invariance is 

retained directly) or expand the field 45 according to 
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substitute into the action (2) and then take the X + 0 limit. If this is done the 

action density becomes as X + 0 

where the bi are linear combinations of the ai and c - - 

7; = e; - glp (w) J” 

- ab 
and R,, is the O(4) field strength. The first term in the contracted action is 

the Gauss-Bonnet topological density. It is singular as X + 0 but does not 

contribute to the equations of motion. However, field configurations with index 

n # 0 contribute an infinite action as X -+ 0. 

The second and third terms can be identified with the Hilbert action and 

cosmological term. While it is true that a contribution to the cosmological term 

arising from the second term of (2) vanishes as X + 0 the third term of (2) 

contributes a non-vanishing cosmological term as X + 0. 

the action we obtain is fully Poincard invariant. It is obviously O(4) invariant. 

Under translations we have 

S ef =ilpCVa 

6 4” = Maa 

so that 6$ = 0 and the action is trivially translationally invariant. We see that 

4” is a complete gauge artifact under translations and so we can fix the gauge 

with 6” = 0. Hence 7; = e;. But now the translational freedom has been fixed. 

Either the translational freedom is absent (if we fix the gauge) or invisible (if we 

6 not). 
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We conclude, in summary, that the Wigner-Inonii contraction (i) produces 

a singular action proportional to the topological index; (ii).-does not eliminate 

the cosmological term; (iii) the translational gauge invariance is either absence 

or invisible. 
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Appendix B 

The cosmological symmetry transformation is 

and here we will solve the second equation for SW;. We make use of the inverse 
. . . . - ed vierbein, e’pej’j = 6’j and define ekp6wy = by, eepek6 R,s = R$ and also the 

dual 

Then (B.1) reads 

so that 

This is equivalent to 

from which follows upon contraction and elimination 

which is the explicit solution. We remark that a standard identity relates iz* to 

R. 
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