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ABSTRACT

We describe field theories for which the action is completely independent
of the metric and connection of the space-time manifold. The metric in our
approach is no more a fundamental field than a hadron field is a fundamental
field in QCD. The fundamental fields in the action are 0(5) gauge fields and
combinations of these fields are interpreted as the metric and connection so
that conventional general relativity is obtained. Remarkably, all renormalizable
matter actions for scalar, spinor and Yang-Mills gauge fields can be made metric
independent. Significantly we find a new elementary symmetry of the action
which implies the cosmological constant must vanish. Finally, we discuss the

quantum theory resulting from these ideas.



1. Introduction

Suppose we consider a four dimensional space-time maﬁifold with a metric
guv and connection I‘zﬂ. On this geometric manifold we define fields with total
action S, a polynomial in these fields. Our fundamental assumption is that S is
independent of the metric and the connection. . .
- - One-the face of it this assumption seems physically absurd. After all, the
total stress-energy tensor, #,, — a fundamental object in any field theory — is
defined by the response of the action to a metric variation, 65 = /g 0,,6g*". If
the action S is independent of the metric how is it possible to include gravity?
Remarkably, these objections can be circumvented if one adopts a new viewpoint.

The requirement that the action is polynomial in the fields! and independent

of the metric and connection implies it is of the form
S =/ GMU)‘éLuV)\gd4:t (1)

Here €#Y» s the permutation symbol, a tensor density with 1234 = +1, and
L, s 1s a covariant tensor independent of g, and 'y and a polynomial in any
other fields. We show that the action of all conventional renormalizable field
theories of matter can be reexpressed in this form and that the conventional the-
ory of gravity is completely recovered. Furthermore, we find an exact ‘symmetry
oi’ the gravitational action that implies the cosmological constant vanishes. The

key to our construction procedure is the gravitational gauge field.

2. Gravitational 0(5) Gauge Fields

We adopt the following conventions: the metric signature is Euclidean (we

aSSume we can rotate back to Minkowski space) and Greek indices g = 1...4



refer to space-time; upper case latin, A = 1...5 refer to 0(5) indices and lower
case latin @ = 1...4 to an 0(4) subgroup of 0(5); we also use the alternating
notation on indices, [AB] = AB — BA.

We introduce the ten “gravitational gauge fields” w{}B = —wﬁm which trans-
form as the adjoint representation of 0(5) and the five fields ¢4 which transform
as the vector representation. -The ﬁeld ¢4 is assumed to be odd‘uﬁder CP and if
we assume that the action S, given by (1), is CP even then S must have an odd
number of ¢A fields.

The most general possible action that satisfies these criteria and exact 0(5)

gauge invariance, is 2

S =[ Ld*z
with
L= e””)‘aeABCDE(alR;}fR%DqSE + agR,’}fe)‘ce%)¢E + age;}ege)\ce&DqSE) (2)
where the gauge field strength is
Rﬁf = alﬂw{}]B + wﬁcwﬁB
and
e = Dugp* = 0u¢" + P 6"

where ¢4BCPE 5 the 0(5) anti-symmetric permutation symbol and the a; are
polynomials in (¢4)2. If we drop the requirement of the discrete CP invariance
then we may add to the action a term3 a4e#V*? R,’}f ¢BR§\453 #B which is even in

the ¢A field; but we do not do so here. The fact that the action is necessarily



restricted to only three terms is a consequence of the requirement that it be
independent of the geometry of the manifold. The restrictive power of this
natural condition is apparent.

Before proceeding we will motivate our approach by remarking that the ten

components of the 0(5) gravitational gauge fields w;‘}B will be subsequently iden-

-

tified as the six components of the connection wﬁb and the four components, w2®

JTR)

with the vierbein, ej. Then the terms in the action (2) can be identified as a
topological invariant, the Hilbert action and the cosmological term. In this way
the relation to general relativity is established.

The magnitude of the vector ¢4 is arbitrary. In the following we will impose
the gauge invariant constraint

¢t = M? (3)
which can be implemented as the equation of motion of an additional 0(5) scalar,
a Lagrange multiplier. Alternatively if we left the magnitude arbitrary (3) could
follow as an equation of motion and then the magnitude fluctuates about this
minimum. This is a different theory which we do not consider here.%

Imposing the normalization (3) has as an immediate consequence that ¢4
becomes a gauge artifact. Using the 0(5) gauge rotation freedom we have ¢° =
M, ¢® = 0. We refer to this gauge choice as the “physical gauge”.® This does not
completely fix the full 0(5) gauge invariance because we are still free to perform
arbitrary 0(4) gauge rotations.

A second consequence of the normalization condition (3) is that the a; in the
action (2) are just constants. We also note that ¢Aeﬁ = ¢ADu¢A =0.

In the physical gauge this theory retains an exact 0(4) invariance and it is

convenient to introduce a few definitions that will aid us in exposing this 0(4)



gauge structure. We define

~ AB

B Ny

ny =R{}VB+W€I; (37 (4)

and a new gauge derivative V, which acts as 0(5) gauge vectors €4 according to

Vubh = Dyt + oD, oPIER T T (5)

with obvious generalizations to gauge tensors. One can check that

Vet =0. (6)
The Bianchi identity
VM D, RAB =0 (7)
implies
(VNS ABCDE yA ng: —0 (8)

It is easily checked that in the physical gauge RZI:, is just the 0(4) field strength,
RY = O{pw“b + wi’:wa (9)

establishing the utility of the definitions.

In terms of R v the action density L becomes

. . CD .
L= e””)“seABCDE(aTR':‘?R)\g oF + aHRJ:E P of + aceﬁegefe%)d)E)
(10)
with a7 = ay, ag = ag — 4a1/M?, ap = ag— 2a9/M? + 4a1/M?*. The first

tsFm of (10) is the 0(5) topological density and can be used to classify the field



configurations by an index n corresponding to a member of the set of integers 2
according to m3(0(5)) = 2. One finds for its contribution to the action

St = 1287%arMn . | (11)
The other two terms in (10) are not topological densities and require a further
interpretation.

3. Geometrical Interpretation

The metric tensor has two related but distinct roles in physics. First, it
determines the overall geometry of space-time—the arena of various quantum
fields. Second, it is a field in its own right. However the metric in conventional
field theory is unlike any other field in so much as it is necessarily present in
the action. In our approach this distasteful dualism between the metric and
other fields is eliminated. The metric is not even present in the action as a fun-
damental field—it is derived from the gravitational gauge fields. In some ways
our approach resembles that taken in the strong interaction field theory. Quan-
tum chromodynamics, the gauge theory of the strong interaction, in principle
describes the dynamics of the hadrons. Yet hadronic fields do not appear in the
fundamental action. Hadronic fields are complicated representations in terms of
the fundamental quark and gauge fields that do appear in the action. From this
modern viewpoint it was a mistake to ever put hadronic fields in an action.

The viewpoint we adopt here is similar except that we apply it to gravity
instead of the strong interaction. The fundamental fields are the gravitational
gauge fields while the action is independent of the metric and connection. But
the metric and connection may be related to these gauge fields and we do so by

making two postulates. These postulates are definitions.



First is the tetrad postulate
Dl =V, —-T1¢, e =0 (12)
which defines the connection I'{ ; second is the metric postulate

Migu, = elef - - = (13)

which defines the metric tensor. The consistency of the tetrad postulate is easily

checked,

$4Dve) =0.

It follows from these postulates that the covariant derivative of the metric

vanishes

so we have a metric space; but the torsion tensor

1
St = 5Ty (14)

does not in general vanish.

The torsion tensor has 24 independent components and is a reducible repre-
éentation under the local 0(4) group according to 24 = 4V + 444 16. Introducing
the vector Sy, the axial vector A, and the 16 dimensional representation tensor

G . Which satisfies
Gy +Gap\ =0
Ga)\u + Gkva + Gua)\ =0

- Ggu =0



one can write the torsion tensor
S)?u = 6[0)‘\81/] + 6?1/6 A+ Ggu (15)

where we use the metric to raise and lower indices. If one puts matter into
some geometrical gravity theories which are elementary extensions of Einstein’s
theory one finds the torsion does not vanish.® Scalar fields, through their angular
momentum, contribute to S,; fermions, through their axial currents contribute
to As; gauge fields contribute to GY,,. Torsion will be a part of this gauge theory
of gravity as well, for requiring it to vanish would imply arbitrarily restricting
gauge degrees of freedom.

We note that the metric, connection and torsion are related in the usual way

for metric spaces. The connection may be written
K ={K}+S K_G K 4 8¥
)y Y 17 Aou Ny
where the Christoffel symbol is

K 1
{pk} =3 gm(aug)\a + OzGpo — 3ogux)

Our choice of definition for the metric and connection, (12) and (13), is not
gratuitous. These definitions, if used in the field equations for the gravitational
gauge fields, imply the metric and connection satisfy the Einstein equations with
a cosmological term. This is most easily seen if we go to the physical gauge.

Then RZ’,), (w) is the 0(4) field strength given by (9) and

€ = Mzeﬁ = waf (16)



where ej; is the vierbein. Using ¢dabed — cabed the action density (10) becomes

~ab ~cd - ab
L= Me“"meab"d(arp RZV RYs + Mtay RZV eSed + Msaoeﬁef,eieg) (17)

The definition of the Riemann tensor is

RE,, (D) = 8,Tt, — 9,7, + T3, T, T3 T4~ (18)

Using the vierbein ej, and its inverse, e to raise and lower indices, using the
tetrad and metric postulates and (16) one can show by a lengthy but direct

calculation

~ab
Ry (@) = Rf,(T)ege” . (19)
The action density (17) becomes

L = Mag(g)~V 2€"m5€aﬂwRaﬂuvRﬂﬂ5
(20)
— aMBag(g)/?R + 24M%(g)}/?

where we have used e#¥ )‘5eabcde§eg = 2e e!,"e'g] where e is the determinant of
the vierbein, e = %e”"kaeabcdeﬁegeﬁeg, g = €2 and the scalar curvature is R =

6,‘{9”"&’,‘,,0(1‘).
The first term in (20) is just the topological density for the Gauss-Bonnet
iﬁtegral; the second term is the Hilbert action if we identify the gravitational

constant kK as

k=2 =8M’ay (21)

and the third term is the cosmological term, A /g with

- A=24M% . (22)
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The original action has been completely reexpressed in terms of the metric and
connection and in this way the relation to general relativity in the first order
formalism is established. Notice, however, that unlike conventional relativity,
our assumptions on the original 0(5) invariant action do not permit dynamical

R? type terms in the action.

— - -~

- - Sometimes one encounters statements to the effect that if instead one con-
siders for the gauge group the Wigner-Inonii contraction of the 0(5) group to
the Poincaré group then the cosmological term is absent. Such statements are
misleading. They generally ignore the full 0(5) gauge invariance which implies a
possible third term in the action (2), a term which upon performing the Wigner-
Inoni contraction survives and can be identified with the cosmological term.
Furthermore, for topologically non-trivial field configurations the action is in-
finite in the contraction limit. The Wigner-Inonii contraction is considered in

detail in Appendix A and we do not consider it further here.

4. Equations of Motion

The equations of motion may be obtained by variation of the action (10) with
respect to the ten independent 0(5) gauge fields ¢, w{,j and the four independent
components of the vector field ¢®. After this variation is carried out we express

our results in the physical gauge. The result may be expressed in terms of the

currents T# T and S defined by

_ 05 = [ (THscl + THIsul + S'5;)ata (23)

11



We find

~ab
T — Me‘“’)“se“bc‘i(2ay RZV €5 + 4aceﬁege§)

vab __ __ pvAb abed gc  d
T"" = —2ag Me*"" €5 )\ €5 (24)

4o ~ab
§4 = e#¥A® eade(+ 1 Sivees — apM Ry, Sj + 6acM, sg,,e’;eg)

with

Sﬁl/ = Dlﬂ GIC/] (25)

where Du is the 0(4) gauge field derivative and RZIZ, (w) is the 0(4) field strength.
Equation (25) just defines the torsion; from the tetrad postulate (12) we obtain

the relation

2M4Sauy = fas‘iu . (26)

The equations of motion, (24), are not all independent. We see directly from

(24) that the sources are related by
2¢2TV% 4+ M3(Ds T + %) =0. (27)

Use is made of the 0(4) Bianchi identity *¥ Mp, R;g = 0 in proving this result.
This result implies that if the first two equations of motion are satisfied then
so is the equation for S*. But this comes as no surprise since we used the 0(5)
gauge freedom to fix the field ¢ = 0. Thus its associated equation of motion is
redundant.

In the absence of matter the sources all vanish. Then one finds that the

torsion vanishes, S, = 0. This condition enables us to solve for the connection

12



purely in terms of the metric and the standard source free Einstein equations
with a cosmological constant are obtained. In the presence of matter the tor-
sion does not in general vanish and the equations for ¢j and ij are completely
independent.

Next we consider the coupling of matter. Our fundamental criterion is that
the matter contribution to fhe acrtio-n must not onlyﬁ be. O(S)Wgéuge invariant

but also be independent of the metric and connection. Remarkably, all the

renormalizable matter field theories can satisfy these requirements.

5. Matter Couplings

We consider separately scalars, spin one-half fermions and Yang-Mills fields
and show that their 0(5) invariant matter actions, which are independent of the

geometry, reduce to the conventional field theories in flat space.

5.1 SCALAR FIELD

For simplicity we consider a single scalar field o; the generalization to include
internal symmetries is trivial. The single scalar field is introduced as an 0(5)
vector o4 so that ¢ = ¢A0A/ M. In the physical gauge o0 = ¢°. The other four
components g%, we will see, are identified with the derivatives 4Mej0? = dy0.
The action we obtain for the kinetic form of the scalar field will be in the first
order formalism. We do not consider the most general possible action, it being
sufficient to show the conventional theory is obtained from at least one action.

Consider

Ss, =/ d4xe’“’>‘6ewCDEeﬁeEe€V5aDoE

(28)
- Ss, =/ d4:ce’“’)‘6€ABCDEeﬁegD)\(¢caD)D‘;aE.

13



In the physical gauge, introducing the vierbein as in (16) these actions become
Sgy = / diz 66M6(0'e‘7d Dy 0% — e7%9,0 od)-
Ssy = / diz [6eMO(0e’e Dyl + 780,000 (29)
— Madad) + 2eMOerleeod] Dp acﬂand] e
111 fhe ﬂ.at ~qtpace limit e?® = 6¢°,¢; = 6, Dy = 84, ete. and one finds

Soy = Sy = [ d*s6MO(=0,0 0° + 2Mo?0?) (30)

where 0? = e?%0®. This is just the first order form for the scalar field kinetic
energy. Variations with respect to 6o, implies 0, = 3,0/4M and we see that

the conventional kinetic energy term of the scalar field is

The potential term for scalar fields may be written

SP=/ d4:re“”)‘66ABCDEV(¢A-crA)eﬁef}fgf?dbE (32)

where V(¢4-04) is a fourth order polynomial. So the conventional, renormalized

scalar theory can be cast into the required form.

5.2 FERMI FIELD

To include fermions we must consider Sp(4) instead of 0(5) and introduce the

Sp(4) hermitian 4 X 4 matrices
A , (10 s (0 -1
- = = = (33)
c® 0 0o -1 1 0

14



where a = 1, 2,3 and ¢ are the Pauli matrices. These five matrices satisfy

(74, 7P+ = 2648 (34)
and
- aB_ 1, 4B - - =
7 v _Z {I y }— (35)

transforms like the adjoint representation of 0(5). Spinors transform in the fun-
damental 4 dimensional representation of Sp(4) and their Sp(4) gauge derivative

18

which satisfies
. 1
(D, DulY = 5 o*PRiJy . (37)

It is useful to introduce the hermitian matrix g which is defined by

?
Mrg = 55 ABPEgAAPACOPAE (38)

satisfying
M[’Yﬁ? 7A]+ = 2¢A
iM[re, 048] = ¢l44Pl (39)

This matrix, in the physical gauge, is 76 = ~%. Tt generates chiral transforma-

tions according to

- ) = 7600 . (40)

15



The chiral invariant action for the fermi field is now easily written down,
—4 p
S{,{E = o7 / diz e“V)“seABCDEtp""yAV,,t/)qSBeg'e{)egj ) (41)
In the physical gauge and flat space limit

SKE =i [ d'ay* py (42)

— -~ -

the conventional result. Yukawa couplings to the scalar field or mass terms may

be accommodated by writing
1
Sy = YV [ diz #ABCDET eﬁefe)\ce?q@zj)"'w (43)

where I" can stand for 0(5) invariants such as either oA . ¢4 or mp, the fermion

mass. The generalization to include internal indices for the fermi field is obvious.

5.3 YANG-MILLS FIELDS

Denoting the gauge field transforming as the adjoint representation of G, the
Yang-Mills group, by Aﬁ, (we put a bar over the gauge group index to indicate
that it is not an 0(5) index) the field strength is

A _ o A ~ABO 4B AT
Fj, = d,A0 + CA5CAf A7) (44)

CABC

where are the Lie structure constants of G.

In order to include Yang-Mills fields in our formalism we will introduce a

tensor GABC transforming as the adjoint under G and the adjoint under 0(5)

Using ¢4 we can reduce the number of 0(5) components of GABC from 10 to 6

by the construction

_ TABC _ ABC | Xxlf—f 4lAGBIDT 4D (46)

16



so that

¢ATABC — ¢ | (47)

Then TABC has the same number of components as the field strength and we

can apply the first order formalism.

~ We find
Syn = / g PN eABCDE( 3 ;w( A)TABAL D 4F
(48)
T TARHA TBSH GIF‘? eSeCeD ¢E)
upon reduction becomes
Sym = [ d'a(FAATE -TATA) (49)

where TAV = eAeg TABA  Variation of (49) with respect to 5TA and eliminating

TA,, implies the equivalent action is

syu=7[ dzFLAFAA (50)

the usual Yang-Mills action.

If the fermions or scalar fields transform as an irreducible representation of
G they can couple to the Yang-Mills gauge field. This coupling is accomplished
by changing the covariant derivatives D, and V, to include the gauge coupling
of the Yang-Mills fields. Abelian gauge fields can have a mass term and still be
renormalizable and such terms can also be easily written in this formalism.

We conclude that all renormalizable field theories can be included into this
formalism. The representations we found satisfy the criteria of metric and con-

nection independence and 0(5) invariance. Upon using the physical gauge and

17



the geometrical interpretation of gravitational gauge fields, we showed that in
the flat space limit these representations reduced to the familiar ones. These ex-
pressions are not unique. One can certainly construct actions with matter-fields
including RﬁVB that vanish in the flat space limit. The action for the matter fields
is more complicated than that with just the gravitational gauge fields for which
our constructive criteria led fo a uhi(iue action of only/a few te;'xhs. It remains

an unsolved problem if there exist constructive criteria that might limit the form

of the action for matter fields as was the case for the gravitational gauge fields.

6. Cosmological Symmetry

We return to the case of pure gravitational gauge fields without matter. Are
there any symmetries of the action, given by (10), other than 0(5) invariance?
In order to answer this question we examined field transformations that de-

pend on an infinitesimal 0(5) vector a(z). We separate a4 into longitudinal and

transverse parts according to

aA=a"j‘-+af
B B
A A A A a7 -¢7% 4
¢"ar =0 ar=o"———5—¢ | (51)
CYB ¢B

Next we consider all possible variations in the field variables 6w,‘;‘B and 6¢2 which
are proportional to aA, but which do not require the introduction of a metric.

We may independently consider the longitudinal and transverse variations.

— Since ¢46¢4 = 0, 6¢4 cannot depend on the longitudinal parameter af and

18



for 6wﬁB we can have

A
spwiB = ol*D,¢8 . (52)

The change in the action is

01S = /d“xe’“’)‘& ABCDE( 2ap7( - aL)R”,;e)‘cg-d)E

- - (53)
—dac(¢- ap)epereS e ¢° ) -
We find no invariance for the longitudinal variations unless ag = agy = 0.
For the transverse variations there are several possibilities
6104 = Ma#
B
62w,"}B = ¢[AD,,aTI
(54)

A A B
63(0‘[}3 = O‘IT D,,¢B] = alT e,,]
C. AB 2 [C RAB* ]
f{)‘&;w ] =M aIT \p
where [ABC] means anti-symmetrization in all three indices. We note that the
combination 8; + 89 — 03 is just an infinitesimal gauge transform with gauge

transformation parameters 948 = ¢[Aag]. It is straightforward to calculate the

change in the action S due to these variations. The result is
1 2
68 = -—ZaHLl —(2ag +3M*a¢)Ls

88 = laHLl + 3M? acle
(55)
63S = —2ayLo

— 84S = —aoM3Lo + -21- agL,

19



where

- BC - DE
L, = M* / diz PN ABCDE A Ry B

Lo— M2 [ dtz #MABCDEGA REC D2
and apyg and ao are parameters appearing in S as coefficients of the Hilbert
action and cosmological term respectively. It is evident from these relations that

édditional symmetry beyond simple gauge invariance may be present.

For example we note that (55) implies
! 5 2 1
§'S = (ZacM 63 + g6y — §aH64)S —=0. (56)

This symmetry depends explicitly on the parameters ap and ap.Symmetries
that depend explicitly on Lagrangian parameters are not expected to survive
renormalization; yet as a classical symmetry of the action it might be interesting
to investigate (56).

There are symmetries that imply that either the Hilbert action is absent,

o = 0
35 =0 (57)
or the cosmological term is absent, ap =0
1
65 — (52 - 554)5 —0 (58)

or both (leaving only the topological invariant). These are the only interesting
consequences besides (56) that follow from (55). Since we want to retain the
Hilbert action but remove the cosmological term, in conformity with its experi-
mental absence, we will require 65 = 0. We refer to this symmetry as “cosmo-

16gical symmetry”, since it kills the cosmological term.

20



If we go to the physical gauge in which the action density has the form (17),

- ab 2cd . ab
L=M e"”)“seabc‘i(aT RZ,, s+ Miay RZV eSed + MsaCeZe,b,eﬁeg) (17)

The the effect of the cosmological symmetry in the action is equivalent to

662 = D” aa _ N _
59
o swlied — _ Bl el o9
=) — W™

It is easily checked that 65 = 0 implies the cosmological constant o = 0. The
equation (59) for the 24 variations &u,'-,j is not explicit; but (59) is 24 independent
equations that can be explicitly solved for 6w,';j . This is done in Appendix B.

Using the Noether procedure we can find the conservation law on the sources

implied by cosmological symmetry. Defining
ed _ b v ptd
R'J = e‘- Cj R[UJ
Hed __ 1 ede ¢
Rfj =Zfe mfijrer;n
T+ = eﬁT“ij

we obtain from Appendix B, (23) and (59)

. .. k% 1 . %xx 1 %%
D, v = THI( ek + ¥R - JoFRY)  (60)

If the sources satisfy this equation then the cosmological term vanishes.
Fundamentally, the Hilbert action and the cosmological term are distin-

guished by the two tensors RZ?, and T“}g = elfegl which, although they have

the same index symmetries, RZI;, satisfies the Bianchi identity e#**® D, R;g =0

while Tﬂg does not, eL¥M® D, ng = ew”s,[‘;e’;] because of the presence of tor-

ston. In Riemannian geometry there is no torsion and no way to distinguish the

21



cosmological term from the Hilbert action. But in general, if torsion is present,
cosmological symmetry is not empty. We note that in the absence of matter the
equations of motion imply the torsion vanishs. For this reason it is important to
extend the cosmological symmetry to the matter action as well (something we
have not done).

- The astute reader might ﬁote thaf it is possible to ;en;raliz; tile transforma-
tion (59) as follows

6! ey = D# a’

1 i e _plid d . plii e (6
8lwy ey = —R5a +Teyeja

with T' to be determined by the requirement that §’S = 0. One finds I' =
—6M?(ac/ay) and (61) is equivalent to the previous parameter dependent trans-
formation (56). However, as we remarked before, parameter dependent transfor-
mations do not survive renormalization. Furthermore, and more to the point
of arguing for the naturalness of cosmological symmetry, we see that only with

I' = 0 does the transformation (61) satisfy

oo (6wl et
Auvd ijem U Cp =0 62
€ € )\( sk ) (62)

= ab . . . . .
a consequence of the fact that RZV but not T;},’j satisfies the Bianchi identity.
We conclude, on the basis of those observations, that cosmological symmetry is
a natural symmetry although only detailed calculations in the quantum theory

can ultimately decide the question of the absence of anomalies.

7. Quantum Theory

Here we will make a few speculative observations about the quantum theory.

The action for the pure gravitational gauge field is the most general that is

22



consistent with the stated symmetries and metric independence. In order to
quantize the theory it is first necessary to remove the gauge degrees of freedom
(since these are not to be quantized). The gauge fixing can also be done in a
metric independent fashion. We need ten independent conditions since there are
ten gauge degrees of freedom. four of these ten are fixed by the physical gauge
_conditiqn ¢A = 0. The reméiningrsb‘( conditions A% — —:4ﬁ — 0 can be of the

form

Aij — euv)\5€rstlw:;jezei€%nl
where the four vector ¢ defines this axial gauge or

A = e”")“sekaywi]eeg

in the Lorentz-type gauge.

In view of the fact that no terms can be added to the action without violating
metric independence we would conclude that if @ metric tndependent quantiza-
tion procedure exisls then the effective quantum action and the classical action
are tdentical, the theory is trivially renormalizable. However such a strong con-
clusion only follows if the quantization procedure is also metric independent. In
the canonical formalism, since it is based on the existence of a Hamiltonian, a
component of the stress-energy tensor, the procedure is explicitly metric depen-
dent. In the path integral formulation the metric does not explicitly enter. Yet
the path integral is only rigorously defined on a space-time lattice or Euclidean
simplex and such a simplex depends on the metric.

If the path integral for the gravitional gauge fields given by

= 2= [ dipalupPla(eheai)e (S eI
u

23



can be rigorously defined without invoking metric concepts then it can only
depend upon the topology characterized by some indices. Conceivably it could

be done exactly.

Our action S, however, has the characteristic problem of almost all gravity
theories — there exist field configurations for which the Euclidean action S is
unbounded from below. Then the path integral is undefined because the expo-
nential diverges. In our theory this problem is aggravated by the fact that one

cannot even add R? type terms to the action to bound it from below.

One point of view that might be adopted is that the effective gravitational
gauge field quantum action s the classical action. That effective action is also
metric independent and is consistent with our previous remarks. However, once
one includes matter this can no longer be the case. The constant oy, in the ef-
fective quantum action now becomes a field dependent function of 0(5) invariants
like ¢A-0A, TABCTABC arising from the matter sector. Such functions, however,
are metric independent; hence if they are computed in one metric they are known
for all metrics. Then one could in principle compute the effective quantum action
in perturbation theory. One assumes a suitable background metric and uses this
to determine to some order in perturbation theory the unknown field functions
appearing in the metric independent effective quantum action. This is analogous
to calculating a Lorentz invariant quantity in a special frame of reference — one
has, in fact, done a frame independent calculation. This procedure warrants fur-

ther investigation; it has the promise of becoming the basis of a renormalizable

theory of gravity.
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8. Conclusions

Our fundamental assumption that the action is indeper;dent of the metric
and connection, and 0{5) gauge invariant implies a very restrictive form for the
gravitational gauge field action. The 0(5) gauge fields admit of a geometrical
interpretation consistent with conventional general relativity. All the renormal-
izable matter theories can be included in this formalism. A simple “cosmological
symmetry” has been found that requires the cosmological constant to vanish.

All of the equations we have written down are far more simple in the elegant
notation of Cartan's calculus of exterior forms.” We have avoided this notational
convenience because most physicists are unfamiliar with it.

Several important problems which this work raises remain unsolved. The
cosmological symmetry we found is only a partial solution to the “cosmological
term problem”® because we have not yet extended this symmetry to matter fields.
The matter fields can produce a vacuum energy which adds to the conventional
cosmological term a constant. Yet the fact that the symmetry exists at all in the
gravitational gauge fields is encouraging. Simple models including matter ought
to be examined.

The cosmological symmetry is local. Does this imply that for a larger gauge
symmetry than 0(5) and its associated gauge field theory the cosmological symme-
try is automatic — no cosmological term will appear if the larger gauge theory
is interpreted geometrically? The cosmological symmetry might have a gauge
theory interpretation in the context of a larger gauge group.

A major problem, and an intriguing one, is whether or not a metric indepen-
dent quantization procedure exists or if this even makes sense. If so, then the

usual problem of quantum gravity might be circumvented. Trying to quantize
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gravity is like trying to quantize a spin 2 hadron—it is the wrong problem. We
made a few speculations about solutions to this problem in the last section.

A strong virtue of gauge theories of gravity is that they imply that gravity,
like the strong and electro-weak interactions, is also basically due to gauge fields.
Gravity is no longer the “odd man out.” This opens the door to total unification
of all interactions on an equél foofing. Metric theorio; o} gra\-:iti do not have
this property. The simplest group that has 0(5) X SU(5) as a subgroup is SU(9)
and this provides a possible toy model.? One may extend the idea of this paper
to local supersymmetry by gauging 0Sp(1,5) and that may lead to yet further
unification.

While such ideas are clearly speculative, in light of the current status of
quantum gravity theory, any new outlook seems worthy of investigation.
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Appendix A
Here we consider the Wigner-Inonii contraction of the 0{5) gauge group as
applied to our action (2). If the generators of 0(5) are LAB = —[PA and the

parameters 648 == —¢PA4 then the contraction is accomplished by setting

P*=\L% % = \a®
L= [ gl — gl - T
and letting the contraction parameter, A — 0 with P, L/ a® and 6% held fixed.

This implies we should also redefine our fields according to

wza = ey, ¢ = X&i

w;.,j = w;;j ¢° = ¢°
and as A\ —+ 0 ez,wij , &i and ¢° are held fixed. These fields are then representa-
tions of the Poincare group.
In what follows we will not fix the gauge so that the full ten parameter gauge
group invariance is maintained. This will be instructive. We may substitute the

fields with the X contraction parameter into the action (2). We also define the

constants a; appearing in (2) to be
o] = al/)\2 , Q9 = 02/)\2 , 03 = a3/)\4

with a; held fixed as A — 0.

The first term of the action (2) requires some care because it is singular in
the contraction limit and one can lose full gauge invariance if it is not treated
correctly. In ordér to treat it correctly one can either write the action in the
form (10) and carry out the contraction (in which case the gauge invariance is
retained directly) or expand the field ¢° according to

x2

A2 .2 22
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substitute into the action (2) and then take the A\ — O limit. If this is done the
action density becomes as A — 0

b1 ~ab ~cd ~ ab
L = enSobed( O s abed Rl ot by R a5 + bavgatngad)

where the b; are linear combinations of thea; and - . -

o= e = 2D ()

and RZ(:, is the 0(4) field strength. The first term in the contracted action is
the Gauss-Bonnet topological density. It is singular as A\ — 0 but does not
contribute to the equations of motion. However, field configurations with index
n 7 0 contribute an infinite action as A — 0.

The second and third terms can be identified with the Hilbert action and
cosmological term. While it is true that a contribution to the cosmological term
arising from the second term of (2) vanishes as A — 0 the third term of (2)
contributes a non-vanishing cosmological term as A — 0.

the action we obtain is fully Poincaré invariant. It is obviously 0(4) invariant.

Under translations we have
6 ez s Dl‘ aa

6 ¢° = Ma®
so that Mﬁ = 0 and the action is trivially translationally invariant. We see that
&a is a complete gauge artifact under translations and so we can fix the gauge
with &Sa = 0. Hence 7j; = ej;. But now the translational freedom has been fixed.

Either the translational freedom is absent (if we fix the gauge) or invisible (if we

dG not).
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We conclude, in summary, that the Wigner-Inoni contraction (i) produces
a singular action proportional to the topological index; (ii) does not eliminate
the cosmological term; (iii) the translational gauge invariance is either absence

or invisible.
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Appendix B

The cosmological symmetry transformation is

o . (B.1)
eieds w[tzeg] = —¢ied R;fé of

— - -

and here we will solve the second equation for éw,’. We make use of the inverse
. . . . .. .. .. ~ed
vierbein, e'#¢}, = 6*/ and define ekrdwy] = 6w;cj, elhekd RZ,; = Rf,‘f and also the

dual

’gtm — lelmrsgrs )

2
Then (B.1) reads
Koy 1 — o} = —Reda®

so that
x ok
estklwlid — _Rsegae

This is equivalent to
st | g8 tk 56 sk "ﬁed e
bwg + 64w — 640w = Rera
from which follows upon contraction and elimination

%% 1 * 1k
budt = (Rgf + 50 — 2o eg) o° (B.2)

% %
which is the explicit solution. We remark that a standard identity relates K to

R.
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