
SLAC-PUB-3207
September 1983
0)

AN INTRODUCTION TO MODULA-2
(Installation Code: SLA)

Bebo White*

Stanford Linear Accelerator Center
Stanford University, Stanford, California 94305

ABSTRACT

Modula-2 is a general, efficiently implementable
systems programming language, While most of its

a- structures are derived from Pascal, it overcomes
many of the limitations of that language. It
also provides a powerful alternative to Ada,
This tutorialwillpresent Modula-2's history and
an overview of its features.

Presented to
SHARE 61

Sponsored by the
PASCAL PROJECT

Session A703
New York, New York
August 21-26, 1993

%
Work supported by the Department of Energy,
contract DE-AC03-76SF00515,

page 2

Modula-2 has been variously described as Pascal-Z, and 'Pascal
for Grown-ups.' While these descriptions border on accuracy, they
typically are neither complimentary to Pascal nor do they
acknowledge Modula-2's unique features which should allow it to
be recognized for its own worth. Modula-2 does address many of
Pascal's shortcomings, but in doing so is not a condemnation of
Pascal, but more of an example of the evolution of a programming
language concept.

This paper will provide an overview of Modula-2 with emphasis on
three areas:

l The History and Background of Modula-2
l The Features of Modula-2
l Why Would IBM Users Be Interested in Modula-2?

THE HISTORY AND BACKGROUND OF MODULA-2

M&&ula-2 ,like Pascal, was developed at the ETH-Zurich under the
direction of Niklaus Wirth (Institut fur Informatik). Its devel-
opment grew largely from a practical need for a general purpose,
efficiently implementable systems programming language. The first
production use of Modula-2 occurred in 1981. Dr. Wirth's book,
Programming in Modula-2, was published by Springer-Verlag in
1982.

Figure 1 shows a "genealogical" chart for some of the modern
algorithmic programming languages. The branch that includes Modu-
la-2 shows its roots in Mesa and Modula (which partially answers
the question - "Whatever happened to Modula-l?").

The high-level language Modula was the first of Wirth's attempts
to break one of the last holds of assembly level programming,
namely machine-dependent system programming such as device driv-
ers. It has facilities for multiprogramming and was designed spe-
cifically for the PDP-11 computers. Modula provides a limited
visibility of the underlying hardware. It introduced the concept
of the module (similar to the Ada package) and has the concepts
of processes (concurrently executable units which can be explic-
itly initiated), interface modules (which correspond to monitors
and are code sections executed in mutual exclusion), and signals
(similar to the queues in Concurrent Pascal).

Many of the concepts in Modula were enhanced by Wirth's experi-
ence with Mesa while on sabbatical at XEROX Palo Alto Research

em Center (PARC). Mesa is one component of a programming system
developed at XEROX and is aimed at developing and maintaining a
wide range of system and application programs.

page 3

FORTRAN COBOL
I I
I

BASIC
I

PL/I

ALGOL60
I I

I
PASCAL

MESA
C. PASCAL

MODULA
et.al

I
I I

-1 ‘. I I

ALGOL68
SIMULA

I ADA MODULA-2

I Figure 1: An Evolution of Algorithmic Programming
I Languages

Modula-2 is the result of experience gained by Wirth from
designing, implementing and using Modula. The concept of pro-
cesses were replaced by the lower level notion of coroutines.
The latter permit the programmer to write any desired scheduling
algorithm and not be forced, as with Modula, to use the one built
into the language for the scheduling of processes. Modula-2 also
supports the notion of "programming-in-the-large" by providing
separate definition and implementation modules.

It is also important to note in Figure 1 the concurrent develop-
ment of Modula-2 and Ada. The DOD language survey, which in part
prompted the Ada effort, included Modula, as well as Mesa and

--Pascal. When Wirth implemented Modula-2, he borrowed from Mesa,
and was certainly familar with the Ada design work.

page 4

However, it was not Wirth's intention to create a language which
was a contender with Ada. His goal was to design a computer sys-
tem (hardware and software) which was capable of being programmed
in a single high-level language. This system was given the name
Lilith. The programming language used by the Lilith machine had
to satisfy requirements of high-level system design as well as
those of low-level programming of parts that closely interact
with the given hardware. Modula-2 was designed to be that lan-
guage.

As a result, Modula-2 is essentially machine-independent, with
the exception of limitations due to wordsize. This appears to be
in contradiction to the notion of a system-programming language,
in which it must be possible to express all operations inherent
in the underlying computer. This dilemma is resolved with the aid
of the module concept. Machine-dependent items can be introduced
in specific modules, and their use can thereby effectively be
confined and iso1ated.l

THE FEATURES OF MODULA-2

In terms of general features, Modula-2 most closely demonstrates
the influence of Pascal. It has adopted most of the data-type
concepts-of Pascal with some significant additions. Minor varia-
tions have been introduced with respect to the Pascal control
structures.

Like Ada, Modula-2 is based on four general software engineering
concepts:

1. Modularity - all effects are kept as local as possible

2. Data Abstraction - data manipulation is separated from the
details of the data structure representation

3. Portability

4. Concurrency control - independent lines of control (pro-
cesses) are created and synchronized

However, unlike Ada, these features are not obtained via a "more
is better" approach. While an Ada compiler may require upwards of
500K bytes, and the Ada manual is in excess of 200 pages, a Modu-
la-2 compiler is running in a 64K machine and is fully described
in a 46 page manual. So, it does provide a viable alternative to
Ada.

' Niklaus Wirth, MODULA-2, ETH Institut fur Informatik Report No. 'e-;w@
36, 1980, page 2

page 5

Appendix 1 presents a detailed comparison of specific features in
Modula-2 with those of Pascal, FORTRAN 77, and PL/I. These lan-
guages were chosen because of their availablility on IBM systems
and widespread application.

It is perhaps more important to concentrate on those features of
Modula-2 which make it unique. It is easiest to demonstrate these
features with respect to Pascal, thereby illustrating why Modu-
la-2 is not just an 'Extended Pascal.'

The Role of Modules in Modula-2

Modules are the most important feature distinguishing Modula-2
from Pascal. Relying heavily upon the concepts of "scope" and
"block," modules address the problem (usually found in large pro-
grams) of separating "visibility" from "existence."

In block-structured languages the range (i.e. program sections)
i&which an object (e.g. a variable or procedure) is known is
called that object's scope, and therefore, defines its visibil-
ity. Unfortunately, an object's visibility also binds its exis-
tence -- objects created when the block in which they reside is
entered are destroyed when the block is exited. It should be pos-
sible as-an alternative to declare variables that maintain their
values, but are visible only in a few parts of a program. Concur-
rently, there is also a need for closer control of visibility; a
procedure should not be able to access every object declared out-
side of it when it only needs to access a few of them.

Syntactically, modules closely resemble procedures, but they have
different rules about visibility and the existence of their
locally declared objects. Consider the declarations in the exam-
ple given in Figure 2.

The only syntactic differences between the module Mod and a nor-
mal Pascal procedure declaration are the reserved word beginning
the declaration (MODULE instead of PROCEDURE) and the presence of
IMPORT and EXPORT declarations following the module heading.

The semantic differences are more interesting. The objects
declared within Mod -- a,b,and c -- exist at the same time as the
variables x, Y, and z, and remain so as long as Outside is
active. The objects named in Mod's IMPORT list are the only
externally declared objects visible within Mod -- x, but neither
y nor z. The objects declared in Mod's EXPORT list are the only

em locally declared objects visible outside Mod. Thus, a and Pl are
accessible throughout Outside, but b and c remain hidden inside
Mod.

page 6

MODULA-2 PASCAL

I
PROCEDURE Outside; PROCEDURE Outside;

VAR x,y,z: INTEGER; VAR x,y,z: INTEGER;

1 MODULE Mod; I

1
IMPORT x; (* no module here ")I
EXPORT a,Pl;
VAR a,b,c: INTEGER; a,b,c: INTEGER; I

PROCEDURE Pl; PROCEDURE Pl;
I BEGIN BEGIN

a := a + 1; a := a + 1;
:= a;

EN: Pl; EN;; : ;;ta;l ;'c)

END Mod;
I’ a-

.

END Outside; END; ($< Outside ;';)

-1" Figure 2: Example of Module Declaration

I

Figuratively speaking, a module can be considered a syntactically
opaque wall protecting its enclosed objects, be they variables or
procedures. The export list names identifiers defined inside the
module that are also to be visible outside. The import list
names those identifiers defined outside the module that are visi-
ble inside. Generally, the rules for modules are:

1. Locally declared objects exist as long as the enclosing pro-
cedure remains activated;

2. Locally declared objects are visible inside the module and,
if they appear in the module's export list, they are also
visible outside;

3. Objects declared outside of the module are visible inside
only if they appear in the module's import list;

The example given em in Figure 3 demonstrates the essence of modu-
larity.

page 7

MODULA-2

MODULE MainProgram;

. . .

MODULE RandomNumber;
IMPORT TimeOfDay;
EXPORT Random;
CONST Modulus = 2345;

Increment = 7227;
VAR Seed : INTEGER;

PROCEDURE Random0 : INTEGER;
BEGIN

Seed := (Seed+Increment) L.
I’ MOD Modulus;

RETURN Seed;
END Random;

I
BEGIN (+< RandomNumber :?)

-j - Seed := TimeOfDay;
END RandomNumber;

I . . .

I BEGIN (;: MainProgram $:)
I
I

1 WriteInt{Random(), 7);

I END Ma&Program.

I Figure 3: The Essence

I

PASCAL

PROGRAM MainProgram;
VAR Seed : INTEGER;

. . . I

I

FUNCTION Random : INTEGER;
CONST Modulus = 2345; I

Increment = 7227;l
BEGIN

Seed := (Seed+Incrementj
MOD Modulus; I

Random := Seed;
END; (;: Random :k)

. . . I

BEGIN ($: MainProgram $<)
Seed := TimeOfDay;

. . .
Writeln(Random, 7);

END: i%'M ainprogram ;:)

of Modularity

The random number generator in these examples uses its previous
value as a seed variable to generate the next random number.
Thus, that value must be maintained across function calls. The
program on the right shows the classical Pascal solution. Notice
that Seed's declaration is at the top of the program, while its
initialization is forced to the bottom. Two obvious disadvan-

-a tages arise from the scattering of Seed across the face of the
program:

1. Its occurrences become hard to find, especially in a large - "-s%Q
program;

page 8

2. It becomes accessible to every other procedure in the pro-
gram, even though it is used only by Random;

The example on the left demonstrates the usefulness of the module
structure. The only object visible to the outside world is the
procedure Random, while all objects pertaining to the random num-
ber generator are contained in one place. Note that the module
RandomNumber contains both declarations and a statement part.
Module bodies are the (optional) outermost statement parts of
module declarations and serve to initialize a module's variables.
Although subject to the module's restrictive visibility rules,
module bodies conceptually belong to the enclosing procedure
rather than to the modules themselves. Therefore, module bodies
are automatically executed when the enclosing procedure is
called.

Relaxed Declaration Order

New Pascal users are often frustrated and confused by the
enforced declaration and definition block structure required
within the program skeleton. Despite the emphasis on modules,
blocks still play an important part in Modula-2: implementation
modules, program modules, internal modules, and procedures are
all declared as blocks. Differences from Pascal include relaxed
order of-declarations, termination of all blocks by a procedure
or module identifier, and the optional nature of block bodies.

Pascal imposes a strict order on the declaration of objects;
within any given block, labels must be declared before constants,
constants before types, and so on. Modula-2 eliminates this
restriction -- declarations can appear in any order. Programs
containing a large number of declarations are easier to read and
understand when related declarations are grouped together
(regardless of their kind).

The following is an example of relaxed declaration order:

MODULE Xlator;
CONST MaxsSym = 1024;
TYPE SymBuffer q ARRAY[l..MaxSym] OF CHAR;
VAR SymBuffl, SymBuff2: SymBuffer;

6OiST MaxCode = 512;
TYPE CodeBuffer = ARRAY[l..MaxCode] OF BYTE;
VAR CodeBuff: CodeBuffer;

. . .

END Xlator.

This example easily demonstrates how various related declarations
may be placed together in a Modula-2 program, whereas in a Pascal .s-;?a#

page 9

program they may be scattered due to strict block ordering.
Relaxed declaration order not only improves readability but also
enables a logical ordering which may be very important in large
programs.

Separate Compilation

Separate compilation is allowed by the Modula-2 compiler through
the use of the "compilation unit." Modula-2 programs are con-
structed from two kinds of compilation units: program modules and
library modules. Program modules are single compilation units and
their compiled forms constitute executable programs. They are
analogous to standard Pascal programs.

Library modules are a different animal and form the basis for the
Modula-2 library. They are divided into a definition module and
an implementation module. Definition modules contain declarations
of the objects which are exported to other compilation units.
Implementation modules contain the
module .

code implementing the library
Both always exist as a pair and are related by being

declared with the same module identifier.

To understand the rationale behind dividing a library module into
separate definition and implementation modules, consider the

-design and development of a large software system, such as an
operating system. The first step in designing such a system is to
identify major subsystems and design interfaces through which the
subsystems communicate. Once this is done, actual development of
the subsystems can proceed, with each programmer responsible for
developing one (or more) of the subsystems.

The specification of a (program) module may be viewed as a con-
tract between the user of the module and its implementer. It must
contain all the information needed to:

1. Enable the user to design a program that uses the module,
and verify its correctness, without knowing anything about
how the module is implemented.

2. Enable the implementer to design a module, and verify its
correctness, without knowing anything about the program that
uses the module.2

Now consider the project requirements in terms of Modula-2's sep-
arate compilation facilities. Subsystems will most likely be com-
posed of one or more compilation units. Defining and maintaining
consistent interfaces is of critical importance in ensuring

2 Leslie Lamport, 'Specifying Concurrent Program Modules,' ACM
Transactions on Programming Languages and Systems, Vol. 5, No. --L--q

- 2, April 1983, pages 190-222

page 10

error-free communication between subsystems. During the design
stage, however, the subsystems themselves do not yet exist. They
are known only by their interfaces.

The concept of a subsystem interface corresponds to the defini-
tion module construct. Thus, interfaces can be defined as a set
of definition modules before subsystem development (i.e., design
and coding of the implementation modules) begins. These modules
are distributed to all members of the programming group,and it is
through these modules that subsystem interfaces are defined.
Interface consistency is automatically enforced by the compiler.

Modula-2 Libraries

The library is a collection of separately compiled modules that
forms an essential part of most Modula-2 implementations. It typ-
ically contains the following kinds of modules:

1. Low-level system modules which provide
.-I- tern resources;

access to local sys-

2. Standard utility modules which provide a consistent system
environment across all Modula-2 implementations;

3.. General-purpose modules which provide useful operations to
many programs; and,

4. Special-purpose modules which form part of a single program.

The library is stored on one or more disk files containing com-
piled forms of the library module's compilation units. The
library is accessed by both the compiler and the program loader -
the former reads any required (pre-compiled) definition modules
during compilation, then the latter loads the corresponding
implementation modules during execution.

A dependency exists between library modules and the modules that
import them. Consider the example of a single library module. The
compiler must reference the module's symbol file (a compiled def-
inition module) in order to compile the implementation module.
Therefore, the definition module must be compiled first. Once an
implementation module has been compiled, its object file is tied
to the current symbol file, since the object code is based on
procedure and data offsets obtained from the symbol file. Simi-
larly, when a program imports a library module, it is assumed
that the symbol file offsets are accurate reflections of the cor-
responding object file.

The Modula-2 language contains no pre-defined (standard) proce-
dures for I/O, memory allocation, or process scheduling. Instead,
these facilities are provided by standard utility modules stored

page 11

in the library. The contents of a standard library would be
expected to include:
l Storage management
l Format conversions (such as binary to text and vice-versa)
l Console I/O (keyboard polling)
l Directory/file operations (reading and writing byte streams of

arbitrary types, random-access, etc.)
l Code management
l Mathematical functions
l Strings and related manipulation functions
l Etc., etc., etc. (Wirth has stated that library modules are 11 . . . an essential part of a Modula-2 implementation."

Standard utility modules are expected to be available in every
Modula-2 implementation. Thus, by using only standard modules,
Modula-2 programs become portable across all implementations.

The advantages of expressing commonly-used routines as library
modules (rather than part of the language) include a smaller com-
piler, smaller run-time system, and the ability to define alter-
nayive facilities when the standard facilities prove insuffi-
cient. Disadvantages include the need to explicitly import and
bind library modules, and the less flexible syntax required for
coding standard operations as library modules (as opposed to
their being handled by the compiler).

WHY WOULD IBM USERS BE INTERESTED IN MODULA-2?

It appears that Modula-2 should be of interest to IBM users
because of its potential for being the first operating-system-in-
dependent high- level language. This would insure portability
across the range of IBM systems as well as compatible interfaces
with non-IBM peripherals. Such interfaces could be accomplished
by placing all machine-dependent features within module librar-
ies.

At the Stanford Linear Accelerator (SLAC), one particular inter-
est in Modula-2 is for an application to support networking (such
as Ethernet) on the 3081 under VM/SP. The software protocols and
interface to Ethernet could all exist in a single VM running
under CMS, with access to the CMS file system and access to other
VMs via VMCF (the Virtual Machine Communications Facility, which
is part of the CP component of VM/SP; it provides virtual
machines with the ability to send data to and receive data from
any other virtual machine), via IUCV (the Inter-User Communica-
tions Vehicle, which is a communications facility that allows

-w users to pass any amount of information; IUCV enables a program
running in a virtual machine to communicate with other virtual
machines, with a CP system service, and with itself), and via the
virtual reader and punch. I

page 12

The software would have to be able to listen to the Ethernet
channel interface, to VMCF messages, and to reader tag records.
The most obvious way to provide such listening is via multitask-
ing with the ability to wait until some other task sends a sig-
nal, and the ability to respond to interrupts and execute pro-
cesses in parallel. Similar software would need to run in other
computers, e.g. VAXs or IBM PCs or SUN or STAR workstations) or
workstations connected to Ethernet that wish to communicate with
the 3081 for file transfers, etc. Thus, the code needs to be por-
table.

The need for portability means that only a small fraction of the
code should be written in assembler language. It is also unreal-
istic to expect to find experts on network programming who also
know assembler language for all the possible machines that will
be supported by the network. Current high level languages that
exist on both the IBM 3081 and on machines such as a VAX are lim-
ited to FORTRAN, Pascal, and C. The FORTRAN and Pascal implemen-
tations have no multitasking capabilities. C implementations for
VM/SP are just being delivered, and it is not known what inter-
EaZes to the system they have to support multitasking.

In the meantime the interface is being coded in Pascal (it was
chosen over FORTRAN due to its superior data structures) and tar-
geting VM/SP, the VAX/VMS and the IBM PC. The need for portabil-
ity requires that the use of assembler code be kept to a minimum.

page 13

Appendix A

COMPARISON OF PASCAL, FORTRAN 77. PL/ I, AND MODULA-2

PASCAL FORTRAN 77

Constants Integer, rea I, cha ratter,
Boo lean, cha ratter string

No express ions
(PASCAL/VS a I I ows

I nteger! rea I, doub I e
precision, complex,
logical, cha ratter
string

Expressions are al lowed
in the PARAMETER
statement

Types

Simple types

Enumerated
Types

Type
conversions

Variable
initialization

Arrays

Conformant
arrays
(dynamic arrays)

Reco rd s

representat ion in hex)

Possible to define them
Wel I checked

Integer, rea I, cha ratter,
Boolean, subrange

Do exist but only with
identifiers

Only integer-rea I -character
and integer-sea lar

No standard means (VALUE
i n PASCAL/VS)

Subscripts: subrange of
integers, characters,
sea I a rs, and Boo leans

Any components

Defined in Pascal IS0
(rare implementation)

Hierarchical definition
without restriction

Very I imited
No way of defining

new ones
Badly checked

Integer, real, double
precision, logical,
camp I ex, cha ratter

No

Functions exist for
most cases

Possible with DATA
(VSFORTRAN allows in
type specification
statement)

Integral positive and
negative subscripts

Simple components
Maximum 7 subscripts

Variable dimensions
Not easy to use for

multidimensional arrays

No, but may be
implemented by using
the internal file
input/output mechanism

PL/I MODULA-2

Integer (16 & 32 bits), Integer, rea I,
real (16 & 32 bits),

r (8 bit byte),
cha ratter, Boo lean,
character strinq

(bit string),
(1-16 digits),

cha racte
Boolean
decima I
label

No way of
new ones

defining

Same as constants

No

Automatic bui It-in
functions, dummy
arguments

Yes, in DECLARE
statement with
INIT (value)

Positive, negative,
integra I constants?
variables, expresslons
(subscripts)

Yes, use * in
subprogram for
bound

Hierarchical
definition without
restriction (ca I led
STRUCTURES)

Possible to define
them

We I I -checked

Integer, rea I,
cha ratter, Boo lean,
cardinal, bitset,
sub range

Exist with identifiers
and characters

Allow the definition
of character codes

Use the type name as
a conversion function

Subscripts as in
Pa sea I

Any components

Yes

Hierarchical
definition without
restriction

paw 14

Record tag
variants

PASCAL

Yes, but not checked

FORTRAN 77

No, but may be
implemented by using
the internal file
input/output mechanism

PL/ I

Yes, a STRUCTURE
with DEFINED attribute

MODULA-2

Yes, checked

Sets No As in Pascal Yes, but restrictions due
to the implementation:
set of characters, i ntege r,
sea lar I imited

No, but can be
simulated with bit
strings

Do exist and are
wel l-defined

Do exist, but not very
we I I -checked

Yes, POINTER type -
use with ADDR function

BASED attribute
CONTROLLED attribute

Not needed
1 byte = 1 character

Po i nte rs

Character packing
inside a memory

Exists with PACKED Depends on the
implementation

Cannot be checked
by programmer

Does exist and runs wel I No

Yes

i on
Dynam i c
a I locat

Dynamic

Yes, with ALLOCATE
function for
CONTROLLED variable

Yes, with FREE
function

Exists as an entity
and specific operations
are available

+o; * / ** NOT AND

Al locator module in
I ibrary

Exists but not always well
implemented

Packed array of characters
Use is not very versatile
(PASCAL/VS has type STRING)

No

Exist and specific
operations are avai table

+ - * / ** .AND.
.OR. .NOT. //

Keyword at the end
of a statement

Dea I locator module
in I ibrary

STRING type in
I ibrary

releasing

Cha racte r
strings

+ - * / DIV MOD AND
OR NOT IN
(PASCAL/VS has) & &&

Based on the compound
statement BEGIN...END

+ - * / DIV MOD AND
OR NOT IN

Opera to rs

)
Control
statement syntax K%iA...

END groups
END blocks

Based on the compound
statement

Requires explicit END
delimiter

No BEGIN.. .END

Selective
statements

I F.. .THEN.. . ELSE.. .
CASE statement

IF...THEN...ELSE...
END IF

Computed GOT0

THEN.. . ELSE
ki;T

IF...THEN...ELSIF...
THEN...ELSE...END

CASE statement

Loops

PASCAL

FOR v:= El TO E2 DO.. .
DOWNTO
REPEAT...UNTIL...

FORTRAN 77

DO n,ml,m2,m3
n CONTINUE

PL/I

DO I=ml TO m2 BY m3;
DO WHILE.. .END;

MODULA-2

WHILE. .DO. .END
REPEAT. .UNTIL..
LOOP.. END

WHILE...DO... FOR v:= el TO e2 [BY
e3] DO. .END

EXIT statement No (except GOTO) None except GOT0
(PASCAL/VS has LEAVE)

No (except GOTO)

No No
(Yes in PASCAL/VS)

GOT0 (I imited use)
(PASCAL/VS has RETURN)

GOT0 and ASSlGNed GOT0

Loop exits

Loop continue
statements

No (except GOTO)

Jumps GOT0 (LABEL parameter
can be target of a
GOT0 in calling
program from -
subprogram)

No

Procedures
Functions

Subp rog rams Procedures
functions

SUBROUTINES, FUNCTIONS
Function statements are

available
Multiple entry points

and return points
are available

By reference
Forma I subprograms

(EX TERNAL statement)

Procedures (can be
used as functions)

Parameter
transmission

By value
Bv reference
Forma I procedures and
functions
(PASCAL/VS has CONST)

By reference only By va I ue
By reference
Procedure type
IMPORT
EXPORT

Yes Recursion Yes

Yes

No

Can be dynamic or static
(own variables)

No

Yes, a subp rog ram
with RECURSIVE option

Yes, can be dynamic
or static

Yes

Local variables Yes

Static levels
(nested

procedures)

Abstract types

Depends on implementation
but at least 5

Yes

No, but record types and
enumerated types approach
abstract typing

No No E;h,S:,k; I ibrary

page 16

‘Y

Paral lel ism
(tasks)

PASCAL

No

FORTRAN 77

No

Exceptions No

Type
parametrization

No

Input/output Standard procedures
Formats only in output

Fi les

D i rect access

Interactive
faci I ities

Interface with
operating
system

Sepa rate
compi lations

Low level
concepts
(hardware

dependent)

Sequent ia I
Same type components
Text files
(PASCAL/VS a I lows PDS
input/output)

Not standard
(a I lowed in PASCAL/VS)

Not standard
Not very easy to use
(PASCAL/VS has I NTERACT I VE,
TERMIN and TERMOUT)

Depends on the
implementation
(Good in PASCAL/VS)

Not standard
Avai lable on most
computers (a I lowed
i n PASCAL/VS)

No
(Allowed in PASCAL/VS)

A few ones exist for
input/output operations

No

Very camp I ete
Numerous input and

output formats

Sequent ia I and d i rect
Binary or text files
(VSFORTRAN a I I ows

PDS input/output)

Standard

No prob lem

Depends on the
implementation

Possible; no check

Memory transfers and
conve rs i ons a re
possible

PL/ I

No (use ATTACH
macro)

MODULA-2

Corout i ne concept
TRANSFER routine
I OTRANSFER rout i ne

Many

No

Stream (GET, PUT)
Record (READ, WRITE)

E;A;:se;n I ibrary

E;h;;s,in I ibrary

Numerous modules in
standard I ibrary

Input and output
formats

St ream, Sequential,
I NDEXED, D I RECT

Standard I ibrary
Easily modifiable and

expandable

Standard

Ea sy

Depends on the
implementat ion

Yes; Libraries (PDS)
EXTERNAL attribute

Bit level operations E;A;;se in I

Exists in library
module

Exists i
module

n I ibrary

O;,;;i;ts as I ibrary

Very good with
checking
module

TION module

exce I lent
DEFINITION
IMPLEMENTA

ibrary

page 17

Appendix B

REFERENCES

1.

2.

3.

. 4.

.=

5.

6.

7.

8.

9.

10.

11.

Niklaus Wirth,
1982

Programming in Modula-2, Springer-Verlag,

Niklaus Wirth, MODULA-2, ETH Institut fur Informatik Report
No. 36, 1980 (available from Volition Systems, P.O. Box
1236, Del Mar, CA 92014)

Niklaus Wirth, The Personal Computer Lilith, ETH Institut
fur Informatik Report No. 40, 1981 (available from DISER,
Inc., 385 East 800 South, P.O. Box 70, Orem, UT 84057)

Roger Sumner and Rich Gleaves, "Modula-2 -- A Solution to
Pascal's Problems," Journal of Pascal and Ada' September/Oc-
tober 1982

Joel McCormack and Rich Gleaves, "Modula-2, A Worthy Succes-
sor to Pascal," BYTE April 1983

Lee Jacobson and Bebo White, "Introduction to Modula-2 For
Pascal Programmers," Pascal News July 1983

T. De Marco, "Modula-2: Why It Matters", The Yourdon Report
Volume 6, No. 2

Niklaus Wirth, "Modula-2 Adds Concurrency to Structured Pro-
gramming", Electronic Design July 23, 1981

Nadia Magnenat-Thalmann, "Choosing an Implementation Lan-
guage for Automatic Translation", Computing Languages Vol.
7, 1982 (this article provided the model for Appendix A;
original contains an evaluation of Pascal, FORTRAN 77, C,
and Ada)

IBM, VS FORTRAN Application Programming: Language Reference
GC26-3986-2, pages 225-231 (used in construction of Appendix
A for VS FORTRAN features)

IBM, Pascal/VS Programmer's Guide SH20-6162-1, pages 127-128
(used in construction of Appendix A for Pascal/VS features)

